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Abstract

We study the emergence of chaotic behavior of
Follow-the-Regularized Leader (FoReL) dynam-
ics in games. We focus on the effects of increas-
ing the population size or the scale of costs in
congestion games, and generalize recent results
on unstable, chaotic behaviors in the Multiplica-
tive Weights Update dynamic€hotibut et al,
202Q 2021; Palaiopanos et al2017) to a much
larger class of FoReL dynamics. We establish
that, even in simple linear non-atomic conges-
tion games with two parallel links arahy bxed
learning rate, unless the game is fully symmetric,
increasing the population size or the scale of costs
causes learning dynamics to becomes unstable
and eventually chaotic, in the sense of Li-Yorke
and positive topological entropy. Furthermore,
we prove the existence of novel non-standard phe-
nomena such as the coexistence of stable Nash
equilibria and chaos in the same game. We also

with a choice between two strategies, and imposes on them
a cost which increases with the fraction of population adopt-
ing the same strategy. In each iteration, the players update
their strategy accommodating for the outcomes of previous
iterations. The structure of cost function here concerns that
of the congestion games, which are introduced by Rosenthal
(Rosenthgl1973 and are amongst the most studied classes
of games. A seminal result ofMonderer & Shapley1996
shows that congestion games are isomorphic to potential
games; as such, numerous learning dynamics are known
to converge to Nash equilibridBérenbrink et al.2014
Even-Dar & Mansour2005 Fischer et a].2006 Fotakis

et al, 2008 Kleinberg et al.2009 2011 Mertikopoulos &
Sandholm?2018.

A prototypical class of online learning dynamics is Fol-
low the Regularized Leader (FoRelbjdzan 2016 Shalev-
Shwartz 2012. FoReL algorithm includes as special
cases ubiquitous meta-algorithms, such as the Multiplica-
tive Weights Update (MWU) algorithmA(ora et al, 2012).
Under FoReL, the strategy in each iteration is chosen by

observe the simultaneous creation of a chaotic at-
tractor as another chaotic attractor gets destroyed.
Lastly, although FoReL dynamics can be strange
and non-equilibrating, we prove that the time av-

minimizing the weighted (by the learning rate) sum of the
total cost of all actions chosen by the players and the reg-
ularization term. FoReL dynamics are known to achieve
optimal regret guarantees (i.e., be competitive with the best

erage still converges to axactequilibrium for

: . bPxed action with hindsight), as long as they are executed
any choice of learning rate and any scale of costs.

with a highly optimized learning rate; i.e., one that is de-
creasing with the steepness of the online costs (inverse to
the Lipschitz constant of the onling cost functions) as well
as decreasing with tim€ ataratel/ T (Shalev-Shwartz

We study the dynamics of online learning in a non-atomic2013.

repeated congestion game. Namely, every iteration of thgthough precise parameter tuning is perfectly reasonable
game presents a population (i.e., a continuum of playergyom the perspective of algorithmic design, it seems im-
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whereas selbsh agents care more about short-term rewar8ection8). Li-Yorke chaos implies that there exists an un-
which result in larger learning rates and more aggressive be&ountable set of initial conditions that gets scrambled by
havioral adaptation. Interestingly, recent work on learningthe dynamics. Formally, given any two initial conditions
in games study exactly such settings of FoReL dynamicg(0), y(0) in this set,liminf dist(x(t), y(t)) = 0 while

with large, Pxed step-sizes, showing that vanishing and evelim sup, dist(x(t), y(t)) > 0 ast goes to inPnity, meaning
constant regret is possible in some game settiBgddy &  trajectories come arbitrarily close together inbnitely often
Piliouras 2019 Bailey et al, 2019. but also then move away again. In the special case where

For conaestion aames. it is reasonable to expect that itt_we two edges have symmetric costs (equilibrium Bow is the
9 9 ' P 9 50%split), the system will still become unstable given

creased demands and thus larger daily costs should resrl]%

) . . arge enough demand, but chaos is not possible. Instead,
in steeper behavioral responses, as agents become increass

inalv aqitated at the mounting delavs. However. to ca turelnsthe unstable regime, all but a measure zero set of initial
gy ag 9 ys. ’ P onditions gets attracted by periodic orbits of period two

this behavior we need to move away from the standar& . . o
. ) . . which are symmetric around the equilibrium. Furthermore,
assumption of effective scaling down of the learning rate. o AV
i we construct formal criteria for when the Nash equilibrium
Then, the costs increase and allow more general models thgt~ ™ .
. o A . ow is globally attracting. For such systems we can prove
can incorporate non-vanishing regret. Thus, in this regim

o : heir equilibration and thus social optimality even when stan-
FoReL dynamics in congestion games cannot be reduced?&ard rggret bounds are not appliczble (Syecﬁdl)u AlSo
standard regret based analy®uim et al, 2006, or even ' '

. remarkably, whether the system is equilibrating or chaotic,
Lyapunov function arguments (e.gRdnageas et ak019) . .
. we prove that the time-average Rows of FoOReL dynamics
and more rebPned techniques are needed.

exhibit regularity andilways converge exactly to the Nash
In a recent series of paperSiotibut et al. 2020 2021  equilibrium(Sectiond).

Palaiopanos et al2017), the special case of MWU was In Section8, for the pbrst time, to our knowledge, we report

analyzed under arbitrary population, demands. In a nus_trange dynamics arising from FoReL in congestion games.

shell, for any Pxed learning rate, MWU becomes lJnStal_:irstly, we numerically show that for FoReL dynamics a

ble/chaotic even in small congestion games with just twq . o .
) gcally attracting Nash equilibrium and chaos can coexist,
strategies/paths as long as the total demand exceeds some

iy . ) ... see Figure2. This is also formally proven in Sectidh2
critical threshold, whereas for small population sizes it is - . o : L
. Given the prominence of local stability analysis to equilibria
always convergentCan we extend our understanding from

MWU to more general FoReL dynamics? Moreover, are thefor numerous game theoretic settings which are widely used

L . : ..~ ~.in Artibcial Intelligence, such as Generative Adversarial
results qualitatively similar showing that the dynamic is ei- )
L " Networks (GANSs), e.g.,Goodfellow et al, 2014 Liang &
ther convergent for all initial conditions or non-convergent ;
e . . Stokes 2019 Mescheder et 812018 Nagarajan & Kolter
for almost all initial conditions, or can there be more compli- o ; : .
. : : . 2017 Yazici et al, 2018, we believe that this result is of
cated behaviors depending on the choice of the regularizer ; ) . .
. general interest as it reveals that local stability analysis is
of FoReL dynamics? . . . . .
not sufbcient to guard against chaotic behaviors even in a
Our model & results. We analyze FoRelL-based dynam- trivial game with just one (locally stable) Nash equilibrium.
ics with steep regularizeY$n non-atomic linear congestion Secondly, Figurd reveals that chaotic attractors can be non-
games with two strategies. This seemingly simple settingobust. Specibcally, we show that mild perturbations in the
will sufbce for the emergence of highly elaborate and unparameter can lead to the destruction of one complex attrac-
predictable behavioral patterns. For any such génasd  tor while another totally distinct complex attractor is born!
an arbitrarily small but bPxed learning rdtewe show that To the best of our knowledge, these phenomena have never
there exists a system capacity (G, !) such that the sys- been reported before, and thus expand our understanding of
tem is unstable when the total demand exceeds this threstie range of possible behaviors in game dynamics. Several
old. In such case, we obsergemplex non-equilibrating more examples of complex phenomena are provided in Sec-
dynamics: periodic orbits of any period and chaotic be-tion 8. Finally, further calculations for entropic regularizers
havior of trajectorieqSection7). A core technical result can be found in Appendik.

Is that almost all .such'conges'uo.n games (i.e. unless t.he%Sur Pndings suggest that the chaotic behavior of players
are fully symmetric), given sufbciently large demand, will

exhibit Li-Yorke chaos and positive topological entropy using Multiplicative Weights Update algorithm in conges-

. . . . tion games (see results fror@lfotibut et al. 202Q 2021
(Section7.1). In the case of games with asymmetric equi Palaiopanos et al2017) is not an exception but the rule.

librium Row, the bifurcation diagram is very complex (see Chaos is robust and can be seen for a vast subclass of online

lSteepness of the regularizer guarantees that the dynamics wilgarning algorithms. In particular, our results apply to an
be well-dePned as a function of the current state of the congestioimportant subclass of regularizers, of generalized entropies,
game. For details, see Sectibn which are widely used concepts in information theory, com-
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Figure 1.Coexistence of locally attracting Nash equilibrium (green), limit cycles, and chaos in the same congestion game. Since congestion
game has an associated convex potential (cost) funttigr{x) = % ((1 = Bx*+ b(1 — x)*) with a unique global minimum at the

Nash equilibriumb, standard learning algorithms such as gradient-like update with a small step size will converge to the equilibrium.
However, here we highlight the unusual coexistence of the attracting Nash equilibrium, limit cycles, and chaos for FoReL dynamics with
log-barrier regularizer(x) = (1 —x)log(1 —x)+ xlog(x) — % log(—x? + x +0.11). The right column shows that FoReL dynamics

Xn depends on the initial conditions (cyan and orange colors.) Red color encodes the dynamics initialized near the left critical point
which converges to the Nash equilibridmBlue color encodes the dynamics initialized near the right critical paintvhich converge to

the limit cycle of period 2 (top), and to chaotic attractors (bottom). Convergence to the Nash equilibrium arises through dynamics that
lower the cost function at every successive steps (left column), while convergence to a limit cycle or a chaotic attractor incur large cost,
bouncing around in the cost landscape away from the Nash equilibrium. Remarkably, despite being periodic or chaotic, we prove that the
time-average of the dynamics convergaactlyto the Nash equilibriunt, independent of the interior initial conditions. The bifurcation
diagram associated with= 0 .61 that demonstrates coexistence of multiple attractors in the same game is showrin Fig.

plexity theory, and statistical mechanidgSsfszr, 2008 of the players adopting the brst strategy at timasx, .
Slomczyski et al, 2000 Tsallis, 1988. Steep functions The second strategy is then choserilBlyx, fraction of the
(Mertikopoulos & Sandholp2016 2018 Mertikopoulos &  players. This model encapsulates how a large population
Zhou, 2019 and generalized entropies are also often used asf commuters selects between the two alternative paths that
regularizers in game-theoretic settiBpfnze et al.2019  connect the initial point to the end point. When a large
Coucheney et 812015 Mertikopoulos & Sandholn2018.  fraction of the players adopt the same strategy, congestion
In particular, Havrda-Chast-Tsallis entropy-based dynam- arises, and the cost of choosing the same strategy increases.

ics was studied, for instance, ikgrper 2011, Karev & . . .
Koonin, 2013. Lastly, the emergence of chaos is clearly leear conggshon gamesWe focus on Imea'r cost func-
’ ' ’ tions. Specibcally, the cost of each path (link, route, or

a hardness type of result. Such results only increase in

strength the simpler the class of examples is. Complicateatrategy).IS proportlonal_ to thead. By d(_enotlngq-_ the cost
of selecting the strategy(whenx relative fraction of the

games are harder to learn and it is harder for players to coor-
. L . : agents choose the brst strategy),

dinate on an equilibrium. Thus, in more complicated games

one should expect even more complicated, unpredictable caa(x)="Nx, co(1" x)=#N@1" x), 1)

behaviors. where", # > 0 are the coefbcients of proportionality. With-

out loss of generality we will assume throughout the paper
2. Model that" + # = 1. Therefore, the values 6fand# =1 " "

. . indicate how different the path costs are from each other.
We consider a two-strategypngestion gamésee Rosen- P

thal, 1973) with a continuum of players (agents), where all A quantity of interest is the value of the equilibrium spilit;
of the players apply th&ollow the Regularized Leader i.e., the relative fraction of players using the Prst strategy
(FoRelL) algorithm to update their strategieShélev- at equilibrium. The Prst benebt of this formulation is that
Shwartz 2012. Each of the players controls an inPnitesi-the fraction of agents using each strategy at equilibrium
mally small fraction of the Bow. We assume that the totalis independent of the 3oN . The second benebpit is that,
Row of all the players is equal 4 . We denote the fraction independent of , # andN, playing Nash equilibrium re-
sults in the optimal social cost, which is the point of contact
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with the Price of Anarchy researc@liotibut et al.202Q = Namely, the strategy that incurs tleastcumulative cost

Koutsoupias & Papadimitriqui999. in the past time horizon is selected with probability 1. This
term thus represenexploitationdynamics in reinforcement

2.1. Learning in congestion games with FoReL learning and multi-armed bandits framework. In the op-
algorithms posite limit when! & 1, (2) is well approximated by the
minimization of the regularizeR(x, 1" x). For the Shan-

We assume that the players at time- 1 know the cost 4, entropy regularizeR(x, 1" x) = " Hg(x, 1" x) =
of the strategies at time (equivalently, the realized Bow logx+(1 " x)log(1" x) that results in the Multiplicative

(split) (xn, 1" xn)) and update their choices according \yeight Update algorithm (see the details in Appentiand
to theFollow the Regularized Lead€FoRel.) algorithm. Sec.3), its minimization yields

Namely, in the periodch + 1 the players choose the brst
strategy with probabilitx,+; such that: Xn+1 = (1" Xps1)=1/2.

The entropic regularization term tends to explore every strat-
egy with equal probabilities, neglecting the information of
the past cumulative cost. Thus, this regularization term cor-
responds t@xplorationdynamics. Therefore§ adjusts the

Xn+1 =arg Xrg(i()ql)($2[c1(x;) ax+ cp(1" X)) 41" x)]

i<n

+R(x,1" x))=arg min ($ E ['N ax; ax tradeoff betweemxplorationandexploitation The continu-
x€(0,1) . . . .
j<n ous time variant of%) with the Shannon entropy regularizer
+#N A1" x;) &l1" x)]+ R(x, 1" X)), has been studied as models of collective adaptaid &

(2)  Crutchbeld2003 Sato et al.2003, also known as Boltz-
mannQ learning Kianercy & Galstyan2012), in which

wherec;(xj) & + ca(1" xj) &l" x) is atotal costthatis the exploitation term is interpreted as behavia@hptation
inBicted on the population of agents playing against the mixvhereas the exploration term represenemory lossMore
(%, 1" x) in periodj, \{vhile R: (0, 1)'2 #$Ris aregularizer  recent continuous-time variants study generalized entropies
which represents a Orisk penaltyO: namely, that term woults regularizers, leading to a larger class of dynamics called
penalize abrupt changes of strategy based on a small amouBtcort Replicator Dynamicgiarper 2011 which was an-
of data from previous iterations of the game. The existencelyzed extensively inNlertikopoulos & Sandholn2016
of a regularizer rules out strategies that focus too much o02018.

optimizing with respect to the history of our game. A weight Motivated by th i time d : ith |
coefbcients > 0 of our choosing is used to balance these, otivated by the continuous-time dynamics with generai-

two terms and may be perceived as a propensity to learn arfaed entroples, we extend EoReL d|scretg-t|me dynaris (
try new strategies based on new information: the lafgyer 10 a larger class c.)f. regularlz_ers. For a given regularizer
is, the faster the players learn and the more eager they afé® dePne an auxiliary function:

to update their strategies. Commonly adopted as a standard r:(0,1)" x#$R(x,1" x) ( R. (3)
assumption, the learning ratean be regarded as a small,

pxed constant in the following analysis but its exact value ig/Ve restrict the analysis to a FoReL class of regularizers

not of particular interest. Our analysis/results holds for anyfor which the dynamics implied by the algorithm is well-
pxed choice o$. debned. Henceforth, we assume tRas a steep symmetric

) convex regularizer, namel ( SSC, where:
Note that FoReL can also be regarded as an instance of an

exploration-exploitation dynamics under the multi-arme8SC ={R (C2((0,1)%) : ) xy)c©.12R(Y,X) = R(X,y);

bandits framework in online learninglfaq 2019. In the ) xe@.n!"(x) > 0; lim r'(x)= "}
limit $ % 1 such that 2) is well approximated by the ' x =0+
minimization of the cumulative expected cost These conditions on regularizers are not overly restrictive:
i . o the assumptions for convexity and symmetry of the regu-
Z [Ca(xj) ax + c2(1" xj) &(1" x)] larizer are natural, and Ifmy_,o r'(x) is Pnite, then the
i<n

dynamics ok, from (2) will not be well-dePned.

- Zcz(l " xj)+ Z[Cl(xj)" " x)] | %, Many V\_/ell—known a|_'1d widely used regularizers like (nega-
tive) Arimoto entropies (Shannon entropy, Havrda-Claiv
Tsallis (HCT) entropies and log-barrier being most fa-
the minimization yields mous ones) and (negative)eRyi entropies, under mild
assumptions, belong t8SC (see AppendixA). A stan-
Xnoy = 0, >j<nlaa(x)" (1" xj)]> 0, dard non-example is the square of the Euclidean norm
L Yianlalg)" e x)<o0. R(x,1" x)= x?+(1 " x)2.

j<n j<n
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3. The dynamics introduced by FoReL

LetR ( SSC. Assume that up to the iteration> 0 the
., Xn_1) was established by). Then

trajectory(Xo, X1, . .

x€(0,1) ettt

arg min (N$ SOk gx+#AT x)A" X))+ r(x)).

First order condition yields

r'(Xa) = "N$ > [ " #(1" x))].

j<n-1

We know that is convex, therefore the sufbcient and ”eC'4

essary condition foxp+1 to satisfy @) takes form:
F(Xne) = " NS [ " #(1" )]
j<n

r'(xn)" N$["xn" #(1" xn)]

r'(xn) " N$[x, " #].

(4)

We debné: (0 ,1) ' x #$"r’(x) ( R. Tablel depicts
functions! for different entropic regularizetsBefore pro-

By the properties of , f,p: [0, 1] #$ [0, 1] is continuous,
and(7) debnes a discrete dynamical system emerging from
the FoReL algorithm for the pair of parametéash).

Lemma 3.2. The following properties hold:

i) fap(x) >x ifand only ifx < b andf,p(X) < x if
and only ifx > b.

i) If %: (0,1) #$ (0,1) is given by%(x) =1 " x, then
%+fap = fa1-0+%.

iif) Under the dynamics debned (@), there exists a closed
invariant and globally attracting intervdl , (0, 1).

. Average behavior N Nash equilibrium is
Cesaro attracting

We start by studying asymptotic behavior by looking on the
average behavior of orbits. We will show that the orbits of
our dynamics exhibit regular average behavior known as
Cesro attraction to the Nash equilibriuim

Debnition 4.1. For an interval magd a pointp is Cesro
attracting if there is a neighborhood of p such that for

everyx (U the averages > p_; f ¥(x) converge t.

ceeding any further, we need to establish crucial propertie§aorem 4.2(Cesro attracting) For everya > 0, b (

of the function! .

Proposition 3.1. Let! be a function derived from a regu-

larizer fromSSC. Then

L " x)="1Y x)forx ( (0,1).
i) ! is a homeomorphism,lim !( x) = * , and
x—0+t
lim I( x)="
x—1!
By Propositior3.1ii,! is a homeomorphism betwe@d, 1)
andR.
After substituting
a=N$, b=+# (5)
we obtain from 4) a general formula for the dynamics
Xpar =1 THA( xn) + a(xn " b)), (6)

wherea > 0,b( (0, 1). Thus, we introducé,p, : [0, 1] #$
[0,1]as

0, x=0
fap(x)= <! 1 x)+ a(x" b), x( (0,1) )
1, x=1

2By substituting the negative Shannon entropy s (4), that
isr(x) = R(x,1—x)= xlogx+(1 —x)log(1 —x), we obtain
the Multiplicative Weights Update algorithm.

(0,1) andxo ( (0,1) we have

. 1n—1
n@mﬁk;f;bm): b. ®)
Corollary 4.3. The center of mass of any periodic
orbit {Xo,X1,...,Xn_1} of fap in (0,1), namely

XorXatTXni 1 is equal tob.

Applying the Birkhoff Ergodic Theorem, we obtain:

Corollary 4.4. For every probability measung, invariant
for f 4 and such thafi({0, 1}) = 0, we have

/ x du = b.
[0.1]

In the following sections, we will show that, despite the
regularity of the average trajectories which converge to the
Nash equilibriumb, the trajectories themselves typically
exhibit complex and diverse behaviors.

5. Two debnitions of chaos

In this section we introduce two notions of chaotic behavior:
Li-Yorke chaos and (positive) topological entropy. Most
debnitions of chaos focus on complex behavior of trajecto-
ries, such as Li-Yorke chaos or fast growth of the number of
distinguishable orbits of length, detected by positivity of
the topological entropy.
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Table 1.Homeomorphism$ for regularizers fron8SC.

regularizer

r(x)

I( x)

Shannon

xlogx+(1 " x)log(1" x)

log 2

Havrda-Charat-Tsallis,q ( (0, 1)

@ X7 @ X))

q
1—

= (x4 (1" x)a 1)

q

Renyi,q( (0,1)

g log(x+ (1" x)9)

q qu! 1_(1_X)q! T
1—q x9+(1 —x)d

log-barrier

" logx " log(1" x)

T T
X 1—x

Debnition 5.1(Li-Yorke chaos) Let(X,f ) be a dynam-
ical system andx,y) ( X - X. We say thafx,y) isa  Nash equilibriumb attract all point from(0, 1)? First, we
Li-Yorke pairif liminf , _, . dist(f "(x),f "(y)) =0, and look whenbis an attracting and when it is a repelling Pxed
limsup, _, ., dist(f "(x),f "(y)) > 0. A dynamical system point. With this aim, we study the derivative bf:

(X, f ) is Li-Yorke chaoticif there is an uncountable set , _ v . S

S, X (calledscrambled sgtsuch that every paifx, y) fap()= (1 ) ((x)+ ax" B)al '(x)+ a).

I . Thus, the point® and1l are repelling. When does the

withx,y ( S andx = yis a Li-Yorke pair. Then,
Intuitively orbits of two points from the scrambled set havp/b(b) - (! —1)/(!( b) &( '(b) + a) = L(b) + a. )
to gather themselves arbitrarily close and spring aside if- t(b)

Pnitely many times but (K is compact) it cannot happen

simultaneously for each pair of points. Obviously the exisThe bxed poinbis attracting if and only iﬁf;‘b(b)‘ <1,
tence of a large scrambled set implies that orbits of pointghich is equivalent to the condition:

behave in unpredictable, complex way.

LB+ al <"1 '(b). (10)

A crucial feature of the chaotic behavior of a dynamical
system is also exponential growth of the number of distinJhus, the Pxed poinb is attracting if and only ifa (
guishable orbits. This happens if and only if the topological(0: * 2&' ‘(b)) and repelling otherwise. We will answer
entropy of the system is positive. In fact positivity of topo-Whenbis globally attracting or0, 1). First we will show
logical entropy turned out to be an essential criterion ofthe following auxiliary lemma.

chaos Glasner & Weiss1993. This choice comes from Lemma 6.1. Let a functiong: | #$R be such thay”’ < 0.
the fact that the future of a deterministic (zero entropy) dyThen .,

namical system can be predicted if its past is known (see q (X + y) S 90" gly)

(Weiss 2000) and positive entropy is related to randomness 2 X"y

and chaos. For every dynamical system over a compadbr everyx,y ( .

phase space, we can debne a nurhige) ( [0,* ] called ] .

the topological entropyof transformatiorf . This quan- 1 ne following theorem answers, whettteis globally at-
tity was brst introduced by Adler, Konheim and McAndrew tracting on(0, 1).

(Adler et al, 1965 as the topological counterpart of a metric Theorem 6.2. Let! be a homeomorphism derived from a
(and Shannon) entropy. In general, computing topologicafegularizer fromSSC. Suppose thatis an attracting pxed
entropy is not an easy task. However, in the context ooint off 5. If I 7 < 0, then trajectories of all points from
piecewise monotone interval maps, topological entropy i€0, 1) converge td.

equal to the exponential growth rate of the minimal numberCorollary 6.3. Let! "/ < 0. Then the Nash equilibriutm

of monotone subintervals fér" . attracts all points from the open intervéd, 1) if and only if
Theorem 5.2((Misiurewicz & Szlenk 1980). Letf bea a( (0," 2! ’(b).

piecewise monotone interval map and, forrall 1, letm,
be the minimal cardinality of a monotone partition fot.
Thenh(f) =lim _,o & logm, =inf ,>1 & logm,,.

Functiond derived from Shannon entropy, HCT entropy
or log-barrier satisfy the inequality”’ < 0. Nevertheless,
this additional condition is needed, because for an arbitrary
I derived fromSSC attracting orbits of any period may
exist together with the attracting Nash equilibritarin the
next section we will discuss thoroughly an example of such
behavior. This shows that even for the well-known class
The dynamics induced b¥) admits three bxed pointf;  of FoReL algorithms knowledge of local behavior (even
1 andh. By Lemma3.2iii we know that all orbits starting attraction) of the Nash equilibrium may not be enough to
from (0, 1) eventually fall into a globally attracting interval properly describe behavior of agents.

6. Asymptotic stability of Nash equilibria
6.1. Asymptotic stability of Nash equilibria



Follow-the-Regularized-Leader Routes to Chaos in Routing Games

6.2. Coexistence of attracting Nash equilibrium and
chaos

In this section we will describe an example of the regular-
izer fromSSC, which introduces game dynamics in which
attracting Nash equilibrium coexist with chaos, see example
in Figure2. This phenomenon is observed by replacing the
Shannon entropic regularizer by the log-barrier regularizer.
Namely, we také( x) = log(1 " x) " logx +0.41674

We will show that there exist > 0,b ( (0, 1) such thaf

has an attracting bxed point (which is the Nash equilibrium)
yet the map can be chaotic!

Proposition 6.4. There exisa > 0,b( (0, 1) suchthaf 5
has an attracting bPxed point (Nash equilibrium), positive
topological entropy and is Li-Yorke chaotic.i

Corollary 6.5. There exist FOReL dynamics such that when
applied to symmetric linear congestion games with only
two strategies/paths the resulting dynamics have i) a set
of positive measure of initial conditions that converge to
the unique and socially optimum Nash equilibrium, ii) an
uncountable scrambled set for which trajectories exhibit
Li-Yorke chaos, and iii) periodic orbits of all possible even
periods. Thus, the (long-term) social cost depends critically
on the initial condition.

FoReL dynamics induced by this regularizer manifests dras-

tically different behaviors that depend on the initial condi-
tion.

7. Behavior for sufbciently largea

7.1. Non-convergence for sufbciently larga

] _ _ - In this subsection, we study what happens as wb &nd
Figure 2.Coexistence of the attracting Nash equilibrium and |t g be arbitrarily largé. First, we study the asymmetric
chaos.The bifurcation diagrams fdr,p, where the dynamicsis 5ca namelp = 1/ 2. We show chaotic behavior of our dy-
giig‘ﬁ:y(t_h:;igilfléeﬁg ;)Elb _ XO) lgg(lo_nxtz; ﬁ(l)c:g én_tal namical system foa sufbciently large, that is we will show

. 9 . e that if a is sufpciently large thefy,, is Li-Yorke chaotic,

axis the parametex is betweerR.6 and3.4, and on the vertical h iodi bits of all iod d " loaical
axis values of 5, are shown. As starting points for bifurcation as periodic orbits of all periods and positive topological en-

diagrams two critical points df, , are taken N red refers to the ~ {FOPY- The crucial ingredient of our analysis is the existence
critical point in(0, 0.5) and blue the critical point i0.5, 1). Each  Of periodic orbit of period 3.
critical point is iterated 4000 times, visualizing the last 200 iteratesTheorem 7.1. If b( (0,1){ %}, then there exista, such

On the top picture brst red and then blue trajectories are draWTI’lat ifa > ay thenf u» has a periodic point of period 3
and on the bottom one the order is reversed. Funé{iox) = & '
—r'(x) = log(1 —x) — logx + 0.4167[ﬁ — 5701 fulblls

all assumptions of Theoref2excluding” *~ < 0. Although for

a< —2"'(b) ~ 3.28the unique Nash equilibrium is attracting . :
we can observe chaotic behavior alreadydor 3.15. The picture orbits of all periods, and by the result & & Yorke, 1979,

suggests that in the coexistence region we have an interval which Be”Od 3 implies Li-Yorke chaos. Moreover, becaiigg

invariant forf 2,,, and in it we see the usual evolution of unimodal has a periodic point of period that is not a power of 2, the

maps. This means that sometimes we see an attracting periodi@Pological entropyh(fap) is positive (seeNlisiurewicz,
orbit, sometimes a chaotic attractor. T ———

By the Sharkovsky Theorensharkovsky1964), existence
of a periodic orbit of period 3 implies existence of periodic

3By (5) it reRects the case when we bx cost functions (and
learning ratd ) and increase the total demaid
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1979). Thus: these regularizers, we have that’ < 0. Note also that the
Corollary 7.2. If b( (0,1)\{ 1/ 2}, then there existay functions! for these regularizers can be found in Table

such that ifa > ap thenf,p has periodic orbits of all we prst focus on the log-barrier regularizeFigure4 re-
periods, has positive topological entropy and is Li-Yorkeveals an unusual bifurcation phenomenon, which, to our
chaotic. knowledge, is not known in other natural interval maps.

_ L ) ) We observe simultaneous evolution of two attractors in the
This result has an implication in non-atomic rout|.ng gamesopposite directions: one attractor, generated by the trajec-
Recall that the parametarexpresses the normalized total 1oy of the left critical point, is shrinking, while the other
demand. Thus, Corollary.2implies that when the cost gne generated by the trajectory of the right critical point,
functions of paths are different, then increasing the total deg growing. Figure5 shows another unusual bifurcation
mand of the system will inevitably lead to chaotic beha\’ior'phenomenon: a chaotic attractor arises via period-doubling
Now we consider the symmetric case, when % which  bifurcations and then collapses. After that, the trajectories

corresponds to equal coefpcients of the cost functibrs, ~ Of the critical points, one after the other, jump, and then they
#. To simplify the notation we denofg = f, 1. together follow a period-doubling route to chaos once more.

Theorem 7.3. If the parametera is small enough, then Finally we study the bifurcation diagrams generated from
all trajectories off 5 starting from(0, 1) converge to the Havrda-Charat-Tsallis regularizer witly = 0.5. In Figure
attracting bxed point/ 2. There existg, such that ifa > 6 we observe a bnite number of period-doubling (and period-
ay, then all points fron{0, 1) (except countably many points, halving) bifurcations, a behavior that does not lead to chaos.
whose trajectories eventually fall into the repelling point Nevertheless, asincreases from 39.915 to 39.93, the tra-
1/ 2) are attracted by periodic attracting orbits of the form jectory of the right critical point leaves the attractor which it
{&,1" &}, where0 < &, < 1/2. Moreover, if there shared with the trajectory of the left critical point, and builds
exists' > 0 such that! is convex on(0,'), then there a separate chaotic attractor. When chaos arises, however,
exists a unique attracting orbft&,, 1" &,}, which attracts we observe that the induced dynamics of the log-barrier
trajectories of all points fronf0, 1), except countably many regularizer and of the Havrda-ChatvTsallis regularizer
points, whose trajectories eventually fall into the repellingwith g = 0.5 both exhibit period-doubling routes to chaos
Pxed pointl/ 2. though the regularizers are starkly different, see Figure

and FigureB respectively.
Theorem7.3 implies that if the cost functions are equal,

there is a threshold such that if the total demand exceeds | .
then starting from almost any initial state the system Wil|@' Conclusion

converge to a symmetric periodic orbit of period 2. Recently, there has been intense interest in understanding un-
stable, chaotic behaviors of learning dynamics in games. For
8. Experimental results example, the inability of continuous-time FoReL dynamics

to converge to mixed Nash equilibria in normal form games
In this section we report complex behaviors in bifurcationhas recently been established W4takis-Gkaragkounis
diagrams of FoReL dynamics. All Pgures can be found iret al, 2020); however, no results about chaos were shown.
the Appendix. We investigate the structures of the attractvoreover, Galla & Farmer 2013 Pangallo et a).2019
ing periodic orbits and chaotic attractors associated witlshowcase empirically that numerous learning dynamics ex-
the interval mag 4, : [0, 1] #$ [0, 1] dePned by(7). In  nibit instability in different games. However, once again, no
the asymmetric case, that is whiwliffers from 0.5, the  formal proofs of Li-Yorke chaotic behaviors are established.

standard equilibrium analysis applies when the bxed point . L .
bis stable, which is wheif ., (b)] 0 1, or equivalently In this work, we study FoReL dynamics in non-atomic con-

whena 0" 2! /(b). Therefore, as we argued in the previ- gestion games with arpitrarily small but .D>.<e_d step—si;es,
ous section, in this case the dynamics will converge toward@tner than with decreasing and regret-optimizing step-sizes.
the bxed poinbwheneverm < " 2! ’(b). However, when We show 'ghat, under sufbmentl_y large demar_ld, dynamics
a/" 2! /(b) there is no attracting bxed point. Moreover, will unavmdaply become chaotic and unpre(_jlctable. Ol_Jr

a chaotic behavior of trajectories emerges waéssufp- work gener'cllll_zes.prevpus results that hold in the special
ciently large, as the period-doubling bifurcations route to®@S€ Of Multiplicative Weights Updat€Qotibut et al.202q

chaos is guaranteed to arise. “From the regularity of the mafu, (see AppendiB), we

. _ know that every limit cycle of the dynamics generatedf by
In particular, we study the attractors of the nfap gener can be found by studying the behavior of the critical points of

ated by the log-barrier regularizer (see Exanm.lé with ¢, Therefore, all attractors of this dynamics can be revealed by
((x) = log x) and by the Havrda-Chaat-Tsallis regular- following the trajectories of these two critical points (as in Figure
izer forg = 0.5 (see Exampl@\.3). Note that for both of 4.
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2021, Palaiopanos et a017). We also provide a variety of Block, L. and Coppel, W. ADynamics in one dimension
undocumented complex behaviors such as the co-existencevolume 513 ofLecture Notes in MathematicSpringer,

of a locally attracting Nash equilibrium and of changhe Berlin New York, 2006.

same gameDespite this complexity of the day-to-day be-

havior, the time-average system behavialigaysperfectly ~ Blum, A., Even-Dar, E., and Ligett, K. Routing with-
regular, converging to an exact equilibrium. Our analysis Out regret: On convergence to nash equilibria of regret-
showcases that local stability in games should not be con- minimizing algorithms in routing games. Rroceedings
sidered as a foregone conclusion and paves the way toward of the Twenty-Fifth Annual ACM Symposium on Princi-
further investigations at the intersection of optimization the- ples of Distributed Computingp. 45952. ACM, 2006.

ory, (behavioral) game theory, and dynamical systems. i _
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