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9. Proof of Lemma 1
Let (x∗,α∗) be a solution to the VI in (17). We want to
show that (x∗,α∗) ∈ Nopt. First, since the VI holds for all
x,α we can pick α = α∗, so for all x ∈ X

〈x− x∗, F (x∗,α∗)〉 ≤ 0. (21)

Then by Proposition 1.4.2 in (Facchinei & Pang, 2007), x∗

is a NE (note that because F (x,α∗) is strongly monotone
in x, then rn (xn,x−n) is concave in xn for each n and
x−n).

For any k, we can pick x = x∗ and α = α0 such that
αl0 = α∗l for all l 6= k and αk0 = α∗k + ε for some ε > 0,
and get from the VI in (17) that

ε

N∑
n=1

(
x∗kn − l∗k

)
≤ 0 =⇒

N∑
n=1

x∗kn ≤ l∗k. (22)

Now let k be a coordinate for which αk∗ > 0 (if it exists)
and pick x = x∗ and α = α0 such that αl0 = α∗l for all
l 6= k and αk0 = 0. Then the VI in (17) gives

α∗k
N∑
n=1

(
x∗kn − l∗k

)
≥ 0 (23)

so from (22) and (23) we conclude that
∑N
n=1 x

∗k
n = l∗k.

Hence for every α∗ ∈ A∗ we have that for all k

N∑
n=1

x∗kn = l∗k or

[
N∑
n=1

x∗kn < l∗k and αk = 0

]
(24)

so (x∗,α∗) ∈ Nopt.

Now let (x∗ (α∗) ,α∗) ∈ Nopt. We want to show that
(x∗ (α∗) ,α∗) solves the VI in (17). Since α∗ satisfies
(24) for all k then for every α ∈ RK+〈

α−α∗,
N∑
n=1

x∗n (α∗)− l∗
〉

=〈
α,

N∑
n=1

x∗n (α∗)− l∗
〉
≤ 0. (25)

Additionally, Since x∗ (α∗) is a NE then by Proposition
1.4.2 in (Facchinei & Pang, 2007) we have for all x ∈ X

〈x− x∗, F (x∗ (α∗) ,α∗)〉 ≤ 0. (26)

Hence (x∗ (α∗) ,α∗) is a solution to the VI.

10. Proof of Lemma 2
We start by showing that a large enough α0 leads to a NE
where the total loads are below l∗. Let

Un =

{
xn

∣∣∣∣ 0 ≤ xkn < l∗k
N
,∀k
}

(27)

and let X ′ = X \ U1 × . . . × UN , which is a closed set as
the difference of a closed and an open set. Since rn (x) is
continuous on the compact set X ′ then max

n ,x∈X ′
rn (x) ≤M

for some M > 0. If we choose αk0 ≥ 2N M
l∗k

for all k, then
for some player n and for all x ∈ X ′

un (x) = rn (x)−
K∑
k=1

αk0x
k
n ≤M

(
1− 2

K∑
k=1

N

lk∗
xkn

)
< 0.

(28)
Hence, no x ∈ X ′ is a NE since by switching to xn = 0
player n receives un (x) = 0. We conclude that x∗ (α0) ∈
U1 × . . .× UN , so

∑N
n=1 x

∗k
n (α0) ≤ l∗k for all k.

Next we use this α0 to argue about the set of solutions to
our VI in (17). For each α we have

〈x− x∗ (α0) , F (x,α)〉+

〈
α−α0,

N∑
n=1

xn − l∗
〉
≤
(a)

〈x− x∗ (α0) , F (x∗ (α0) ,α)〉+〈
α−α0,

N∑
n=1

xn − l∗
〉

=

〈x− x∗ (α0) , F (x∗ (α0) ,α0)〉+〈
N∑
n=1

(xn − x∗n (α0)) ,α0 −α

〉
+〈

α−α0,

N∑
n=1

xn − l∗
〉
≤
(b)〈

α−α0,

N∑
n=1

x∗n (α0)− l∗
〉

(29)

where (a) uses the monotonicity of F (x,α) in x and
(b) follows since x∗ (α0) is a NE (Proposition 1.4.2 in
(Facchinei & Pang, 2007)). Hence the set

L≥ =

{
(x,α) ∈ X × RK+

∣∣∣∣ 〈x− x∗ (α0) , F (x,α)〉

+

〈
α−α0,

N∑
n=1

xn − l∗
〉
≥ 0

}
(30)

is bounded, since (29) shows that

L≥ ⊆ {(x,α) |x ∈ X ,α ∈ C} (31)

where C is the following bounded convex polytope

C =

{
α ∈ RK+

∣∣∣∣
〈
α−α0,

N∑
n=1

x∗n (α0)− l∗
〉
≥ 0

}
=α ∈ RK+

∣∣∣∣ 〈α,v〉 ≤ 〈α0,v〉︸ ︷︷ ︸
≥0

 (32)
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where v =
∑N
n=1 (l∗ − x∗n (α0)) ≥ 0. Therefore accord-

ing to Proposition 2.2.3 in (Facchinei & Pang, 2007) the set
of solutions to the VI in (17) is non-empty and compact,
which by Lemma 1 is Nopt = X ∗ ×A∗.

11. Proof of Lemma 3
Note that X , X1 × . . . × XN is closed and convex since
Xn is closed convex for each n. Also note that F (x,α)
is Lipschitz continuous in x since it is continuously differ-
entiable on the closed X . Then since F (x,α) is strongly
monotone on X (given α), Theorem 2.3.3 in (Facchinei &
Pang, 2007) states that for all x ∈ X , for some L0 > 0

‖x− x∗ (α)‖ ≤ L0 ‖x−ΠX (x− F (x,α))‖ . (33)

Hence for x∗ (α2) ,x∗ (α1) we have

‖x∗ (α2)− x∗ (α1)‖ ≤
L0 ‖x∗ (α2)−ΠX (x∗ (α2)− F (x∗ (α2) ,α1))‖ =

L0

∥∥∥∥x∗ (α2)−ΠX (x∗ (α2)− F (x∗ (α2) ,α1)) +

ΠX (x∗ (α2)− F (x∗ (α2) ,α2))−

ΠX (x∗ (α2)− F (x∗ (α2) ,α2))

∥∥∥∥ =
(a)

L0

∥∥∥∥ΠX (x∗ (α2)− F (x∗ (α2) ,α2))−

ΠX (x∗ (α2)− F (x∗ (α2) ,α1))

∥∥∥∥≤
L0 ‖F (x∗ (α2) ,α1)− F (x∗ (α2) ,α2)‖ =

√
NL0 ‖α2 −α1‖ (34)

where in (a) we used that

x∗ (α2)−ΠX (x∗ (α2)− F (x∗ (α2) ,α2)) = 0 (35)

which follows from Proposition 1.5.8 in (Facchinei &
Pang, 2007).

12. Proof of Lemma 4
Let α1,α2 ∈ RK+ . Let x∗1 = x∗ (α1) and x∗2 = x∗ (α2).
Since x∗1 is a NE, we have for every x ∈ X that (see Propo-
sition 1.4.2 in (Facchinei & Pang, 2007)):

〈x− x∗1, F (x∗1,α1)〉 ≤ 0 (36)

so for x = x∗2

〈x∗2 − x∗1, F (x∗1,α1)〉 ≤ 0. (37)

Since x∗2 is a NE, we have for x ∈ X that

〈x− x∗2, F (x∗2,α2)〉 ≤ 0 (38)

so for x = x∗1

〈x∗1 − x∗2, F (x∗2,α2)〉 ≤ 0. (39)

By adding (37) and (39) we obtain

〈x∗2 − x∗1, F (x∗2,α2)− F (x∗1,α1)〉 ≥ 0. (40)

Then

− λ ‖x∗ (α2)− x∗ (α1)‖2 = −λ ‖x∗2 − x∗1‖
2 ≥

(a)

〈x∗2 − x∗1, F (x∗2,α1)− F (x∗1,α1)〉 =
(b)

〈x∗2 − x∗1, F (x∗2,α2)− F (x∗1,α1)〉+〈
N∑
n=1

(x∗n (α2)− x∗n (α1)) ,α2 −α1

〉
≥
(c)〈

N∑
n=1

(x∗n (α2)− x∗n (α1)) ,α2 −α1

〉
(41)

where (a) uses that F (x,α1) is strongly monotone in x
with parameter λ > 0, (b) uses the linearity of F (x,α) in
α and (c) uses (40).

Now let α1,α2 ∈ A∗ and let x∗ (α1) ,x∗ (α2) be the cor-
responding NE. For every k,

• If αk1 = αk2 = 0 then(
αk2 − αk1

)∑N
n=1

(
x∗kn (α2)− x∗kn (α1)

)
= 0.

• If αk1 > 0 and αk2 > 0 then∑N
n=1 x

∗k
n (α1) =

∑N
n=1 x

∗k
n (α2) = l∗k so(

αk2 − αk1
)∑N

n=1

(
x∗kn (α2)− x∗kn (α1)

)
= 0.

• If αk1 > 0 and αk2 = 0 then∑N
n=1 x

∗k
n (α2) < l∗k =

∑N
n=1 x

∗k
n (α1) so(

αk2 − αk1
)∑N

n=1

(
x∗kn (α2)− x∗kn (α1)

)
≥ 0.

• If αk1 = 0 and αk2 > 0 then∑N
n=1 x

∗k
n (α2) = l∗k >

∑N
n=1 x

∗k
n (α1) so(

αk2 − αk1
)∑N

n=1

(
x∗kn (α2)− x∗kn (α1)

)
≥ 0.

We conclude that if α1,α2 ∈ A∗ then〈
N∑
n=1

(x∗n (α2)− x∗n (α1)) ,α2 −α1

〉
≥ 0 (42)

which by (41) implies that x∗ (α2) = x∗ (α1) .
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13. Proof of Lemma 5
First we bound the distance between xt and the new NE
x∗ (αt). With probability 1, for some constant C0 > 0,

‖xt − x∗ (αt)‖2 =

‖xt − x∗ (αt−1) + x∗ (αt−1)− x∗ (αt)‖2 ≤
(a)

‖xt − x∗ (αt−1)‖2 + ‖x∗ (αt)− x∗ (αt−1)‖2 +

2 ‖xt − x∗ (αt−1)‖ ‖x∗ (αt)− x∗ (αt−1)‖ ≤
(b)

‖xt − x∗ (αt−1)‖2 + ε2t−1L
2

∥∥∥∥∥
N∑
n=1

xn,t − l∗
∥∥∥∥∥
2

+ 2εt−1L

∥∥∥∥∥
N∑
n=1

xn,t − l∗
∥∥∥∥∥ ‖xt − x∗ (αt−1)‖ ≤

(c)

‖xt − x∗ (αt−1)‖2 + C0εt (43)

where (a) is Cauchy-Schwarz, (b) follows from Lemma 3
and (c) uses that xn,t,xt and x∗ (αt−1) are bounded and
that εt+1

εt
→ 1 as t→∞ (condition 4 of Theorem 1).

Note that 1N ⊗ αt concatenates αt N times. Next
we bound the norm of the stochastic gradient vector.
With probability 1, we have that for some constants
B0, B1, B2 > 0,

ηt ‖gt − 1N ⊗αt‖ ≤ ηt
(√

N ‖αt‖+ ‖gt‖
)
≤
(a)

ηtB0

(
‖α0‖+

t−1∑
τ=0

ετ

∥∥∥∥∥
N∑
n=1

xn,τ+1 − l∗
∥∥∥∥∥+ ‖gt‖

)
≤

ηtB1

(
t−1∑
τ=0

ετ + ‖gt‖

)
≤
(b)
B2 (
√
εt + ηt ‖gt‖) (44)

where (a) iterates over

‖αt+1‖ =

∥∥∥∥∥∥
[
αt + εt

(
N∑
n=1

xn,t+1 − l∗
)]+∥∥∥∥∥∥ ≤

‖αt‖+ εt

∥∥∥∥∥
N∑
n=1

xn,t+1 − l∗
∥∥∥∥∥ (45)

and (b) uses condition 3 of Theorem 1. To see that, let
ρ > 0. Then pick a large enough T0 such that for all t >
T0 we have B1

ηt
∑t−1
τ=0 ετ√
εt

< ρ. Hence we can use B2 =

max

{
B1 max

0≤t≤T0

ηt
∑t−1
τ=0 ετ√
εt

, ρ, B1

}
.

Now we can analyze the gradient behavior. Recall the def-
inition of F (x,α) in (16). Then, with probability 1, for

some constants C1, C2, C3 > 0,

ηtE {〈xt − x∗ (αt) , gt − 1N ⊗αt〉 | Ft} =

ηtE {〈xt − x∗ (αt−1) , gt − 1N ⊗αt〉 | Ft}
+ ηtE {〈x∗ (αt−1)− x∗ (αt) , gt − 1N ⊗αt〉 | Ft} ≤

ηt 〈xt − x∗ (αt−1) ,E {gt − 1N ⊗αt|Ft} − F (xt,αt−1)〉
+ ηt 〈xt − x∗ (αt−1) , F (xt,αt−1)〉

+ηtE {‖x∗ (αt)− x∗ (αt−1)‖ ‖gt − 1N ⊗αt‖ | Ft} ≤
(a)

√
Nηt ‖xt − x∗ (αt−1)‖ ‖αt −αt−1‖

+ ηt ‖xt − x∗ (αt−1)‖ ‖E {gt | Ft} − F (xt)‖

− ληt ‖xt − x∗ (αt−1)‖2

+ C1εtηtE {‖gt − 1N ⊗αt‖ | Ft} ≤
(b)

ηtδt ‖xt − x∗ (αt−1)‖ − ληt ‖xt − x∗ (αt−1)‖2

+ C2ε
3/2
t + C3ηtεt (46)

where (a) uses that ‖x∗ (αt)− x∗ (αt−1)‖ ≤ C1εt
(Lemma 3 and εt+1

εt
→ 1), and also that since F (x,αt−1)

is strongly monotone in x with parameter λ > 0, then

〈xt − x∗ (αt−1) , F (xt,αt−1)〉 ≤
(a)

〈xt − x∗ (αt−1) , F (xt,αt−1)− F (x∗ (αt−1) ,αt−1)〉

≤ −λ ‖xt − x∗ (αt−1)‖2 (47)

where (a) follows since 〈x− x∗ (α) , F (x∗ (α) ,α)〉 ≤ 0
for all α ∈ RK+ and x ∈ X , since x∗ (α) is a NE (see
Proposition 1.4.2 in (Facchinei & Pang, 2007)). Inequality
(b) in (46) follows from (44) and the assumption in Defini-
tion 3.

Now we can bound how the distance from NE evolves.
Then, with probability 1, for some constants C4, C5, C6 >
0,

E
{
‖xt+1 − x∗ (αt)‖2 | Ft

}
≤
(a)

E
{
‖xt + ηt (gt − 1N ⊗αt)− x∗ (αt)‖2 | Ft

}
=

E
{
‖xt − x∗ (αt)‖2 + η2t ‖gt − 1N ⊗αt‖2 | Ft

}
+ 2ηtE {〈xt − x∗ (αt) , gt − 1N ⊗αt〉 | Ft} ≤

(b)

‖xt − x∗ (αt−1)‖2+C0εt+C4

(
εt + η2tE

{
‖gt‖

2 | Ft
})

+

2ηtδt ‖xt − x∗ (αt−1)‖ − 2ληt ‖xt − x∗ (αt−1)‖2

+ 2C2ε
3/2
t + 2C3ηtεt ≤

(c)

(1− 2ηt (λ− δt)) ‖xt − x∗ (αt−1)‖2+2ηtδt+C5εt+C6η
2
t

(48)
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where (a) uses ‖ΠXy − x‖ ≤ ‖y − x‖ for any x ∈ X
since X is convex. Inequality (b) uses (43), (44), and (46)
and inequality (c) uses Definition 3 and x ≤ x2 + 1.

The last step of the proof is to use (48) to show by induction
that for every t ≥ 1

E
{
‖xt − x∗ (αt−1)‖2

}
≤ Aεt

ηt
(49)

for some A > 0. First we define T0 to be large enough
such that δt ≤ λ

4 , max
{
η2t , ηtδt

}
≤ C7εt for some

C7 > 0 and also that εt−εt+1

ηt
≤ λεt for all t > T0

(using conditions 1,2,4 of Theorem 1). Then we pick

A = max

{
max

1≤t≤T0

ηt
εt
E
{
‖xt − x∗ (αt−1)‖2

}
, A0

}
for

some A0 that is specified below, which is a constant with
respect to t. Hence for all 1 ≤ t ≤ T0 (49) holds. For
t > T0 we take the expectation on both sides of (48) to
obtain

E
{
‖xt+1 − x∗ (αt)‖2

}
≤

(1− 2ηt (λ− δt))E
{
‖xt − x∗ (αt−1)‖2

}
+ 2ηtδt + C5εt + C6η

2
t ≤

(a)

(
1− 3

2
ηtλ

)
A
εt
ηt

+D0εt =

A
εt
ηt

+

(
D0 −

3

2
λA

)
εt ≤

(b)
A

(
εt
ηt
− λεt

)
≤
(c)
A
εt+1

ηt+1

(50)

where (a) follows for some constant D0 > 0 since δt ≤ λ
4

and max
{
η2t , ηtδt

}
≤ C7εt for t > T0. In (b) we used

A ≥ 2D0

λ so we set A0 = 2D0

λ and in (c) we used that
εt−εt+1

ηt
≤ λεt so εt+1

ηt+1
≥ εt+1

ηt
≥ εt

ηt
− λεt.

14. Proof of Theorem 1
We have that with probability 1

min
α∗∈A∗

‖αt+1 −α∗‖2 =

min
α∗∈A∗

∥∥∥∥∥∥
[
αt + εt

(
N∑
n=1

xn,t+1 − l∗
)]+

−α∗
∥∥∥∥∥∥
2

≤
(a)

min
α∗∈A∗

∥∥∥∥∥αt + εt

(
N∑
n=1

xn,t+1 − l∗
)
−α∗

∥∥∥∥∥
2

=

min
α∗∈A∗

[
‖αt −α∗‖2 + 2εt

〈
N∑
n=1

xn,t+1 − l∗,αt −α∗
〉]

+ ε2t

∥∥∥∥∥
N∑
n=1

xn,t+1 − l∗
∥∥∥∥∥
2

≤
(b)

min
α∗∈A∗

[
‖αt −α∗‖2+2εt

〈
N∑
n=1

(xn,t+1 − x∗n (αt)) ,αt −α∗
〉

+ 2εt

〈
N∑
n=1

x∗n (αt)− x∗n (α∗) ,αt −α∗
〉

+ 2εt

〈
N∑
n=1

x∗n (α∗)− l∗,αt −α∗
〉]

+ ε2tD1 ≤
(c)

min
α∗∈A∗

[
‖αt −α∗‖2+2εt

∥∥∥∥∥
N∑
n=1

(xn,t+1 − x∗n (αt))

∥∥∥∥∥ ‖αt −α∗‖
+ 2εt

〈
N∑
n=1

(x∗n (αt)− x∗n (α∗)) ,αt −α∗
〉

+ 2εt

〈
N∑
n=1

x∗n (α∗)− l∗,αt −α∗
〉]

+ ε2tD1 ≤
(d)(

1 + 2εt

∥∥∥∥∥
N∑
n=1

(xn,t+1 − x∗n (αt))

∥∥∥∥∥
)

min
α∗∈A∗

‖αt −α∗‖2

+ 2εt max
α∗∈A∗

[〈
N∑
n=1

(x∗n (αt)− x∗n (α∗)) ,αt −α∗
〉

+

〈
N∑
n=1

x∗n (α∗)− l∗,αt −α∗
〉]

+ 2εt

∥∥∥∥∥
N∑
n=1

(xn,t+1 − x∗n (αt))

∥∥∥∥∥+ ε2tD1 (51)

where (a) follows since [x]
+ can only decrease the distance

of x to the set A∗ since α∗ ≥ 0 for all α∗ ∈ A∗. Inequal-

ity (b) uses that
∥∥∥∑N

n=1 xn,t+1 − l∗
∥∥∥2 ≤ D1 for some

D1 > 0 since X is bounded, (c) is Cauchy-Schwarz and
(d) uses that min

x
(f (x) + g (x)) ≤ min

x
f (x) + max

x
g (x)

for any functions f (x) , g (x) and then uses ‖αt −α∗‖ ≤
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‖αt −α∗‖2 + 1. Define

f (α) = − max
α∗∈A∗

[〈
N∑
n=1

(x∗n (α)− x∗n (α∗)) ,α−α∗
〉

+

〈
N∑
n=1

x∗n (α∗)− l∗,α−α∗
〉]

. (52)

Then
〈∑N

n=1 (x∗n (α)− x∗n (α∗)) ,α−α∗
〉
≤ 0 by

Lemma 4 and
〈∑N

n=1 x
∗
n (α∗)− l∗,α−α∗

〉
≤ 0 by

Lemma 1, for any α∗ ∈ A∗, so f (α) ≥ 0 for all α ∈ RK+ .

Define the filtration Gt , Ft+1. By taking the conditional
expectation on both sides of (51):

E
{

min
α∗∈A∗

‖αt+1 −α∗‖2 | Gt
}
≤

E
{

(1 + 2Nεt ‖x∗ (αt)− xt+1‖) min
α∗∈A∗

‖αt −α∗‖2 | Gt
}

−2εtf (αt)+2NεtE {‖x∗ (αt)− xt+1‖ | Gt}+ε2tD1 =

(1 + 2Nεt ‖x∗ (αt)− xt+1‖) min
α∗∈A∗

‖αt −α∗‖2

− 2εtf (αt) + 2Nεt ‖x∗ (αt)− xt+1‖+ ε2tD1. (53)

Next we want to apply Robbins-Siegmund “almost”
super-martingale Theorem (Robbins & Siegmund, 1971)
based on (53). Using their notation, we have zt =
min
α∗∈A∗

‖αt −α∗‖2, βt = 2Nεt ‖x∗ (αt)− xt+1‖, ξt =

2Nεt ‖x∗ (αt)− xt+1‖+ ε2tD1 and ζt = 2εtf (αt) ≥ 0.

From Lemma 5 we obtain for some A > 0 that

E

{ ∞∑
t=0

εt ‖x∗ (αt)− xt+1‖

}
≤
(a)

∞∑
t=0

εtE {‖x∗ (αt)− xt+1‖} ≤ A
∞∑
t=0

εt

√
εt
ηt

<
(b)
∞

(54)

where (a) is Fatou’s Lemma (Billingsley, 2008)
and (b) is condition 3 of the Theorem. Hence,∑∞
t=0 εt ‖x∗ (αt)− xt+1‖ < ∞ with probability 1

so
∑∞
t=0 βt < ∞ and

∑∞
t=0 ξt < ∞, also using that∑∞

t=0 ε
2
t < ∞. Then (Robbins & Siegmund, 1971) states

that with probability 1

lim
t→∞

min
α∗∈A∗

‖αt −α∗‖2 = Λ (55)

for some random variable Λ, and that with probability 1

∞∑
t=0

εtf (αt) <∞. (56)

Now we show that for every α /∈ A∗ we have f (α) > 0.
If f (α̃) = 0 then both the non-negative terms in (52) are
zero, so Lemma 4 implies that if f (α̃) = 0 then there must
exists an α∗ ∈ A∗ such that x∗ (α̃) = x∗ (α∗) and

0 =

〈
N∑
n=1

x∗n (α∗)− l∗, α̃−α∗
〉

=
(a)〈

N∑
n=1

x∗n (α∗)− l∗, α̃

〉
=

〈
N∑
n=1

x∗n (α̃)− l∗, α̃

〉
(57)

where (a) uses
〈∑N

n=1 x
∗
n (α∗)− l∗,α∗

〉
= 0 (Lemma

1). Hence, by invoking Lemma 1 again, (57) and∑N
n=1 x

∗
n (α̃) =

∑N
n=1 x

∗
n (α∗) ≤ l∗ imply that

(x∗ (α̃) , α̃) solves the VI in (17), so α̃ ∈ A∗.

Let ω ∈ Ω such that Λ (ω) > 0, if exists. Then there exist
T0 (ω) and a (ω) , b (ω) > 0 such that for all t ≥ T0 (ω)

αt ∈ R (ω) =

{
α

∣∣∣∣ a (ω) ≤ min
α∗∈A∗

‖α−α∗‖2 ≤ b (ω)

}
.

(58)
Since A∗ is compact (Lemma 2 shows that X ∗ × A∗ is
compact) then g (α) = min

α∗∈A∗
‖α−α∗‖2 is continuous,

which makesR (ω) compact as well.

Since x∗ (α) is continuous (Lemma 3), then f (α) is con-
tinuous as a maximum of continuous functions over the
compact A∗ (Lemma 2). Hence, min

α∈R(ω)
f (α) = c for

some c > 0. But then αt ∈ R (ω) for all t ≥ T0 (ω) im-
plies that

∑∞
t=0 εtf (αt) =∞, which by (56) cannot occur

for more than a measure zero set of ω ∈ Ω . We conclude
that min

α∗∈A∗
‖αt −α∗‖2 → 0 as t→∞ with probability 1.

Let ε > 0. The above implies that for almost all ω ∈ Ω
there exists T (ω) such that for all t > T (ω) there is a
sequence α∗t (ω) ∈ A∗ such that

‖x∗ (αt)− x∗ (α∗t (ω))‖ ≤
(a)

L ‖αt −α∗t (ω)‖ ≤ ε

(59)
where (a) follows from the Lipschitz continuity of x∗ (α)
(Lemma 3). However, by Lemma 4 we know that x∗ (α) =
x∗ for all α ∈ A∗ for some NE x∗ such that for all k

N∑
n=1

x∗kn = l∗k or

[
N∑
n=1

x∗kn < l∗k and αk = 0

]
. (60)

Finally, we conclude that

lim
t→∞

E
{
‖xt − x∗‖2

}
≤ 2 lim

t→∞
E
{
‖xt − x∗ (αt−1)‖2

}
+ 2 lim

t→∞
E
{
‖x∗ − x∗ (αt−1)‖2

}
=
(a)

0 (61)

where (a) uses Lemma 5 for the first term (conditions 1, 3
and 4 imply that εtηt → 0) and (59) for the second term.


