
Follow-the-Regularized-Leader Routes to Chaos in Routing Games

Jakub Bielawski1 Thiparat Chotibut 2 Fryderyk Falniowski 1 Grzegorz Kosiorowski1 Micha! Misiurewicz 3

Georgios Piliouras4

Abstract
We study the emergence of chaotic behavior of
Follow-the-Regularized Leader (FoReL) dynam-
ics in games. We focus on the effects of increas-
ing the population size or the scale of costs in
congestion games, and generalize recent results
on unstable, chaotic behaviors in the Multiplica-
tive Weights Update dynamics (Chotibut et al.,
2020; 2021; Palaiopanos et al., 2017) to a much
larger class of FoReL dynamics. We establish
that, even in simple linear non-atomic conges-
tion games with two parallel links andanyÞxed
learning rate, unless the game is fully symmetric,
increasing the population size or the scale of costs
causes learning dynamics to becomes unstable
and eventually chaotic, in the sense of Li-Yorke
and positive topological entropy. Furthermore,
we prove the existence of novel non-standard phe-
nomena such as the coexistence of stable Nash
equilibria and chaos in the same game. We also
observe the simultaneous creation of a chaotic at-
tractor as another chaotic attractor gets destroyed.
Lastly, although FoReL dynamics can be strange
and non-equilibrating, we prove that the time av-
erage still converges to anexactequilibrium for
any choice of learning rate and any scale of costs.

1. Introduction

We study the dynamics of online learning in a non-atomic
repeated congestion game. Namely, every iteration of the
game presents a population (i.e., a continuum of players)
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with a choice between two strategies, and imposes on them
a cost which increases with the fraction of population adopt-
ing the same strategy. In each iteration, the players update
their strategy accommodating for the outcomes of previous
iterations. The structure of cost function here concerns that
of the congestion games, which are introduced by Rosenthal
(Rosenthal, 1973) and are amongst the most studied classes
of games. A seminal result of (Monderer & Shapley, 1996)
shows that congestion games are isomorphic to potential
games; as such, numerous learning dynamics are known
to converge to Nash equilibria (Berenbrink et al., 2014;
Even-Dar & Mansour, 2005; Fischer et al., 2006; Fotakis
et al., 2008; Kleinberg et al., 2009; 2011; Mertikopoulos &
Sandholm, 2018).

A prototypical class of online learning dynamics is Fol-
low the Regularized Leader (FoReL) (Hazan, 2016; Shalev-
Shwartz, 2012). FoReL algorithm includes as special
cases ubiquitous meta-algorithms, such as the Multiplica-
tive Weights Update (MWU) algorithm (Arora et al., 2012).
Under FoReL, the strategy in each iteration is chosen by
minimizing the weighted (by the learning rate) sum of the
total cost of all actions chosen by the players and the reg-
ularization term. FoReL dynamics are known to achieve
optimal regret guarantees (i.e., be competitive with the best
Þxed action with hindsight), as long as they are executed
with a highly optimized learning rate; i.e., one that is de-
creasing with the steepness of the online costs (inverse to
the Lipschitz constant of the online cost functions) as well
as decreasing with timeT at a rate1/

!
T (Shalev-Shwartz,

2012).

Although precise parameter tuning is perfectly reasonable
from the perspective of algorithmic design, it seems im-
plausible from the perspective of behavioral game theory
and modeling. For example, experimental and economet-
ric studies based on a behavioral game theoretic learning
model known as Experienced Weighted Attraction (EWA),
which includes MWU as a special case, have shown that
agents can use much larger learning rates than those re-
quired for the standard regret bounds to be meaningfully
applicable (Camerer, 2011; Ho & Camerer, 1998; 1999; Ho
et al., 2007). In some sense, such a tension is to be expected
because small and optimized learning rates are designed
with system stability and asymptotic optimality in mind,
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whereas selÞsh agents care more about short-term rewards
which result in larger learning rates and more aggressive be-
havioral adaptation. Interestingly, recent work on learning
in games study exactly such settings of FoReL dynamics
with large, Þxed step-sizes, showing that vanishing and even
constant regret is possible in some game settings (Bailey &
Piliouras, 2019; Bailey et al., 2019).

For congestion games, it is reasonable to expect that in-
creased demands and thus larger daily costs should result
in steeper behavioral responses, as agents become increas-
ingly agitated at the mounting delays. However, to capture
this behavior we need to move away from the standard
assumption of effective scaling down of the learning rate.
Then, the costs increase and allow more general models that
can incorporate non-vanishing regret. Thus, in this regime,
FoReL dynamics in congestion games cannot be reduced to
standard regret based analysis (Blum et al., 2006), or even
Lyapunov function arguments (e.g., (Panageas et al., 2019))
and more reÞned techniques are needed.

In a recent series of papers (Chotibut et al., 2020; 2021;
Palaiopanos et al., 2017), the special case of MWU was
analyzed under arbitrary population, demands. In a nut-
shell, for any Þxed learning rate, MWU becomes unsta-
ble/chaotic even in small congestion games with just two
strategies/paths as long as the total demand exceeds some
critical threshold, whereas for small population sizes it is
always convergent.Can we extend our understanding from
MWU to more general FoReL dynamics? Moreover, are the
results qualitatively similar showing that the dynamic is ei-
ther convergent for all initial conditions or non-convergent
for almost all initial conditions, or can there be more compli-
cated behaviors depending on the choice of the regularizer
of FoReL dynamics?

Our model & results. We analyze FoReL-based dynam-
ics with steep regularizers1 in non-atomic linear congestion
games with two strategies. This seemingly simple setting
will sufÞce for the emergence of highly elaborate and un-
predictable behavioral patterns. For any such gameG and
an arbitrarily small but Þxed learning rate! , we show that
there exists a system capacityN0(G, ! ) such that the sys-
tem is unstable when the total demand exceeds this thresh-
old. In such case, we observecomplex non-equilibrating
dynamics: periodic orbits of any period and chaotic be-
havior of trajectories(Section7). A core technical result
is that almost all such congestion games (i.e. unless they
are fully symmetric), given sufÞciently large demand, will
exhibit Li-Yorke chaos and positive topological entropy
(Section7.1). In the case of games with asymmetric equi-
librium ßow, the bifurcation diagram is very complex (see

1Steepness of the regularizer guarantees that the dynamics will
be well-deÞned as a function of the current state of the congestion
game. For details, see Section2.

Section8). Li-Yorke chaos implies that there exists an un-
countable set of initial conditions that gets scrambled by
the dynamics. Formally, given any two initial conditions
x(0), y(0) in this set,lim inf t dist(x(t), y(t)) = 0 while
lim supt dist(x(t), y(t)) > 0 ast goes to inÞnity, meaning
trajectories come arbitrarily close together inÞnitely often
but also then move away again. In the special case where
the two edges have symmetric costs (equilibrium ßow is the
50" 50%split), the system will still become unstable given
large enough demand, but chaos is not possible. Instead,
in the unstable regime, all but a measure zero set of initial
conditions gets attracted by periodic orbits of period two
which are symmetric around the equilibrium. Furthermore,
we construct formal criteria for when the Nash equilibrium
ßow is globally attracting. For such systems we can prove
their equilibration and thus social optimality even when stan-
dard regret bounds are not applicable (Section6.1). Also,
remarkably, whether the system is equilibrating or chaotic,
we prove that the time-average ßows of FoReL dynamics
exhibit regularity andalways converge exactly to the Nash
equilibrium(Section4).

In Section8, for the Þrst time, to our knowledge, we report
strange dynamics arising from FoReL in congestion games.
Firstly, we numerically show that for FoReL dynamics a
locally attracting Nash equilibrium and chaos can coexist,
see Figure2. This is also formally proven in Section6.2.
Given the prominence of local stability analysis to equilibria
for numerous game theoretic settings which are widely used
in ArtiÞcial Intelligence, such as Generative Adversarial
Networks (GANs), e.g., (Goodfellow et al., 2014; Liang &
Stokes, 2019; Mescheder et al., 2018; Nagarajan & Kolter,
2017; Yazici et al., 2018), we believe that this result is of
general interest as it reveals that local stability analysis is
not sufÞcient to guard against chaotic behaviors even in a
trivial game with just one (locally stable) Nash equilibrium.
Secondly, Figure4 reveals that chaotic attractors can be non-
robust. SpeciÞcally, we show that mild perturbations in the
parameter can lead to the destruction of one complex attrac-
tor while another totally distinct complex attractor is born!
To the best of our knowledge, these phenomena have never
been reported before, and thus expand our understanding of
the range of possible behaviors in game dynamics. Several
more examples of complex phenomena are provided in Sec-
tion 8. Finally, further calculations for entropic regularizers
can be found in AppendixA.

Our Þndings suggest that the chaotic behavior of players
using Multiplicative Weights Update algorithm in conges-
tion games (see results from (Chotibut et al., 2020; 2021;
Palaiopanos et al., 2017)) is not an exception but the rule.
Chaos is robust and can be seen for a vast subclass of online
learning algorithms. In particular, our results apply to an
important subclass of regularizers, of generalized entropies,
which are widely used concepts in information theory, com-
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Figure 1.Coexistence of locally attracting Nash equilibrium (green), limit cycles, and chaos in the same congestion game. Since congestion
game has an associated convex potential (cost) function! a,b (x) = a2

2

�
(1 � b)x2 + b(1 � x)2

�
with a unique global minimum at the

Nash equilibriumb, standard learning algorithms such as gradient-like update with a small step size will converge to the equilibrium.
However, here we highlight the unusual coexistence of the attracting Nash equilibrium, limit cycles, and chaos for FoReL dynamics with
log-barrier regularizerr (x) = (1 � x) log(1 � x) + x log(x) � 5

12 log(�x2 + x + 0 .11). The right column shows that FoReL dynamics
xn depends on the initial conditions (cyan and orange colors.) Red color encodes the dynamics initialized near the left critical pointxl ,
which converges to the Nash equilibriumb. Blue color encodes the dynamics initialized near the right critical pointxr , which converge to
the limit cycle of period 2 (top), and to chaotic attractors (bottom). Convergence to the Nash equilibrium arises through dynamics that
lower the cost function at every successive steps (left column), while convergence to a limit cycle or a chaotic attractor incur large cost,
bouncing around in the cost landscape away from the Nash equilibrium. Remarkably, despite being periodic or chaotic, we prove that the
time-average of the dynamics convergesexactlyto the Nash equilibriumb, independent of the interior initial conditions. The bifurcation
diagram associated withb = 0 .61 that demonstrates coexistence of multiple attractors in the same game is shown in Fig.2.

plexity theory, and statistical mechanics (Csisz«ar, 2008;
S!omczy«nski et al., 2000; Tsallis, 1988). Steep functions
(Mertikopoulos & Sandholm, 2016; 2018; Mertikopoulos &
Zhou, 2019) and generalized entropies are also often used as
regularizers in game-theoretic setting (Bomze et al., 2019;
Coucheney et al., 2015; Mertikopoulos & Sandholm, 2018).
In particular, Havrda-Charv«at-Tsallis entropy-based dynam-
ics was studied, for instance, in (Harper, 2011; Karev &
Koonin, 2013). Lastly, the emergence of chaos is clearly
a hardness type of result. Such results only increase in
strength the simpler the class of examples is. Complicated
games are harder to learn and it is harder for players to coor-
dinate on an equilibrium. Thus, in more complicated games
one should expect even more complicated, unpredictable
behaviors.

2. Model

We consider a two-strategycongestion game(see (Rosen-
thal, 1973)) with a continuum of players (agents), where all
of the players apply theFollow the Regularized Leader
(FoReL) algorithm to update their strategies (Shalev-
Shwartz, 2012). Each of the players controls an inÞnitesi-
mally small fraction of the ßow. We assume that the total
ßow of all the players is equal toN . We denote the fraction

of the players adopting the Þrst strategy at timen asxn .
The second strategy is then chosen by1" xn fraction of the
players. This model encapsulates how a large population
of commuters selects between the two alternative paths that
connect the initial point to the end point. When a large
fraction of the players adopt the same strategy, congestion
arises, and the cost of choosing the same strategy increases.

Linear congestion games: We focus on linear cost func-
tions. SpeciÞcally, the cost of each path (link, route, or
strategy) is proportional to theload. By denotingcj the cost
of selecting the strategyj (whenx relative fraction of the
agents choose the Þrst strategy),

c1(x) = "Nx, c 2(1 " x) = #N (1 " x), (1)

where", # > 0 are the coefÞcients of proportionality. With-
out loss of generality we will assume throughout the paper
that" + # = 1 . Therefore, the values of" and# = 1 " "
indicate how different the path costs are from each other.

A quantity of interest is the value of the equilibrium split;
i.e., the relative fraction of players using the Þrst strategy
at equilibrium. The Þrst beneÞt of this formulation is that
the fraction of agents using each strategy at equilibrium
is independent of the ßowN . The second beneÞt is that,
independent of" , # andN , playing Nash equilibrium re-
sults in the optimal social cost, which is the point of contact
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with the Price of Anarchy research (Chotibut et al., 2020;
Koutsoupias & Papadimitriou, 1999).

2.1. Learning in congestion games with FoReL
algorithms

We assume that the players at timen + 1 know the cost
of the strategies at timen (equivalently, the realized ßow
(split) (xn , 1 " xn )) and update their choices according
to theFollow the Regularized Leader(FoReL) algorithm.
Namely, in the periodn + 1 the players choose the Þrst
strategy with probabilityxn +1 such that:

xn +1 = arg min
x2(0 ,1)

($
X

j n

[c1(xj ) áx + c2(1 " xj ) á(1 " x)]

+ R(x, 1 " x)) = arg min
x2(0 ,1)

($
X

j n

["N áxj áx

+ #N á(1 " xj ) á(1 " x)] + R(x, 1 " x)) ,
(2)

wherec1(xj ) áx + c2(1 " xj ) á(1 " x) is a total cost that is
inßicted on the population of agents playing against the mix
(x, 1" x) in periodj , whileR : (0, 1)2 #$R is aregularizer
which represents a Òrisk penaltyÓ: namely, that term would
penalize abrupt changes of strategy based on a small amount
of data from previous iterations of the game. The existence
of a regularizer rules out strategies that focus too much on
optimizing with respect to the history of our game. A weight
coefÞcient$ > 0 of our choosing is used to balance these
two terms and may be perceived as a propensity to learn and
try new strategies based on new information: the larger$
is, the faster the players learn and the more eager they are
to update their strategies. Commonly adopted as a standard
assumption, the learning rate$ can be regarded as a small,
Þxed constant in the following analysis but its exact value is
not of particular interest. Our analysis/results holds for any
Þxed choice of$.

Note that FoReL can also be regarded as an instance of an
exploration-exploitation dynamics under the multi-armed
bandits framework in online learning (Zhao, 2019). In the
limit $ % 1 such that (2) is well approximated by the
minimization of the cumulative expected cost

X

j n

[c1(xj ) áx + c2(1 " xj ) á(1 " x)]

=
X

j n

c2(1 " xj ) +

0

@
X

j n

[c1(xj ) " c2(1 " xj )]

1

A x,

the minimization yields

xn +1 =

(
0,

P
j n [c1(xj ) " c2(1 " xj )] > 0,

1,
P

j n [c1(xj ) " c2(1 " xj )] < 0.

Namely, the strategy that incurs theleastcumulative cost
in the past time horizon is selected with probability 1. This
term thus representsexploitationdynamics in reinforcement
learning and multi-armed bandits framework. In the op-
posite limit when! & 1, (2) is well approximated by the
minimization of the regularizerR(x, 1 " x). For the Shan-
non entropy regularizerR(x, 1 " x) = " HS(x, 1 " x) =
x logx +(1 " x) log(1" x) that results in the Multiplicative
Weight Update algorithm (see the details in AppendixA and
Sec.3), its minimization yields

xn +1 = (1 " xn +1 ) = 1 / 2.

The entropic regularization term tends to explore every strat-
egy with equal probabilities, neglecting the information of
the past cumulative cost. Thus, this regularization term cor-
responds toexplorationdynamics. Therefore,$ adjusts the
tradeoff betweenexplorationandexploitation. The continu-
ous time variant of (2) with the Shannon entropy regularizer
has been studied as models of collective adaption (Sato &
CrutchÞeld, 2003; Sato et al., 2005), also known as Boltz-
mannQ learning (Kianercy & Galstyan, 2012), in which
the exploitation term is interpreted as behavioraladaptation
whereas the exploration term representsmemory loss. More
recent continuous-time variants study generalized entropies
as regularizers, leading to a larger class of dynamics called
Escort Replicator Dynamics (Harper, 2011) which was an-
alyzed extensively in (Mertikopoulos & Sandholm, 2016;
2018).

Motivated by the continuous-time dynamics with general-
ized entropies, we extend FoReL discrete-time dynamics (2)
to a larger class of regularizers. For a given regularizerR,
we deÞne an auxiliary function:

r : (0, 1) ' x #$ R(x, 1 " x) ( R. (3)

We restrict the analysis to a FoReL class of regularizers
for which the dynamics implied by the algorithm is well-
deÞned. Henceforth, we assume thatR is a steep symmetric
convex regularizer, namelyR ( SSC, where:

SSC = { R ( C 2((0, 1)2) : ) (x,y )2(0 ,1)2R(y, x) = R(x, y);

) x2(0 ,1) r
00(x) > 0; lim

x!0+
r 0(x) = "*} .

These conditions on regularizers are not overly restrictive:
the assumptions for convexity and symmetry of the regu-
larizer are natural, and iflimx!0 r 0(x) is Þnite, then the
dynamics ofxn from (2) will not be well-deÞned.

Many well-known and widely used regularizers like (nega-
tive) Arimoto entropies (Shannon entropy, Havrda-Charv«at-
Tsallis (HCT) entropies and log-barrier being most fa-
mous ones) and (negative) R«enyi entropies, under mild
assumptions, belong toSSC (see AppendixA). A stan-
dard non-example is the square of the Euclidean norm
R(x, 1 " x) = x2 + (1 " x)2.
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3. The dynamics introduced by FoReL

Let R ( SSC. Assume that up to the iterationn > 0 the
trajectory(x0, x1, . . . , xn�1) was established by (2). Then

xn =

arg min
x2(0 ,1)

0

@N$
X

j n�1

["x j x + #(1 " xj )(1 " x)] + r (x)

1

A .

First order condition yields

r 0(xn ) = " N$
X

j n�1

["x j " #(1 " xj )] .

We know thatr is convex, therefore the sufÞcient and nec-
essary condition forxn +1 to satisfy (2) takes form:

r 0(xn +1 ) = " N$
X

j n

["x j " #(1 " xj )]

= r 0(xn ) " N$ ["x n " #(1 " xn )]

= r 0(xn ) " N$ [xn " #] .

(4)

We deÞne! : (0 , 1) ' x #$ " r 0(x) ( R. Table1 depicts
functions! for different entropic regularizers2. Before pro-
ceeding any further, we need to establish crucial properties
of the function! .

Proposition 3.1. Let ! be a function derived from a regu-
larizer fromSSC. Then

i) !(1 " x) = " !( x) for x ( (0, 1).

ii) ! is a homeomorphism,lim
x!0+

!( x) = * , and

lim
x!1!

!( x) = "* .

By Proposition3.1.ii , ! is a homeomorphism between(0, 1)
andR.

After substituting

a = N$, b = # (5)

we obtain from (4) a general formula for the dynamics

xn +1 = ! �1 (!( xn ) + a(xn " b)) , (6)

wherea > 0, b ( (0, 1). Thus, we introducef a,b : [0, 1] #$
[0, 1] as

f a,b(x) =

8
><

>:

0, x = 0
! �1 (!( x) + a(x " b)) , x ( (0, 1)
1, x = 1

(7)

2By substituting the negative Shannon entropy asr in (4), that
is r (x) = R(x, 1� x) = x log x + (1 � x) log(1 � x), we obtain
the Multiplicative Weights Update algorithm.

By the properties of! , f a,b : [0, 1] #$ [0, 1] is continuous,
and(7) deÞnes a discrete dynamical system emerging from
the FoReL algorithm for the pair of parameters(a, b).

Lemma 3.2. The following properties hold:

i) f a,b(x) > x if and only if x < b and f a,b(x) < x if
and only ifx > b .

ii) If %: (0, 1) #$ (0, 1) is given by%(x) = 1 " x, then
%+f a,b = f a,1�b +%.

iii) Under the dynamics deÞned by(7), there exists a closed
invariant and globally attracting intervalI , (0, 1).

4. Average behavior Ñ Nash equilibrium is
Ces«aro attracting

We start by studying asymptotic behavior by looking on the
average behavior of orbits. We will show that the orbits of
our dynamics exhibit regular average behavior known as
Ces«aro attraction to the Nash equilibriumb.

DeÞnition 4.1. For an interval mapf a pointp is Ces«aro
attracting if there is a neighborhoodU of p such that for
everyx ( U the averages1n

Pn�1
k=0 f k (x) converge top.

Theorem 4.2(Ces«aro attracting). For everya > 0, b (
(0, 1) andx0 ( (0, 1) we have

lim
n!1

1
n

n�1X

k=0

f k
a,b(x0) = b. (8)

Corollary 4.3. The center of mass of any periodic
orbit { x0, x1, . . . , xn�1} of f a,b in (0, 1), namely
x 0+ x 1+ ... + x n ! 1

n , is equal tob.

Applying the Birkhoff Ergodic Theorem, we obtain:

Corollary 4.4. For every probability measureµ, invariant
for f a,b and such thatµ({ 0, 1} ) = 0 , we have

Z

[0,1]
x dµ = b.

In the following sections, we will show that, despite the
regularity of the average trajectories which converge to the
Nash equilibriumb, the trajectories themselves typically
exhibit complex and diverse behaviors.

5. Two deÞnitions of chaos

In this section we introduce two notions of chaotic behavior:
Li-Yorke chaos and (positive) topological entropy. Most
deÞnitions of chaos focus on complex behavior of trajecto-
ries, such as Li-Yorke chaos or fast growth of the number of
distinguishable orbits of lengthn, detected by positivity of
the topological entropy.
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Table 1.Homeomorphisms" for regularizers fromSSC.
regularizer r (x) !( x)

Shannon x logx + (1 " x) log(1 " x) log 1�x
x

Havrda-Charv«at-Tsallis,q ( (0, 1) 1
1�q (1 " xq " (1 " x)q) q

1�q

�
xq�1 " (1 " x)q�1

�

R«enyi,q ( (0, 1) 1
q�1 log(xq + (1 " x)q) q

1�q áx q! 1�(1�x )q ! 1

x q +(1 �x )q

log-barrier " logx " log(1 " x) 1
x " 1

1�x

DeÞnition 5.1(Li-Yorke chaos). Let (X, f ) be a dynam-
ical system and(x, y) ( X - X . We say that(x, y) is a
Li-Yorke pair if lim inf n!1 dist( f n (x), f n (y)) = 0 , and
lim supn!1 dist( f n (x), f n (y)) > 0. A dynamical system
(X, f ) is Li-Yorke chaoticif there is an uncountable set
S , X (called scrambled set) such that every pair(x, y)
with x, y ( S andx .= y is a Li-Yorke pair.

Intuitively orbits of two points from the scrambled set have
to gather themselves arbitrarily close and spring aside in-
Þnitely many times but (ifX is compact) it cannot happen
simultaneously for each pair of points. Obviously the exis-
tence of a large scrambled set implies that orbits of points
behave in unpredictable, complex way.

A crucial feature of the chaotic behavior of a dynamical
system is also exponential growth of the number of distin-
guishable orbits. This happens if and only if the topological
entropy of the system is positive. In fact positivity of topo-
logical entropy turned out to be an essential criterion of
chaos (Glasner & Weiss, 1993). This choice comes from
the fact that the future of a deterministic (zero entropy) dy-
namical system can be predicted if its past is known (see
(Weiss, 2000)) and positive entropy is related to randomness
and chaos. For every dynamical system over a compact
phase space, we can deÞne a numberh(f ) ( [0, * ] called
the topological entropyof transformationf . This quan-
tity was Þrst introduced by Adler, Konheim and McAndrew
(Adler et al., 1965) as the topological counterpart of a metric
(and Shannon) entropy. In general, computing topological
entropy is not an easy task. However, in the context of
piecewise monotone interval maps, topological entropy is
equal to the exponential growth rate of the minimal number
of monotone subintervals forf n .

Theorem 5.2((Misiurewicz & Szlenk, 1980)). Let f be a
piecewise monotone interval map and, for alln / 1, let mn

be the minimal cardinality of a monotone partition forf n .
Thenh(f ) = lim n!1

1
n logmn = inf n�1

1
n logmn .

6. Asymptotic stability of Nash equilibria

6.1. Asymptotic stability of Nash equilibria

The dynamics induced by(7) admits three Þxed points:0,
1 andb. By Lemma3.2.iii we know that all orbits starting
from (0, 1) eventually fall into a globally attracting interval

I . Thus, the points0 and1 are repelling. When does the
Nash equilibriumb attract all point from(0, 1)? First, we
look whenb is an attracting and when it is a repelling Þxed
point. With this aim, we study the derivative off a,b :

f 0
a,b(x) =

�
! �1�0 (!( x) + a(x " b)) á(! 0(x) + a) .

Then,

f 0
a,b(b) =

�
! �1�0 (!( b)) á(! 0(b) + a) =

! 0(b) + a
! 0(b)

. (9)

The Þxed pointb is attracting if and only if
���f 0

a,b(b)
��� < 1,

which is equivalent to the condition:

|! 0(b) + a| < " ! 0(b). (10)

Thus, the Þxed pointb is attracting if and only ifa (
(0, " 2 á! 0(b)) and repelling otherwise. We will answer
whenb is globally attracting on(0, 1). First we will show
the following auxiliary lemma.
Lemma 6.1. Let a functiong: I #$R be such thatg000 < 0.
Then

g0
✓

x + y
2

◆
>

g(x) " g(y)
x " y

for everyx, y ( I .

The following theorem answers, whetherb is globally at-
tracting on(0, 1).
Theorem 6.2. Let ! be a homeomorphism derived from a
regularizer fromSSC. Suppose thatb is an attracting Þxed
point off a,b . If ! 000 < 0, then trajectories of all points from
(0, 1) converge tob.
Corollary 6.3. Let ! 000 < 0. Then the Nash equilibriumb
attracts all points from the open interval(0, 1) if and only if
a ( (0, " 2! 0(b)) .

Functions! derived from Shannon entropy, HCT entropy
or log-barrier satisfy the inequality! 000 < 0. Nevertheless,
this additional condition is needed, because for an arbitrary
! derived fromSSC attracting orbits of any period may
exist together with the attracting Nash equilibriumb. In the
next section we will discuss thoroughly an example of such
behavior. This shows that even for the well-known class
of FoReL algorithms knowledge of local behavior (even
attraction) of the Nash equilibrium may not be enough to
properly describe behavior of agents.
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Figure 2.Coexistence of the attracting Nash equilibrium and
chaos.The bifurcation diagrams forf a,b where the dynamics is
induced by the regularizerr (x) = (1 � x) log(1 � x) + x log x �
0.4167 log(�x2 + x + 0 .11) for b = 0 .61. On the horizontal
axis the parametera is between2.6 and3.4, and on the vertical
axis values off a,b are shown. As starting points for bifurcation
diagrams two critical points off a,b are taken Ñ red refers to the
critical point in(0, 0.5) and blue the critical point in(0.5, 1). Each
critical point is iterated 4000 times, visualizing the last 200 iterates.
On the top picture Þrst red and then blue trajectories are drawn,
and on the bottom one the order is reversed. Function"( x) =
�r ! (x) = log(1 � x) � log x + 0 .4167[ 1

1.1" x � 1
x +0.1 ] fulÞlls

all assumptions of Theorem6.2excluding" !!! < 0. Although for
a < �2" ! (b) ⇡ 3.28 the unique Nash equilibrium is attracting
we can observe chaotic behavior already fora > 3.15. The picture
suggests that in the coexistence region we have an interval which is
invariant forf 2

a,b , and in it we see the usual evolution of unimodal
maps. This means that sometimes we see an attracting periodic
orbit, sometimes a chaotic attractor.

6.2. Coexistence of attracting Nash equilibrium and
chaos

In this section we will describe an example of the regular-
izer fromSSC, which introduces game dynamics in which
attracting Nash equilibrium coexist with chaos, see example
in Figure2. This phenomenon is observed by replacing the
Shannon entropic regularizer by the log-barrier regularizer.
Namely, we take!( x) = log(1 " x) " logx + 0 .4167á⇣

1
1.1�x " 1

x +0 .1

⌘
.

We will show that there exista > 0, b ( (0, 1) such thatf a,b

has an attracting Þxed point (which is the Nash equilibrium)
yet the map can be chaotic!

Proposition 6.4. There exista > 0, b ( (0, 1) such thatf a,b

has an attracting Þxed point (Nash equilibrium), positive
topological entropy and is Li-Yorke chaotic.i

Corollary 6.5. There exist FoReL dynamics such that when
applied to symmetric linear congestion games with only
two strategies/paths the resulting dynamics have i) a set
of positive measure of initial conditions that converge to
the unique and socially optimum Nash equilibrium, ii) an
uncountable scrambled set for which trajectories exhibit
Li-Yorke chaos, and iii) periodic orbits of all possible even
periods. Thus, the (long-term) social cost depends critically
on the initial condition.

FoReL dynamics induced by this regularizer manifests dras-
tically different behaviors that depend on the initial condi-
tion.

7. Behavior for sufÞciently largea

7.1. Non-convergence for sufÞciently largea

In this subsection, we study what happens as we Þxband
let a be arbitrarily large3. First, we study the asymmetric
case, namelyb .= 1 / 2. We show chaotic behavior of our dy-
namical system fora sufÞciently large, that is we will show
that if a is sufÞciently large thenf a,b is Li-Yorke chaotic,
has periodic orbits of all periods and positive topological en-
tropy. The crucial ingredient of our analysis is the existence
of periodic orbit of period 3.

Theorem 7.1. If b ( (0, 1)\{ 1
2 } , then there existsab such

that if a > a b thenf a,b has a periodic point of period 3.

By the Sharkovsky Theorem (Sharkovsky, 1964), existence
of a periodic orbit of period 3 implies existence of periodic
orbits of all periods, and by the result of (Li & Yorke, 1975),
period 3 implies Li-Yorke chaos. Moreover, becausef a,b

has a periodic point of period that is not a power of 2, the
topological entropyh(f a,b) is positive (see (Misiurewicz,

3By (5) it reßects the case when we Þx cost functions (and
learning rate! ) and increase the total demandN .
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1979)). Thus:

Corollary 7.2. If b ( (0, 1) \ { 1/ 2} , then there existsab

such that ifa > a b then f a,b has periodic orbits of all
periods, has positive topological entropy and is Li-Yorke
chaotic.

This result has an implication in non-atomic routing games.
Recall that the parametera expresses the normalized total
demand. Thus, Corollary7.2 implies that when the cost
functions of paths are different, then increasing the total de-
mand of the system will inevitably lead to chaotic behavior.

Now we consider the symmetric case, whenb = 1
2 , which

corresponds to equal coefÞcients of the cost functions," =
#. To simplify the notation we denotef a = f a,1/ 2.

Theorem 7.3. If the parametera is small enough, then
all trajectories off a starting from(0, 1) converge to the
attracting Þxed point1/ 2. There existsab such that ifa >
ab, then all points from(0, 1) (except countably many points,
whose trajectories eventually fall into the repelling point
1/ 2) are attracted by periodic attracting orbits of the form
{ &a, 1 " &a} , where0 < &a < 1/ 2. Moreover, if there
exists' > 0 such that! is convex on(0, ' ), then there
exists a unique attracting orbit{ &a, 1 " &a} , which attracts
trajectories of all points from(0, 1), except countably many
points, whose trajectories eventually fall into the repelling
Þxed point1/ 2.

Theorem7.3 implies that if the cost functions are equal,
there is a threshold such that if the total demand exceeds it,
then starting from almost any initial state the system will
converge to a symmetric periodic orbit of period 2.

8. Experimental results

In this section we report complex behaviors in bifurcation
diagrams of FoReL dynamics. All Þgures can be found in
the Appendix. We investigate the structures of the attract-
ing periodic orbits and chaotic attractors associated with
the interval mapf a,b : [0, 1] #$ [0, 1] deÞned by(7). In
the asymmetric case, that is whenb differs from 0.5, the
standard equilibrium analysis applies when the Þxed point
b is stable, which is when|f 0

a,b(b)| 0 1, or equivalently
whena 0 " 2! 0(b). Therefore, as we argued in the previ-
ous section, in this case the dynamics will converge toward
the Þxed pointbwhenevera < " 2! 0(b). However, when
a / " 2! 0(b) there is no attracting Þxed point. Moreover,
a chaotic behavior of trajectories emerges whena is sufÞ-
ciently large, as the period-doubling bifurcations route to
chaos is guaranteed to arise.

In particular, we study the attractors of the mapf a,b gener-
ated by the log-barrier regularizer (see ExampleA.2 with
( (x) = log x) and by the Havrda-Charv«at-Tsallis regular-
izer for q = 0 .5 (see ExampleA.3). Note that for both of

these regularizers, we have that! 000 < 0. Note also that the
functions! for these regularizers can be found in Table1.

We Þrst focus on the log-barrier regularizer4. Figure4 re-
veals an unusual bifurcation phenomenon, which, to our
knowledge, is not known in other natural interval maps.
We observe simultaneous evolution of two attractors in the
opposite directions: one attractor, generated by the trajec-
tory of the left critical point, is shrinking, while the other
one, generated by the trajectory of the right critical point,
is growing. Figure5 shows another unusual bifurcation
phenomenon: a chaotic attractor arises via period-doubling
bifurcations and then collapses. After that, the trajectories
of the critical points, one after the other, jump, and then they
together follow a period-doubling route to chaos once more.

Finally we study the bifurcation diagrams generated from
Havrda-Charv«at-Tsallis regularizer withq = 0 .5. In Figure
6 we observe a Þnite number of period-doubling (and period-
halving) bifurcations, a behavior that does not lead to chaos.
Nevertheless, asa increases from 39.915 to 39.93, the tra-
jectory of the right critical point leaves the attractor which it
shared with the trajectory of the left critical point, and builds
a separate chaotic attractor. When chaos arises, however,
we observe that the induced dynamics of the log-barrier
regularizer and of the Havrda-Charv«at-Tsallis regularizer
with q = 0 .5 both exhibit period-doubling routes to chaos
though the regularizers are starkly different, see Figure7
and Figure8 respectively.

9. Conclusion

Recently, there has been intense interest in understanding un-
stable, chaotic behaviors of learning dynamics in games. For
example, the inability of continuous-time FoReL dynamics
to converge to mixed Nash equilibria in normal form games
has recently been established in (Vlatakis-Gkaragkounis
et al., 2020); however, no results about chaos were shown.
Moreover, (Galla & Farmer, 2013; Pangallo et al., 2019)
showcase empirically that numerous learning dynamics ex-
hibit instability in different games. However, once again, no
formal proofs of Li-Yorke chaotic behaviors are established.

In this work, we study FoReL dynamics in non-atomic con-
gestion games with arbitrarily small but Þxed step-sizes,
rather than with decreasing and regret-optimizing step-sizes.
We show that, under sufÞciently large demand, dynamics
will unavoidably become chaotic and unpredictable. Our
work generalizes previous results that hold in the special
case of Multiplicative Weights Update (Chotibut et al., 2020;

4From the regularity of the mapf a,b (see AppendixB), we
know that every limit cycle of the dynamics generated byf a,b

can be found by studying the behavior of the critical points of
f a,b . Therefore, all attractors of this dynamics can be revealed by
following the trajectories of these two critical points (as in Figure
4).
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2021; Palaiopanos et al., 2017). We also provide a variety of
undocumented complex behaviors such as the co-existence
of a locally attracting Nash equilibrium and of chaosin the
same game. Despite this complexity of the day-to-day be-
havior, the time-average system behavior isalwaysperfectly
regular, converging to an exact equilibrium. Our analysis
showcases that local stability in games should not be con-
sidered as a foregone conclusion and paves the way toward
further investigations at the intersection of optimization the-
ory, (behavioral) game theory, and dynamical systems.
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