9. Proof of Lemma 1

Let (x^*, α^*) be a solution to the VI in (17). We want to show that $(x^*, \alpha^*) \in \mathcal{N}_{opt}$. First, since the VI holds for all x, α we can pick $\alpha = \alpha^*$, so for all $x \in \mathcal{X}$

$$\langle \boldsymbol{x} - \boldsymbol{x}^*, F(\boldsymbol{x}^*, \boldsymbol{\alpha}^*) \rangle \leq 0.$$
 (21)

Then by Proposition 1.4.2 in (Facchinei & Pang, 2007), x^* is a NE (note that because $F(x, \alpha^*)$ is strongly monotone in x, then $r_n(x_n, x_{-n})$ is concave in x_n for each n and x_{-n}).

For any k, we can pick $x = x^*$ and $\alpha = \alpha_0$ such that $\alpha_0^l = \alpha^{*l}$ for all $l \neq k$ and $\alpha_0^k = \alpha^{*k} + \varepsilon$ for some $\varepsilon > 0$, and get from the VI in (17) that

$$\varepsilon \sum_{n=1}^{N} \left(x_n^{*k} - l_k^* \right) \le 0 \Longrightarrow \sum_{n=1}^{N} x_n^{*k} \le l_k^*.$$
 (22)

Now let k be a coordinate for which $\alpha^{k*} > 0$ (if it exists) and pick $\boldsymbol{x} = \boldsymbol{x}^*$ and $\boldsymbol{\alpha} = \boldsymbol{\alpha}_0$ such that $\alpha_0^l = \alpha^{*l}$ for all $l \neq k$ and $\alpha_0^k = 0$. Then the VI in (17) gives

$$\alpha^{*k} \sum_{n=1}^{N} \left(x_n^{*k} - l_k^* \right) \ge 0$$
(23)

so from (22) and (23) we conclude that $\sum_{n=1}^{N} x_n^{*k} = l_k^*$. Hence for every $\alpha^* \in \mathcal{A}^*$ we have that for all k

$$\sum_{n=1}^{N} x_n^{*k} = l_k^* \text{ or } \left[\sum_{n=1}^{N} x_n^{*k} < l_k^* \text{ and } \alpha_k = 0 \right]$$
(24)

so $(\boldsymbol{x}^*, \boldsymbol{\alpha}^*) \in \mathcal{N}_{\mathrm{opt}}.$

Now let $(\boldsymbol{x}^*(\boldsymbol{\alpha}^*), \boldsymbol{\alpha}^*) \in \mathcal{N}_{\text{opt}}$. We want to show that $(\boldsymbol{x}^*(\boldsymbol{\alpha}^*), \boldsymbol{\alpha}^*)$ solves the VI in (17). Since $\boldsymbol{\alpha}^*$ satisfies (24) for all k then for every $\boldsymbol{\alpha} \in \mathbb{R}_+^K$

$$\left\langle \boldsymbol{\alpha} - \boldsymbol{\alpha}^{*}, \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}\left(\boldsymbol{\alpha}^{*}\right) - \boldsymbol{l}^{*} \right\rangle = \left\langle \boldsymbol{\alpha}, \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}\left(\boldsymbol{\alpha}^{*}\right) - \boldsymbol{l}^{*} \right\rangle \leq 0. \quad (25)$$

Additionally, Since $x^*(\alpha^*)$ is a NE then by Proposition 1.4.2 in (Facchinei & Pang, 2007) we have for all $x \in \mathcal{X}$

$$\langle \boldsymbol{x} - \boldsymbol{x}^*, F(\boldsymbol{x}^*(\boldsymbol{\alpha}^*), \boldsymbol{\alpha}^*) \rangle \leq 0.$$
 (26)

Hence $(\boldsymbol{x}^{*}(\boldsymbol{\alpha}^{*}), \boldsymbol{\alpha}^{*})$ is a solution to the VI.

10. Proof of Lemma 2

We start by showing that a large enough α_0 leads to a NE where the total loads are below l^* . Let

$$\mathcal{U}_n = \left\{ \boldsymbol{x}_n \, \middle| \, 0 \le x_n^k < \frac{l_k^*}{N}, \forall k \right\}$$
(27)

and let $\mathcal{X}' = \mathcal{X} \setminus \mathcal{U}_1 \times \ldots \times \mathcal{U}_N$, which is a closed set as the difference of a closed and an open set. Since $r_n(\boldsymbol{x})$ is continuous on the compact set \mathcal{X}' then $\max_{\substack{n, \boldsymbol{x} \in \mathcal{X}'}} r_n(\boldsymbol{x}) \leq M$ for some M > 0. If we choose $\alpha_0^k \geq 2N\frac{M}{l_k^*}$ for all k, then for some player n and for all $\boldsymbol{x} \in \mathcal{X}'$

$$u_n\left(\boldsymbol{x}\right) = r_n\left(\boldsymbol{x}\right) - \sum_{k=1}^{K} \alpha_0^k x_n^k \le M\left(1 - 2\sum_{k=1}^{K} \frac{N}{l^{k*}} x_n^k\right) < 0$$
(28)

Hence, no $x \in \mathcal{X}'$ is a NE since by switching to $x_n = \mathbf{0}$ player *n* receives $u_n(x) = 0$. We conclude that $x^*(\alpha_0) \in \mathcal{U}_1 \times \ldots \times \mathcal{U}_N$, so $\sum_{n=1}^N x_n^{*k}(\alpha_0) \leq l_k^*$ for all *k*.

Next we use this α_0 to argue about the set of solutions to our VI in (17). For each α we have

$$\langle \boldsymbol{x} - \boldsymbol{x}^{*} (\boldsymbol{\alpha}_{0}), F(\boldsymbol{x}, \boldsymbol{\alpha}) \rangle + \left\langle \boldsymbol{\alpha} - \boldsymbol{\alpha}_{0}, \sum_{n=1}^{N} \boldsymbol{x}_{n} - \boldsymbol{l}^{*} \right\rangle \leq \\ \langle \boldsymbol{x} - \boldsymbol{x}^{*} (\boldsymbol{\alpha}_{0}), F(\boldsymbol{x}^{*} (\boldsymbol{\alpha}_{0}), \boldsymbol{\alpha}) \rangle + \\ \left\langle \boldsymbol{\alpha} - \boldsymbol{\alpha}_{0}, \sum_{n=1}^{N} \boldsymbol{x}_{n} - \boldsymbol{l}^{*} \right\rangle = \\ \langle \boldsymbol{x} - \boldsymbol{x}^{*} (\boldsymbol{\alpha}_{0}), F(\boldsymbol{x}^{*} (\boldsymbol{\alpha}_{0}), \boldsymbol{\alpha}_{0}) \rangle + \\ \left\langle \sum_{n=1}^{N} (\boldsymbol{x}_{n} - \boldsymbol{x}_{n}^{*} (\boldsymbol{\alpha}_{0})), \boldsymbol{\alpha}_{0} - \boldsymbol{\alpha} \right\rangle + \\ \left\langle \boldsymbol{\alpha} - \boldsymbol{\alpha}_{0}, \sum_{n=1}^{N} \boldsymbol{x}_{n} - \boldsymbol{l}^{*} \right\rangle \leq \\ \left\langle \boldsymbol{\alpha} - \boldsymbol{\alpha}_{0}, \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} (\boldsymbol{\alpha}_{0}) - \boldsymbol{l}^{*} \right\rangle$$
(29)

where (a) uses the monotonicity of $F(x, \alpha)$ in x and (b) follows since $x^*(\alpha_0)$ is a NE (Proposition 1.4.2 in (Facchinei & Pang, 2007)). Hence the set

$$L_{\geq} = \left\{ \left(\boldsymbol{x}, \boldsymbol{\alpha} \right) \in \mathcal{X} \times \mathbb{R}_{+}^{K} \middle| \left\langle \boldsymbol{x} - \boldsymbol{x}^{*} \left(\boldsymbol{\alpha}_{0} \right), F \left(\boldsymbol{x}, \boldsymbol{\alpha} \right) \right\rangle + \left\langle \boldsymbol{\alpha} - \boldsymbol{\alpha}_{0}, \sum_{n=1}^{N} \boldsymbol{x}_{n} - \boldsymbol{l}^{*} \right\rangle \geq 0 \right\} \quad (30)$$

is bounded, since (29) shows that

$$L_{\geq} \subseteq \{(\boldsymbol{x}, \boldsymbol{\alpha}) \,|\, \boldsymbol{x} \in \mathcal{X}, \boldsymbol{\alpha} \in \mathcal{C}\}$$
(31)

where C is the following bounded convex polytope

$$\mathcal{C} = \left\{ \boldsymbol{\alpha} \in \mathbb{R}_{+}^{K} \middle| \left\langle \boldsymbol{\alpha} - \boldsymbol{\alpha}_{0}, \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}\left(\boldsymbol{\alpha}_{0}\right) - \boldsymbol{l}^{*} \right\rangle \geq 0 \right\} = \left\{ \boldsymbol{\alpha} \in \mathbb{R}_{+}^{K} \middle| \left\langle \boldsymbol{\alpha}, \boldsymbol{v} \right\rangle \leq \underbrace{\left\langle \boldsymbol{\alpha}_{0}, \boldsymbol{v} \right\rangle}_{\geq 0} \right\}$$
(32)

where $v = \sum_{n=1}^{N} (l^* - x_n^*(\alpha_0)) \ge 0$. Therefore according to Proposition 2.2.3 in (Facchinei & Pang, 2007) the set of solutions to the VI in (17) is non-empty and compact, which by Lemma 1 is $\mathcal{N}_{opt} = \mathcal{X}^* \times \mathcal{A}^*$.

11. Proof of Lemma 3

Note that $\mathcal{X} \triangleq \mathcal{X}_1 \times \ldots \times \mathcal{X}_N$ is closed and convex since \mathcal{X}_n is closed convex for each n. Also note that $F(\mathbf{x}, \mathbf{\alpha})$ is Lipschitz continuous in \mathbf{x} since it is continuously differentiable on the closed \mathcal{X} . Then since $F(\mathbf{x}, \mathbf{\alpha})$ is strongly monotone on \mathcal{X} (given $\mathbf{\alpha}$), Theorem 2.3.3 in (Facchinei & Pang, 2007) states that for all $\mathbf{x} \in \mathcal{X}$, for some $L_0 > 0$

$$\|\boldsymbol{x} - \boldsymbol{x}^{*}(\boldsymbol{\alpha})\| \leq L_{0} \|\boldsymbol{x} - \Pi_{\mathcal{X}}(\boldsymbol{x} - F(\boldsymbol{x}, \boldsymbol{\alpha}))\|.$$
(33)

Hence for $\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{1}\right)$ we have

$$\begin{aligned} \|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{2}) - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{1})\| &\leq \\ L_{0} \|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{2}) - \Pi_{\mathcal{X}}\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right) - F\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{\alpha}_{1}\right)\right)\| &= \\ L_{0} \left\| \boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right) - \Pi_{\mathcal{X}}\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right) - F\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{\alpha}_{1}\right)\right) + \\ \Pi_{\mathcal{X}}\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right) - F\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{\alpha}_{2}\right)\right) - \\ \Pi_{\mathcal{X}}\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right) - F\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{\alpha}_{2}\right)\right)\right\| \stackrel{=}{=} \\ L_{0} \left\| \Pi_{\mathcal{X}}\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right) - F\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{\alpha}_{2}\right)\right) - \\ \Pi_{\mathcal{X}}\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right) - F\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{\alpha}_{2}\right)\right) - \\ \Pi_{\mathcal{X}}\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right) - F\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{\alpha}_{2}\right)\right)\right\| \leq \\ L_{0} \left\| F\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{\alpha}_{1}\right) - F\left(\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{2}\right), \boldsymbol{\alpha}_{2}\right)\right\| = \\ \sqrt{N}L_{0} \left\| \boldsymbol{\alpha}_{2} - \boldsymbol{\alpha}_{1}\right\| \quad (34) \end{aligned}$$

where in (a) we used that

$$\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{2}) - \Pi_{\mathcal{X}}(\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{2}) - F(\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{2}), \boldsymbol{\alpha}_{2})) = \boldsymbol{0}$$
 (35)

which follows from Proposition 1.5.8 in (Facchinei & Pang, 2007).

12. Proof of Lemma 4

Let $\alpha_1, \alpha_2 \in \mathbb{R}_+^K$. Let $x_1^* = x^* (\alpha_1)$ and $x_2^* = x^* (\alpha_2)$. Since x_1^* is a NE, we have for every $x \in \mathcal{X}$ that (see Proposition 1.4.2 in (Facchinei & Pang, 2007)):

$$\langle \boldsymbol{x} - \boldsymbol{x}_1^*, F(\boldsymbol{x}_1^*, \boldsymbol{\alpha}_1) \rangle \le 0$$
 (36)

so for $x = x_2^*$

$$\langle \boldsymbol{x}_{2}^{*} - \boldsymbol{x}_{1}^{*}, F\left(\boldsymbol{x}_{1}^{*}, \boldsymbol{\alpha}_{1}\right) \rangle \leq 0.$$
 (37)

Since x_2^* is a NE, we have for $x \in \mathcal{X}$ that

$$\langle \boldsymbol{x} - \boldsymbol{x}_2^*, F(\boldsymbol{x}_2^*, \boldsymbol{\alpha}_2) \rangle \le 0$$
 (38)

so for $\boldsymbol{x} = \boldsymbol{x}_1^*$

$$\langle \boldsymbol{x}_1^* - \boldsymbol{x}_2^*, F(\boldsymbol{x}_2^*, \boldsymbol{\alpha}_2) \rangle \leq 0.$$
 (39)

By adding (37) and (39) we obtain

$$\langle \boldsymbol{x}_{2}^{*}-\boldsymbol{x}_{1}^{*},F\left(\boldsymbol{x}_{2}^{*},\boldsymbol{\alpha}_{2}\right)-F\left(\boldsymbol{x}_{1}^{*},\boldsymbol{\alpha}_{1}\right)\rangle\geq0.$$
 (40)

Then

$$-\lambda \|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{2}) - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{1})\|^{2} = -\lambda \|\boldsymbol{x}_{2}^{*} - \boldsymbol{x}_{1}^{*}\|^{2} \geq_{(a)}$$

$$\langle \boldsymbol{x}_{2}^{*} - \boldsymbol{x}_{1}^{*}, F(\boldsymbol{x}_{2}^{*}, \boldsymbol{\alpha}_{1}) - F(\boldsymbol{x}_{1}^{*}, \boldsymbol{\alpha}_{1}) \rangle =_{(b)}$$

$$\langle \boldsymbol{x}_{2}^{*} - \boldsymbol{x}_{1}^{*}, F(\boldsymbol{x}_{2}^{*}, \boldsymbol{\alpha}_{2}) - F(\boldsymbol{x}_{1}^{*}, \boldsymbol{\alpha}_{1}) \rangle +$$

$$\left\langle \sum_{n=1}^{N} \left(\boldsymbol{x}_{n}^{*}(\boldsymbol{\alpha}_{2}) - \boldsymbol{x}_{n}^{*}(\boldsymbol{\alpha}_{1}) \right), \boldsymbol{\alpha}_{2} - \boldsymbol{\alpha}_{1} \right\rangle \geq_{(c)}$$

$$\left\langle \sum_{n=1}^{N} \left(\boldsymbol{x}_{n}^{*}(\boldsymbol{\alpha}_{2}) - \boldsymbol{x}_{n}^{*}(\boldsymbol{\alpha}_{1}) \right), \boldsymbol{\alpha}_{2} - \boldsymbol{\alpha}_{1} \right\rangle$$

$$(41)$$

where (a) uses that $F(x, \alpha_1)$ is strongly monotone in x with parameter $\lambda > 0$, (b) uses the linearity of $F(x, \alpha)$ in α and (c) uses (40).

Now let $\alpha_1, \alpha_2 \in \mathcal{A}^*$ and let $x^*(\alpha_1), x^*(\alpha_2)$ be the corresponding NE. For every k,

- If $\alpha_1^k = \alpha_2^k = 0$ then $\left(\alpha_2^k \alpha_1^k\right) \sum_{n=1}^N \left(x_n^{*k}\left(\alpha_2\right) x_n^{*k}\left(\alpha_1\right)\right) = 0.$
- If $\alpha_1^k > 0$ and $\alpha_2^k > 0$ then $\sum_{n=1}^N x_n^{*k}(\boldsymbol{\alpha}_1) = \sum_{n=1}^N x_n^{*k}(\boldsymbol{\alpha}_2) = l_k^*$ so $(\alpha_2^k - \alpha_1^k) \sum_{n=1}^N (x_n^{*k}(\boldsymbol{\alpha}_2) - x_n^{*k}(\boldsymbol{\alpha}_1)) = 0.$
- If $\alpha_1^k > 0$ and $\alpha_2^k = 0$ then $\sum_{n=1}^N x_n^{*k}(\boldsymbol{\alpha}_2) < l_k^* = \sum_{n=1}^N x_n^{*k}(\boldsymbol{\alpha}_1)$ so $(\alpha_2^k - \alpha_1^k) \sum_{n=1}^N (x_n^{*k}(\boldsymbol{\alpha}_2) - x_n^{*k}(\boldsymbol{\alpha}_1)) \ge 0.$
- If $\alpha_1^k = 0$ and $\alpha_2^k > 0$ then $\sum_{n=1}^N x_n^{*k}(\boldsymbol{\alpha}_2) = l_k^* > \sum_{n=1}^N x_n^{*k}(\boldsymbol{\alpha}_1)$ so $(\alpha_2^k - \alpha_1^k) \sum_{n=1}^N (x_n^{*k}(\boldsymbol{\alpha}_2) - x_n^{*k}(\boldsymbol{\alpha}_1)) \ge 0.$

We conclude that if $\alpha_1, \alpha_2 \in \mathcal{A}^*$ then

$$\left\langle \sum_{n=1}^{N} \left(\boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{2} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{1} \right) \right), \boldsymbol{\alpha}_{2} - \boldsymbol{\alpha}_{1} \right\rangle \geq 0 \qquad (42)$$

which by (41) implies that $\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{2}) = \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{1})$.

13. Proof of Lemma 5

First we bound the distance between x_t and the new NE $x^*(\alpha_t)$. With probability 1, for some constant $C_0 > 0$,

$$\begin{aligned} \|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t})\|^{2} &= \\ \|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t-1}) + \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t-1}) - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t})\|^{2} &\leq \\ \|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t-1})\|^{2} + \|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t}) - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t-1})\|^{2} + \\ 2 \|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t-1})\| \|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t}) - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t-1})\| &\leq \\ \|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t-1})\|^{2} + \varepsilon_{t-1}^{2} L^{2} \left\|\sum_{n=1}^{N} \boldsymbol{x}_{n,t} - \boldsymbol{l}^{*}\right\|^{2} \\ + 2\varepsilon_{t-1}L \left\|\sum_{n=1}^{N} \boldsymbol{x}_{n,t} - \boldsymbol{l}^{*}\right\| \|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t-1})\| &\leq \\ \|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t-1})\|^{2} + C_{0}\varepsilon_{t} \quad (43) \end{aligned}$$

where (a) is Cauchy-Schwarz, (b) follows from Lemma 3 and (c) uses that $\boldsymbol{x}_{n,t}, \boldsymbol{x}_t$ and $\boldsymbol{x}^*(\boldsymbol{\alpha}_{t-1})$ are bounded and that $\frac{\varepsilon_{t+1}}{\varepsilon_t} \to 1$ as $t \to \infty$ (condition 4 of Theorem 1).

Note that $\mathbf{1}_N \otimes \boldsymbol{\alpha}_t$ concatenates $\boldsymbol{\alpha}_t N$ times. Next we bound the norm of the stochastic gradient vector. With probability 1, we have that for some constants $B_0, B_1, B_2 > 0$,

$$\eta_{t} \|\boldsymbol{g}_{t} - \boldsymbol{1}_{N} \otimes \boldsymbol{\alpha}_{t}\| \leq \eta_{t} \left(\sqrt{N} \|\boldsymbol{\alpha}_{t}\| + \|\boldsymbol{g}_{t}\|\right) \leq (a)$$

$$\eta_{t} B_{0} \left(\|\boldsymbol{\alpha}_{0}\| + \sum_{\tau=0}^{t-1} \varepsilon_{\tau} \left\|\sum_{n=1}^{N} \boldsymbol{x}_{n,\tau+1} - \boldsymbol{l}^{*}\right\| + \|\boldsymbol{g}_{t}\|\right) \leq \eta_{t} B_{1} \left(\sum_{\tau=0}^{t-1} \varepsilon_{\tau} + \|\boldsymbol{g}_{t}\|\right) \leq B_{2} \left(\sqrt{\varepsilon_{t}} + \eta_{t} \|\boldsymbol{g}_{t}\|\right) \quad (44)$$

where (a) iterates over

$$\|\boldsymbol{\alpha}_{t+1}\| = \left\| \left[\boldsymbol{\alpha}_{t} + \varepsilon_{t} \left(\sum_{n=1}^{N} \boldsymbol{x}_{n,t+1} - \boldsymbol{l}^{*} \right) \right]^{+} \right\| \leq \|\boldsymbol{\alpha}_{t}\| + \varepsilon_{t} \left\| \sum_{n=1}^{N} \boldsymbol{x}_{n,t+1} - \boldsymbol{l}^{*} \right\| \quad (45)$$

and (b) uses condition 3 of Theorem 1. To see that, let $\rho > 0$. Then pick a large enough T_0 such that for all $t > T_0$ we have $B_1 \frac{\eta_t \sum_{\tau=0}^{t-1} \varepsilon_{\tau}}{\sqrt{\varepsilon_t}} < \rho$. Hence we can use $B_2 = \max\left\{B_1 \max_{0 \le t \le T_0} \frac{\eta_t \sum_{\tau=0}^{t-1} \varepsilon_{\tau}}{\sqrt{\varepsilon_t}}, \rho, B_1\right\}$.

Now we can analyze the gradient behavior. Recall the definition of $F(\mathbf{x}, \alpha)$ in (16). Then, with probability 1, for

some constants $C_1, C_2, C_3 > 0$,

$$\eta_{t}\mathbb{E}\left\{\left\langle \boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t}\right),\boldsymbol{g}_{t}-\boldsymbol{1}_{N}\otimes\boldsymbol{\alpha}_{t}\right\rangle|\mathcal{F}_{t}\right\}=\\\eta_{t}\mathbb{E}\left\{\left\langle \boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right),\boldsymbol{g}_{t}-\boldsymbol{1}_{N}\otimes\boldsymbol{\alpha}_{t}\right\rangle|\mathcal{F}_{t}\right\}\\+\eta_{t}\mathbb{E}\left\{\left\langle \boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t}\right),\boldsymbol{g}_{t}-\boldsymbol{1}_{N}\otimes\boldsymbol{\alpha}_{t}\right\rangle|\mathcal{F}_{t}\right\}\leq\\\eta_{t}\left\langle \boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right),\mathbb{E}\left\{\boldsymbol{g}_{t}-\boldsymbol{1}_{N}\otimes\boldsymbol{\alpha}_{t}|\mathcal{F}_{t}\right\}-F\left(\boldsymbol{x}_{t},\boldsymbol{\alpha}_{t-1}\right)\right\rangle\\+\eta_{t}\left\langle \boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right),F\left(\boldsymbol{x}_{t},\boldsymbol{\alpha}_{t-1}\right)\right\rangle\\+\eta_{t}\mathbb{E}\left\{\left\|\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t}\right)-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\right\right\|\left\|\boldsymbol{g}_{t}-\boldsymbol{1}_{N}\otimes\boldsymbol{\alpha}_{t}\right\|\left|\mathcal{F}_{t}\right\}\right\}\leq\\\left(\boldsymbol{a}\right)\\\sqrt{N}\eta_{t}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\right\|\left\|\mathbb{E}\left\{\boldsymbol{g}_{t}\left|\mathcal{F}_{t}\right\}-F\left(\boldsymbol{x}_{t}\right)\right\|\\-\lambda\eta_{t}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\right\|\right\|\mathbb{E}\left\{\boldsymbol{g}_{t}\left|\mathcal{F}_{t}\right\}-F\left(\boldsymbol{x}_{t}\right)\right\|\\-\lambda\eta_{t}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\right\|^{2}\\+C_{1}\varepsilon_{t}\eta_{t}\mathbb{E}\left\{\left\|\boldsymbol{g}_{t}-\boldsymbol{1}_{N}\otimes\boldsymbol{\alpha}_{t}\right\|\left|\mathcal{F}_{t}\right\}\right\}\leq\\\left(\boldsymbol{b}\right)\\\eta_{t}\delta_{t}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\right\|-\lambda\eta_{t}\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\right\|^{2}\\+C_{2}\varepsilon_{t}^{3/2}+C_{3}\eta_{t}\varepsilon_{t}\quad(46)$$

where (a) uses that $\|\boldsymbol{x}^*(\boldsymbol{\alpha}_t) - \boldsymbol{x}^*(\boldsymbol{\alpha}_{t-1})\| \leq C_1 \varepsilon_t$ (Lemma 3 and $\frac{\varepsilon_{t+1}}{\varepsilon_t} \rightarrow 1$), and also that since $F(\boldsymbol{x}, \boldsymbol{\alpha}_{t-1})$ is strongly monotone in \boldsymbol{x} with parameter $\lambda > 0$, then

$$\langle \boldsymbol{x}_{t} - \boldsymbol{x}^{*} (\boldsymbol{\alpha}_{t-1}), F(\boldsymbol{x}_{t}, \boldsymbol{\alpha}_{t-1}) \rangle \leq \\ \langle \boldsymbol{x}_{t} - \boldsymbol{x}^{*} (\boldsymbol{\alpha}_{t-1}), F(\boldsymbol{x}_{t}, \boldsymbol{\alpha}_{t-1}) - F(\boldsymbol{x}^{*} (\boldsymbol{\alpha}_{t-1}), \boldsymbol{\alpha}_{t-1}) \rangle \\ \leq -\lambda \left\| \boldsymbol{x}_{t} - \boldsymbol{x}^{*} (\boldsymbol{\alpha}_{t-1}) \right\|^{2}$$
(47)

where (a) follows since $\langle \boldsymbol{x} - \boldsymbol{x}^*(\boldsymbol{\alpha}), F(\boldsymbol{x}^*(\boldsymbol{\alpha}), \boldsymbol{\alpha}) \rangle \leq 0$ for all $\boldsymbol{\alpha} \in \mathbb{R}_+^K$ and $\boldsymbol{x} \in \mathcal{X}$, since $\boldsymbol{x}^*(\boldsymbol{\alpha})$ is a NE (see Proposition 1.4.2 in (Facchinei & Pang, 2007)). Inequality (b) in (46) follows from (44) and the assumption in Definition 3.

Now we can bound how the distance from NE evolves. Then, with probability 1, for some constants $C_4, C_5, C_6 > 0$,

where (a) uses $\|\Pi_{\mathcal{X}} \boldsymbol{y} - \boldsymbol{x}\| \leq \|\boldsymbol{y} - \boldsymbol{x}\|$ for any $\boldsymbol{x} \in \mathcal{X}$ since \mathcal{X} is convex. Inequality (b) uses (43), (44), and (46) and inequality (c) uses Definition 3 and $\boldsymbol{x} \leq \boldsymbol{x}^2 + 1$.

The last step of the proof is to use (48) to show by induction that for every $t \ge 1$

$$\mathbb{E}\left\{\left\|\boldsymbol{x}_{t}-\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\right\|^{2}\right\} \leq A\frac{\varepsilon_{t}}{\eta_{t}}$$
(49)

for some A > 0. First we define T_0 to be large enough such that $\delta_t \leq \frac{\lambda}{4}$, $\max\{\eta_t^2, \eta_t \delta_t\} \leq C_7 \varepsilon_t$ for some $C_7 > 0$ and also that $\frac{\varepsilon_t - \varepsilon_{t+1}}{\eta_t} \leq \lambda \varepsilon_t$ for all $t > T_0$ (using conditions 1,2,4 of Theorem 1). Then we pick $A = \max\left\{\max_{1 \leq t \leq T_0} \frac{\eta_t}{\varepsilon_t} \mathbb{E}\left\{\|\boldsymbol{x}_t - \boldsymbol{x}^*(\boldsymbol{\alpha}_{t-1})\|^2\right\}, A_0\right\}$ for some A_0 that is specified below, which is a constant with respect to t. Hence for all $1 \leq t \leq T_0$ (49) holds. For $t > T_0$ we take the expectation on both sides of (48) to obtain

$$\mathbb{E}\left\{\left\|\boldsymbol{x}_{t+1} - \boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t}\right)\right\|^{2}\right\} \leq \left(1 - 2\eta_{t}\left(\lambda - \delta_{t}\right)\right) \mathbb{E}\left\{\left\|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\right\|^{2}\right\} + 2\eta_{t}\delta_{t} + C_{5}\varepsilon_{t} + C_{6}\eta_{t}^{2} \leq \left(1 - \frac{3}{2}\eta_{t}\lambda\right)A\frac{\varepsilon_{t}}{\eta_{t}} + D_{0}\varepsilon_{t} = A\frac{\varepsilon_{t}}{\eta_{t}} + \left(D_{0} - \frac{3}{2}\lambda A\right)\varepsilon_{t} \leq A\left(\frac{\varepsilon_{t}}{\eta_{t}} - \lambda\varepsilon_{t}\right) \leq A\frac{\varepsilon_{t+1}}{\eta_{t+1}}$$
(50)

where (a) follows for some constant $D_0 > 0$ since $\delta_t \leq \frac{\lambda}{4}$ and $\max\left\{\eta_t^2, \eta_t \delta_t\right\} \leq C_7 \varepsilon_t$ for $t > T_0$. In (b) we used $A \geq \frac{2D_0}{\lambda}$ so we set $A_0 = \frac{2D_0}{\lambda}$ and in (c) we used that $\frac{\varepsilon_t - \varepsilon_{t+1}}{\eta_t} \leq \lambda \varepsilon_t$ so $\frac{\varepsilon_{t+1}}{\eta_{t+1}} \geq \frac{\varepsilon_{t+1}}{\eta_t} \geq \frac{\varepsilon_t}{\eta_t} - \lambda \varepsilon_t$.

14. Proof of Theorem 1

We have that with probability 1

$$\begin{split} \min_{\boldsymbol{\alpha}^{*}\in\mathcal{A}^{*}} \left\| \boldsymbol{\alpha}_{t+1} - \boldsymbol{\alpha}^{*} \right\|^{2} &= \\ \min_{\boldsymbol{\alpha}^{*}\in\mathcal{A}^{*}} \left\| \left[\boldsymbol{\alpha}_{t} + \varepsilon_{t} \left(\sum_{n=1}^{N} \boldsymbol{x}_{n,t+1} - \boldsymbol{l}^{*} \right) \right]^{+} - \boldsymbol{\alpha}^{*} \right\|^{2} &\leq \\ \min_{\boldsymbol{\alpha}^{*}\in\mathcal{A}^{*}} \left\| \boldsymbol{\alpha}_{t} + \varepsilon_{t} \left(\sum_{n=1}^{N} \boldsymbol{x}_{n,t+1} - \boldsymbol{l}^{*} \right) - \boldsymbol{\alpha}^{*} \right\|^{2} &= \\ \\ \min_{\boldsymbol{\alpha}^{*}\in\mathcal{A}^{*}} \left[\left\| \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\|^{2} + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n,t+1} - \boldsymbol{l}^{*} \right\|^{2} &\leq \\ \\ + \varepsilon_{t}^{2} \left\| \sum_{n=1}^{N} \boldsymbol{x}_{n,t+1} - \boldsymbol{l}^{*} \right\|^{2} &\leq \\ \\ \\ + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \\ \\ + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \\ \\ + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \\ \\ + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \\ \\ + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \\ \\ + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \\ \\ + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \\ \\ + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \\ \\ + 2\varepsilon_{t} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \\ \\ + 2\varepsilon_{t} \max_{\boldsymbol{\alpha}\in\mathcal{A}^{*}} \left[\left\langle \sum_{n=1}^{N} \left(\boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right), \boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}^{*} \right\rangle \right] \\ \\ + 2\varepsilon_{t} \left\| \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) - \boldsymbol{z}_{n}^{*} \boldsymbol{\alpha}_{t} \left(\boldsymbol{\alpha}_{t} \right) \right\} \\ \\ + 2\varepsilon_{t} \left\| \sum_{n=1}^{N} \left(\boldsymbol{x}_{n,t+1} - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}_{t} \right) \right) \right\| + \varepsilon_{t}^{2} D_{1} \quad (51) \\ \end{aligned} \right\}$$

where (a) follows since $[\boldsymbol{x}]^+$ can only decrease the distance of \boldsymbol{x} to the set \mathcal{A}^* since $\boldsymbol{\alpha}^* \geq 0$ for all $\boldsymbol{\alpha}^* \in \mathcal{A}^*$. Inequality (b) uses that $\left\|\sum_{n=1}^{N} \boldsymbol{x}_{n,t+1} - \boldsymbol{l}^*\right\|^2 \leq D_1$ for some $D_1 > 0$ since \mathcal{X} is bounded, (c) is Cauchy-Schwarz and (d) uses that $\min_{\boldsymbol{x}} (f(\boldsymbol{x}) + g(\boldsymbol{x})) \leq \min_{\boldsymbol{x}} f(\boldsymbol{x}) + \max_{\boldsymbol{x}} g(\boldsymbol{x})$ for any functions $f(\boldsymbol{x}), g(\boldsymbol{x})$ and then uses $\|\boldsymbol{\alpha}_t - \boldsymbol{\alpha}^*\| \leq$ $\|\boldsymbol{\alpha}_t - \boldsymbol{\alpha}^*\|^2 + 1$. Define

$$f(\boldsymbol{\alpha}) = -\max_{\boldsymbol{\alpha}^{*} \in \mathcal{A}^{*}} \left[\left\langle \sum_{n=1}^{N} \left(\boldsymbol{x}_{n}^{*}\left(\boldsymbol{\alpha}\right) - \boldsymbol{x}_{n}^{*}\left(\boldsymbol{\alpha}^{*}\right) \right), \boldsymbol{\alpha} - \boldsymbol{\alpha}^{*} \right\rangle + \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}\left(\boldsymbol{\alpha}^{*}\right) - \boldsymbol{l}^{*}, \boldsymbol{\alpha} - \boldsymbol{\alpha}^{*} \right\rangle \right].$$
(52)

Then $\left\langle \sum_{n=1}^{N} \left(\boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha} \right) - \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}^{*} \right) \right), \boldsymbol{\alpha} - \boldsymbol{\alpha}^{*} \right\rangle \leq 0$ by Lemma 4 and $\left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*} \left(\boldsymbol{\alpha}^{*} \right) - \boldsymbol{l}^{*}, \boldsymbol{\alpha} - \boldsymbol{\alpha}^{*} \right\rangle \leq 0$ by Lemma 1, for any $\boldsymbol{\alpha}^{*} \in \mathcal{A}^{*}$, so $f(\boldsymbol{\alpha}) \geq 0$ for all $\boldsymbol{\alpha} \in \mathbb{R}_{+}^{K}$.

Define the filtration $\mathcal{G}_t \triangleq \mathcal{F}_{t+1}$. By taking the conditional expectation on both sides of (51):

$$\mathbb{E}\left\{\min_{\boldsymbol{\alpha}^{*}\in\mathcal{A}^{*}}\|\boldsymbol{\alpha}_{t+1}-\boldsymbol{\alpha}^{*}\|^{2}|\mathcal{G}_{t}\right\}\leq \left\{\left(1+2N\varepsilon_{t}\|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t})-\boldsymbol{x}_{t+1}\|\right)\min_{\boldsymbol{\alpha}^{*}\in\mathcal{A}^{*}}\|\boldsymbol{\alpha}_{t}-\boldsymbol{\alpha}^{*}\|^{2}|\mathcal{G}_{t}\right\}\\-2\varepsilon_{t}f(\boldsymbol{\alpha}_{t})+2N\varepsilon_{t}\mathbb{E}\left\{\|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t})-\boldsymbol{x}_{t+1}\||\mathcal{G}_{t}\right\}+\varepsilon_{t}^{2}D_{1}=\\\left(1+2N\varepsilon_{t}\|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t})-\boldsymbol{x}_{t+1}\|\right)\min_{\boldsymbol{\alpha}^{*}\in\mathcal{A}^{*}}\|\boldsymbol{\alpha}_{t}-\boldsymbol{\alpha}^{*}\|^{2}\\-2\varepsilon_{t}f(\boldsymbol{\alpha}_{t})+2N\varepsilon_{t}\|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t})-\boldsymbol{x}_{t+1}\|+\varepsilon_{t}^{2}D_{1}.$$
(53)

Next we want to apply Robbins-Siegmund "almost" super-martingale Theorem (Robbins & Siegmund, 1971) based on (53). Using their notation, we have $z_t = \min_{\boldsymbol{\alpha}^* \in \mathcal{A}^*} \|\boldsymbol{\alpha}_t - \boldsymbol{\alpha}^*\|^2$, $\beta_t = 2N\varepsilon_t \|\boldsymbol{x}^*(\boldsymbol{\alpha}_t) - \boldsymbol{x}_{t+1}\|$, $\xi_t = 2N\varepsilon_t \|\boldsymbol{x}^*(\boldsymbol{\alpha}_t) - \boldsymbol{x}_{t+1}\|$, $\xi_t = 2N\varepsilon_t \|\boldsymbol{x}^*(\boldsymbol{\alpha}_t) - \boldsymbol{x}_{t+1}\| + \varepsilon_t^2 D_1$ and $\zeta_t = 2\varepsilon_t f(\boldsymbol{\alpha}_t) \ge 0$.

From Lemma 5 we obtain for some A > 0 that

$$\mathbb{E}\left\{\sum_{t=0}^{\infty}\varepsilon_{t} \left\|\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t}\right)-\boldsymbol{x}_{t+1}\right\|\right\} \leq \left\{\sum_{t=0}^{\infty}\varepsilon_{t}\mathbb{E}\left\{\left\|\boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t}\right)-\boldsymbol{x}_{t+1}\right\|\right\} \leq A\sum_{t=0}^{\infty}\varepsilon_{t}\sqrt{\frac{\varepsilon_{t}}{\eta_{t}}} < \infty\right\}$$
(54)

where (a) is Fatou's Lemma (Billingsley, 2008) and (b) is condition 3 of the Theorem. Hence, $\sum_{t=0}^{\infty} \varepsilon_t \| \boldsymbol{x}^*(\boldsymbol{\alpha}_t) - \boldsymbol{x}_{t+1} \| < \infty$ with probability 1 so $\sum_{t=0}^{\infty} \beta_t < \infty$ and $\sum_{t=0}^{\infty} \xi_t < \infty$, also using that $\sum_{t=0}^{\infty} \varepsilon_t^2 < \infty$. Then (Robbins & Siegmund, 1971) states that with probability 1

$$\lim_{t \to \infty} \min_{\alpha^* \in \mathcal{A}^*} \|\alpha_t - \alpha^*\|^2 = \Lambda$$
 (55)

for some random variable Λ , and that with probability 1

$$\sum_{t=0}^{\infty} \varepsilon_t f(\boldsymbol{\alpha}_t) < \infty.$$
 (56)

Now we show that for every $\alpha \notin \mathcal{A}^*$ we have $f(\alpha) > 0$. If $f(\tilde{\alpha}) = 0$ then both the non-negative terms in (52) are zero, so Lemma 4 implies that if $f(\tilde{\alpha}) = 0$ then there must exists an $\alpha^* \in \mathcal{A}^*$ such that $\boldsymbol{x}^*(\tilde{\alpha}) = \boldsymbol{x}^*(\alpha^*)$ and

$$0 = \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}(\boldsymbol{\alpha}^{*}) - \boldsymbol{l}^{*}, \tilde{\boldsymbol{\alpha}} - \boldsymbol{\alpha}^{*} \right\rangle \underset{(a)}{=} \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}(\boldsymbol{\alpha}^{*}) - \boldsymbol{l}^{*}, \tilde{\boldsymbol{\alpha}} \right\rangle = \left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}(\tilde{\boldsymbol{\alpha}}) - \boldsymbol{l}^{*}, \tilde{\boldsymbol{\alpha}} \right\rangle$$
(57)

where (a) uses $\left\langle \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}(\boldsymbol{\alpha}^{*}) - \boldsymbol{l}^{*}, \boldsymbol{\alpha}^{*} \right\rangle = 0$ (Lemma 1). Hence, by invoking Lemma 1 again, (57) and $\sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}(\tilde{\boldsymbol{\alpha}}) = \sum_{n=1}^{N} \boldsymbol{x}_{n}^{*}(\boldsymbol{\alpha}^{*}) \leq \boldsymbol{l}^{*}$ imply that $(\boldsymbol{x}^{*}(\tilde{\boldsymbol{\alpha}}), \tilde{\boldsymbol{\alpha}})$ solves the VI in (17), so $\tilde{\boldsymbol{\alpha}} \in \mathcal{A}^{*}$.

Let $\omega \in \Omega$ such that $\Lambda(\omega) > 0$, if exists. Then there exist $T_0(\omega)$ and $a(\omega), b(\omega) > 0$ such that for all $t \ge T_0(\omega)$

$$\boldsymbol{\alpha}_{t} \in \mathcal{R}\left(\omega\right) = \left\{\boldsymbol{\alpha} \mid a\left(\omega\right) \leq \min_{\boldsymbol{\alpha}^{*} \in \mathcal{A}^{*}} \left\|\boldsymbol{\alpha} - \boldsymbol{\alpha}^{*}\right\|^{2} \leq b\left(\omega\right)\right\}$$
(58)

Since \mathcal{A}^* is compact (Lemma 2 shows that $\mathcal{X}^* \times \mathcal{A}^*$ is compact) then $g(\alpha) = \min_{\alpha^* \in \mathcal{A}^*} \|\alpha - \alpha^*\|^2$ is continuous, which makes $\mathcal{R}(\omega)$ compact as well.

Since $\boldsymbol{x}^*(\boldsymbol{\alpha})$ is continuous (Lemma 3), then $f(\boldsymbol{\alpha})$ is continuous as a maximum of continuous functions over the compact \mathcal{A}^* (Lemma 2). Hence, $\min_{\boldsymbol{\alpha}\in\mathcal{R}(\omega)} f(\boldsymbol{\alpha}) = c$ for some c > 0. But then $\boldsymbol{\alpha}_t \in \mathcal{R}(\omega)$ for all $t \ge T_0(\omega)$ implies that $\sum_{t=0}^{\infty} \varepsilon_t f(\boldsymbol{\alpha}_t) = \infty$, which by (56) cannot occur for more than a measure zero set of $\omega \in \Omega$. We conclude that $\min_{\boldsymbol{\alpha}^*\in\mathcal{A}^*} \|\boldsymbol{\alpha}_t - \boldsymbol{\alpha}^*\|^2 \to 0$ as $t \to \infty$ with probability 1.

Let $\varepsilon > 0$. The above implies that for almost all $\omega \in \Omega$ there exists $T(\omega)$ such that for all $t > T(\omega)$ there is a sequence $\alpha_t^*(\omega) \in \mathcal{A}^*$ such that

$$\|\boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t}) - \boldsymbol{x}^{*}(\boldsymbol{\alpha}_{t}^{*}(\omega))\| \leq L \|\boldsymbol{\alpha}_{t} - \boldsymbol{\alpha}_{t}^{*}(\omega)\| \leq \varepsilon$$
(59)

where (a) follows from the Lipschitz continuity of $x^*(\alpha)$ (Lemma 3). However, by Lemma 4 we know that $x^*(\alpha) = x^*$ for all $\alpha \in \mathcal{A}^*$ for some NE x^* such that for all k

$$\sum_{n=1}^{N} x_n^{*k} = l_k^* \text{ or } \left[\sum_{n=1}^{N} x_n^{*k} < l_k^* \text{ and } \alpha_k = 0 \right].$$
 (60)

Finally, we conclude that

$$\lim_{t \to \infty} \mathbb{E}\left\{ \|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}\|^{2} \right\} \leq 2 \lim_{t \to \infty} \mathbb{E}\left\{ \|\boldsymbol{x}_{t} - \boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\|^{2} \right\}$$
$$+ 2 \lim_{t \to \infty} \mathbb{E}\left\{ \|\boldsymbol{x}^{*} - \boldsymbol{x}^{*}\left(\boldsymbol{\alpha}_{t-1}\right)\|^{2} \right\} = 0 \quad (61)$$

where (a) uses Lemma 5 for the first term (conditions 1, 3 and 4 imply that $\frac{\varepsilon_t}{\eta_t} \to 0$) and (59) for the second term.