
Equilibria and Optimality of Collaboration in Federated Learning

A. Real-Valued Strategies
In the examples of random coverage and general PAC learning, it is common to consider integral values of θi. For a
real-valued θi, we consider one natural interpretation: randomized rounding over bθic and dθie. More specifically, let agent
i randomly draw an integral value mi ∼ σ(θi), where σ(θi) = bθic + Ber(θi − bθic), and then uses mi as her strategy.
Then the utility function is defined by taking expectation over m = (m1, . . . ,mk). That is,

ui(θ) = Em

1− 1

2

∑
x∈X

qix

k∏
j=1

(1− qjx)
mj

 .
Similarly, we define the utility function in general PAC learning as

ui(θ) = 1− Em

[
E{Sj∼Dmjj }j∈[k] [errDi(hS)]

]
.

Note that these definitions work for integral-valued θi as well.

B. Calculation of Well-behaved Property

Linear Utilities. The linear utilities are well-behaved over any×k

i=1
[0, Ci] ⊆ Θ. Agent i’s utility increases at a constant

rate ∂θi(θ)/∂θi = Wii = 1 when the agent increases its strategy unilaterally and increases at rate ∂θi(θ)/∂θj = Wij ≤ 1
when agent j increases its strategy unilaterally.

Random Coverage. For any×k

i=1
[0, Ci + 1] ⊆ Θ, if ui(Ci + 1,C−1)− ui(C) is bounded away from 0 for all i, then

the utilities are well-behaved over×k

i=1
[0, Ci], where C = (C1, . . . , Ck). At a high level, the smallest impact that an

additional sample by agent i has on ui is when θ → C. This impact is at least ui(Ci + 1,C−i)− ui(C) > 0. On the other
hand, ∂ui(θ)/∂θj is bounded above, because the marginal impact of any one sample on ui is largest when no agent has yet
taken a sample.

First, by direct calculation, we have that for any non-integral θj ,

∂ui(θ)

∂θj
=− 1

2

∂
∑
x∈X qix

∏k
l=1 E [(1− qlx)ml ]

∂θj

=− 1

2

∂
∑
x∈X qix

∏
l 6=j E [(1− qlx)ml ]

(
(θj − bθjc)(1− qjx)bθjc+1 + (1 + bθjc − θj)(1− qjx)bθjc

)
∂θj

=− 1

2

∑
x∈X

qix
∏
l 6=j

E [(1− qlx)ml ]
(

(1− qjx)bθjc+1 − (1− qjx)bθjc
)

=ui(bθjc+ 1,θ−j)− ui(bθjc,θ−j) .

For integral-value θj , when we increase θj by a small amount ε ∈ (0, 1), α = bθj + εc = bθjc does not change. Then we
have

∂+ui(θ)

∂θj
=− 1

2

∂+

∑
x∈X qix

∏
l 6=j E [(1− qlx)ml ]

(
(θj − α)(1− qjx)α+1 + (1 + α− θj)(1− qjx)α

)
∂θj

=ui(α+ 1,θ−j)− ui(α,θ−j)
=ui(θj + 1,θ−j)− ui(θ) .

When we decrease θj by ε, α = bθj − εc = bθj − 1c. Then for all x ∈ [θj − 1, θj ], we can represent

ui(x,θ−1) = 1− 1

2

∑
x∈X

qix
∏
l 6=j

E [(1− qlx)ml ]
(
(x− α)(1− qjx)α+1 + (1 + α− x)(1− qjx)α

)
.

Thus we have

∂−ui(θ)

∂θj
=− 1

2

∂−
∑
x∈X qix

∏
l 6=j E [(1− qlx)ml ]

(
(θj − α)(1− qjx)α+1 + (1 + α− θj)(1− qjx)α

)
∂θj
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=ui(α+ 1,θ−j)− ui(α,θ−j)
=ui(θ)− ui(θj − 1,θ−j) .

Then we argue that for any θ ∈ ×k

i=1
[0, Ci + 1], any t ∈ N ∩ [0, Ci + 1], ui(t + 1,θ−j) − ui(t,θ−j) =

1
2

∑
x∈X qix

∏
l 6=j E [(1− qlx)ml ] qjx(1− qjx)t is non-increasing with respect to t and with respect to θl for any l 6= j.

Combining the computing results on sub-gradients and the monotonicity of ui(t+ 1,θ−j)− ui(t,θ−j), we know that

∂ui(θ)

∂θi
≥ ui(Ci + 1,θ−1)− ui(Ci,θ−1) ≥ ui(Ci + 1,C−1)− ui(C) ,

and
∂ui(θ)

∂θj
≤ ui(1,θ−j)− ui(0,θ−j) ≤ ui(1,0−j)− ui(0,0−j) ≤

1

2

∑
x∈X

qixqjx ≤
1

2
.

General PAC Learning. In the previous two examples, the utilities are well-behaved over any bounded convex set.
However, this might not be true in the general PAC learning case. For example, recall the example in the proof of Theorem 3
and let us extend the strategy space Θ from {0, 1}3 to [0, 1]3 by the randomized rounding method as aforementioned, i.e.,

ui(θ) =
1

2
(1 + θi + θi	1 − θiθi	1) .

Then the utility function is ill-behaved over [0, 1]3 since ∂ui(θ)/∂θi = 0 when θi	1 = 1. However, it is easy to check that
for any C ∈ [0, 1), the utility function is well-behaved over [0, C]3.

C. Proof of Lemma 1
Lemma 1. If utilities are well-behaved over×k

i=1
[0, ϑi], the best-response function f has a fixed point, i.e., ∃θ ∈

×k

i=1
[0, ϑi], f(θ) = θ.

Proof. The celebrated Brouwer fixed-point theorem states that any continuous function on a compact and convex subset
of Rk has a fixed point. First note that f is a well-defined map from×k

i=1
[0, ϑi] to×k

i=1
[0, ϑi], which is a convex and

compact subset of Rk. All that is left to show is that f is a continuous function over×k

i=1
[0, ϑi].

At a high level, f is continuous because in well-behaved utility functions a small change in other agents’ contributions
affect the utility of agent i only by a small amount, so a small adjustment to agent i’s contribution will be sufficient to
meet his constraint. More formally, we show that for any δ ∈ Rk with ‖δ‖1 ≤ 1, limε→0|fi(θ)− fi(θ + εδ)| = 0. Define
θ′ = θ + εδ, x = fi(θ), and x′ = fi(θ

′). For every i, we have

ui

(
x′ +

ci1ε

ci2
,θ−i

)
≥ ui (x′,θ−i) + ci1ε ≥ ui (x′,θ−i) + ci1ε‖δ−i‖1 ≥ ui(x′,θ−i + εδ−i) ≥ µi ,

where the first and third transitions are by the definition of well-behaved functions, and the last transition is by the definition
of θ′ and x′. This shows that x ≤ x′ + ci1ε

ci2
. Similarly,

ui

(
x+

ci1ε

ci2
, (θ + εδ)−i

)
≥ ui(x, (θ + εδ)−i) + ci1ε ≥ ui(x, (θ + εδ)−i) + ci1ε ‖−δ−i‖1 ≥ ui(x,θ−i) ≥ µi ,

which indicates that x+
ci1ε

ci2
≥ x′. Hence, we have |x− x′| ≤ ci1ε

ci2
. Therefore, f is continuous over×k

i=1
[0, ϑi].

The proof follows by applying the Brouwer Fixed-Point Theorem.

D. More General Construction for Theorem 3
We extend the simple example in Section 3.3 into a more general one.
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Consider the domain X = {0, . . . , 6d − 1} for any d > 1 and the label space Y = {0, 1}. We consider agents {0, 1, 2}
with distributions D0,D1,D2 over X × Y . Similar to the example in Section 3.3, we give a probabilistic construction for
D0,D1,D2. Take independent random variables Z0,Z1,Z2 that are each uniform over {0, 1}d. For each i ∈ {0, 1, 2},
distribution Di is a uniform distribution over instance-label pairs {((2i + zi,j)d + j, zi	1,j)}d−1

j=0 . In other words, the
marginal distribution of Di is a uniform distribution over Xi = {x1, . . . , xd} where xj is equally likely to be 2id + j
or (2i + 1)d + j and independent of other xl for l 6= j. Moreover, the labels of points in distribution Di⊕1 are decided
according to the marginal distribution of Di: if the support of the marginal distribution of Di contains 2id + j, then the
points 2(i⊕ 1)d+ j and (2(i⊕ 1) + 1)d+ j are both labeled 0, and if the support of the marginal distribution of Di contains
(2i+ 1)d+ j, then the points 2(i⊕ 1)d+ j and (2(i⊕ 1) + 1)d+ j are both labeled 1.

Consider the optimal classifier conditioned on the event where agent i takes samples {((2i+ zi,j)d+ j, zi	1,j)}j∈Ji from
Di for all i. This reveals zi,j and zi	1,j for all j ∈ Ji. Therefore, the optimal classifier conditioned on this event classifies
(2i+ zi,j)d+ j for each j ∈ Ji ∪ Ji	1 correctly and misclassifies (2i+ zi,j)d+ j for each j /∈ Ji ∪ Ji	1 with probability
1/2.

Now we formally define the strategy space and the utility functions that corresponding to this setting. Let Θ = N3 to be the
set of strategies in which each agent can take any integral number of samples. Let ui(θ) be the expected accuracy of the
optimal classifier given the samples taken at random under θ. As a consequence of the above analysis,

ui(θ) = 1− 1

2d

d−1∑
j=0

(
1− 1

d

)θi+θi	1

= 1− 1

2

(
1− 1

d

)θi+θi	1

.

Then let µ = µ1 for any µ ∈ (1/2, 1) such that m(µ) :=
⌈

log(2(1−µ))
log(1−1/d)

⌉
is an odd number. It is easy to find such a µ:

arbitrarily pick a µ′ ∈ (1/2, 1); ifm(µ′) is odd, let µ = µ′; otherwise let µ = (1−1/d)µ′+1/d such thatm(µ) = m(µ′)+1.

Agent i’s constraint is satisfied when θi + θi	1 ≥ m(µ) and is not satisfied when θi + θi	1 ≤ m(µ)− 1. If θi + θi	1 ≥
m(µ) + 1, agent i can unilaterally decrease her strategy by 1 and still meet her constraint. Therefore, we have

θi + θi	1 = m(µ),∀i = 0, 1, 2 .

This results in θ0 = θ1 = θ2, which is impossible as m(µ) is odd and θi is integral for all i. Hence, no stable equilibrium
over Θ = N3 exists.

E. Proof of Theorem 4
Theorem 4. There is a collaborative learning setting with well-behaved utility functions such that the Price of Stability
and Price of Fairness are at least Ω(

√
k). Moreover, these utilities correspond to two settings: a) a random domain

coverage example with uniform distributions over equally sized subsets and b) a linear utility setting with Wii = 1 and
Wij ∈ O(1/

√
k) for j 6= i.

Proof. Consider a family of sets each of size b = k − 1 demonstrated in Figure 3, where there is one core agent that owns
b central points and k − 1 petal agents whose sets intersect with that of the core agent. More formally, let agent 0 be the
core agent whose distribution is uniform over the points X0 = {1, . . . , b}. Partition X0 = {1, . . . , b} to

√
b equally sized

groups of
√
b instances X 1

0 , . . . ,X
√
b

0 . Similarly, partition the b = k − 1 agents to
√
b equally sized groups of

√
b agents

I1, . . . , I√b. Each i ∈ Ij has uniform distribution over the set Xi = X j0 ∪ Oi, where Oi is a set of b−
√
b points that are

unique to i. The strategy space is Θ = Rk+.

...

... ...core agent 

... ...
petal agents

Figure 3. The illustration of the core agent and the petal agents
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Then we consider two learning settings: a) random coverage example and b) linear utility example.

Random Coverage. Let mi ∼ σ(θi) denote the realized integral strategy of agent i for all i. For any Ij , let Mj =∑
i∈Ij mi be the total number of samples taken by agents in Ij . Then for i ∈ Ij ,

ui(θ) = 1− 1

2
Em

[
1√
b

(
1− 1

b

)m0+Mj

+

(
1− 1√

b

)(
1− 1

b

)mi]
and

u0(θ) = 1− 1

2
√
b
Em

 √b∑
j=1

(
1− 1

b

)m0+Mj

 .
Let µi = 1

2 + 1
2b for all agent i. Note that our choice of µi and distributions implies that the constraint of agent i is met

when in expectation at least one of the instances in their support is observed by some agent. We use this fact to describe the
high level properties of each of the solution concepts.

The optimal collaborative solution: Consider the strategy in which the core agent takes O(
√
k) samples and all other agents

take 0 samples. This is a feasible solution, because in expectation each Ij receives one of these samples. Therefore, the
number of samples in the optimal collaborative solution is at most O

(√
k
)
. Specifically, consider the solution in which the

core takes θ0 =
⌈

ln(1−1/
√
b)

ln(1−1/b)

⌉
samples and all other agents take 0 samples. Let θopt denote the socially optimal solution.

By direct calculation, it is not hard to check that this is a feasible solution and that 1>θopt ≤
⌈

ln(1−1/
√
b)

ln(1−1/b)

⌉
= O(

√
k).

The Optimal envy-free solution: By the symmetry of the utility functions for all i ∈ Ij and for all j ∈ {1, . . . ,
√
b}, any

envy-free solution must satisfy θi = θ for some θ and all i ∈ [b]. This is not hard to check. First, for two petal agents in the
same group, i.e., i, l ∈ Ij , and any feasible solution with θi > θl, then

ui(θ
(i,l)) = ul(θ) ≥ µ ,

which indicates that agent i envies agent l. Therefore, for any envy-free solution θi = θl for any i, l ∈ Ij . Then for any
feasible solution in which any two agents in the same group have the same number of samples, if θi > θl for any i ∈ Ij and
any l ∈ Ip with j 6= p,

ui(θ
(i,l)) ≥ ul(θ) ≥ µ ,

which indicates that agent i envies agent l.

Furthermore, in any envy-free feasible solution the 0-th agent’s number of sample can be no larger than any other agent. If
θ0 > θ, considering m0 ∼ σ(θ0) and m ∼ σ(θ), we have

u0(θ(0,i)) = 1− 1

2
Em

(1− 1

b

)m0+Mj

+
∑

p∈[
√
b]:p 6=j

(1− 1

b
)mi+Mp

 ≥ ui(θ) ≥ µ .

Let θef represent the optimal envy-free solution. If θi = θ > 1 for all i ∈ [b], we have 1>θef = Ω(k). If θ ≤ 1, there exists
a constant C > 0 such that for an large enough b,

ui(θ
ef) =1− 1

2
Em

[
1√
b

(
1− 1

b

)m0+
√
bm

+

(
1− 1√

b

)(
1− 1

b

)m]

≤1− 1

2
√
b

(
1− 1

b

)θ0+
√
bθ

− 1

2

(
1− 1√

b

)(
1− 1

b

)θ
(4)

≤1− 1

2
√
b

(
1− 1

b

)(1+
√
b)θ

− 1

2

(
1− 1√

b

)(
1− 1

b

)θ
(5)

≤1− 1

2
√
b
e− ln(4)(1+

√
b)θ/b − 1

2

(
1− 1√

b

)
e− ln(4)θ/b
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≤1− 1

2
√
b

(
1− C(1 +

√
b)θ

b

)
− 1

2

(
1− 1√

b

)(
1− Cθ

b

)
≤1

2
+

3Cθ

2b
,

where Eq. (4) adopts Jensen’s inequality and Eq. (5) uses the property that θ0 ≤ θ. Then since ui(θef) ≥ µ, we have
θ ≥ 1

3C . Hence, 1>θef = Ω(k) and the Price of Fairness is at least Ω(
√
k).

The Optimal stable equilibrium: First, by the symmetry of the utility functions for all i ∈ Ij and for all j ∈ [
√
b], any stable

equilibrium must satisfy θi = θ for some θ and all i ∈ [b]. This is not hard to check. For two petal agents i and l in the
same group, for any stable feasible solution, if θi > θl ≥ 0, then ui(θ) > ul(θ) ≥ µ, which results in θi = 0. This is
a contradiction. Now for a stable feasible solution in which any two agents in the same group have the same number of
samples, if θi > θl for any i, l in different groups, ui(θ) > ul(θ) ≥ µ and thus, θi = 0. This is a contradiction. Hence, all
petal agents have θi = θ for all i ∈ [b].

Furthermore, since in any stable equilibrium with θi = θ for all i ∈ [b], u0(θ) > ui(θ), agent 0 must take 0 samples in
any stable equilibrium. Let θeq represent the optimal stable equilibrium. Following the similar computation to the case of
envy-free solution, if θ ≤ 1, we have

ui(θ
eq) =1− Em

[
1

2
√
b

(
1− 1

b

)m0+
√
bm

+
1

2

(
1− 1√

b

)(
1− 1

b

)m]

≤1− 1

2
√
b

(
1− 1

b

)√bθ
− 1

2

(
1− 1√

b

)(
1− 1

b

)θ
≤1

2
+

3Cθ

2b
.

Therefore, θ ∈ Ω(1), 1>θeq = Ω(k) and the Price of Stability is at least Ω(
√
k).

Linear Utilities. In this flower structure, for any i ∈ Ij ,

ui(θ) = θi +
1√
b
(θ0 +

∑
l∈Ij :l 6=i

θl)

and

u0(θ) = θ0 +
1√
b

b∑
i=1

θi .

Let µ = 1. Here the choice of µ implies that the constraint of agent i is met when in expectation at least one time, there is
an instance being discovered. Similar to the random coverage example, we have the following results.

The optimal collaborative solution: There is one feasible solution in which the core agent takes
√
b samples and all other

agents take 0 samples. This is a feasible solution because the core can help every other agent with effort 1√
b
. Let θopt denote

the socially optimal solution and we have 1>θopt ≤
√
b = O(

√
k).

The optimal envy-free solution: By the symmetry of the utility functions, similar to the random coverage case, any envy-free
solution must satisfy θi = θ for some θ and all i ∈ [b].

Furthermore, in any envy-free feasible solution we must have θ0 ≤ θ since u0(θ(0,i)) ≥ ui(θ) ≥ 1. In other words, in any
envy-free solution the 0-th agent’s number of sample can be no larger than any other agent, and all other agents take the
same number of samples. Let θef denote the optimal envy-free solution. We have

1 ≤ ui(θef) ≤ θ +
1√
b
(θ +

∑
l∈Ij :l 6=i

θ) = 2θ ,

which indicates that θ ≥ 1/2. Therefore, 1>θef ≥ b
2 and the Price of Fairness is at least Ω(

√
k).
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The optimal stable equilibrium: By the symmetry of the utility functions, similar to the random coverage case, any stable
equilibrium must satisfy θi = θ for some θ and all i ∈ [b]. Then u0(θ) = θ0 +

√
bθ and ui(θ) = (2− 1√

b
)θ+ 1√

b
θ0 < u0(θ)

for b ≥ 2. Therefore, agent 0 must take 0 samples in any stable equilibrium. Then for optimal stable equilibrium θeq, it is
not hard to find that

1 ≤ ui(θeq) ≤ θ +

√
b− 1√
b

θ ,

which indicates that θ ≥ 1
2 . Therefore, 1>θeq ≥ b

2 and the Price of Stability is at least Ω(
√
k).

F. Proofs of Theorem 6 and Corollary 1
To prove Theorem 6 and Corollary 1, we first introduce the following three lemmas.

Lemma 2. For any optimal stable equilibrium θeq for linear utilities ui(θ) = W>i θ and µi = µ for i ∈ [k], θ
eq

is a
socially optimal solution for the set of agents i ∈ [k] \ Iθeq , i.e., θ

eq
is an optimal solution to the following problem.

minx 1>x
s. t. Wx ≥ µ1

x ≥ 0 .
(6)

Proof. The dual problem of Equation (6) is
maxy µ1>y
s. t. Wy ≤ 1

y ≥ 0 ,

which is equivalent to
maxy 1>y
s. t. Wy ≤ µ1

y ≥ 0 .
(7)

Due to the definition of stable equilibrium, for agent i ∈ [k] \ Iθeq , we have θeq
i 6= 0 and thus, W

>
i θ

eq
= W>i θ

eq = µ.
Therefore, θ

eq
is a feasible solution to both the primal problem (6) and the dual problem (7). This proves that θ

eq
is an

optimal solution to Equation (6).

Lemma 3. If θ is an optimal solution to Equation (6), then Wθ = µ1.

Proof. As proved in Lemma 2, θ
eq

is an optimal solution to Equation (6) with Wθ
eq

= µ1. Assume that there exists
another optimal solution θ such that Wθ = µ1 + v with v ≥ 0. Let T ∗ = 1>θ

eq
= 1>θ denote the optimal value of

Equation (6). Then we have
θ
>
Wθ

eq
= θ

>
µ1 = µT ∗ ,

and
θ

eq>
Wθ = θ

eq>
(µ1 + v) = µT ∗ + θ

eq>
v .

Hence, θ
eq>

v = 0. Since θ
eq
> 0, then v = 0 and Wθ = µ1.

Without loss of generality, we let

W =

[
W B
B> C

]
,

and let d = k − |Iθeq | denote the dimension of W .

Lemma 4. If θ is an optimal solution to Equation (6), then we have B>(θ
eq − θ) = 0.

Proof. If W is a full-rank matrix, then the optimal solution to Equation (6) is unique and thus, θ = θ
eq

.

If W is not a full-rank matrix, we assume that θ 6= θ
eq

. Let v1,v2, . . . ,vd denote the eigenvectors of W with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λd. Since W is not a full-rank matrix, let d′ denote the number of zero eigenvalues and we have
λd−d′+1 = . . . λd = 0. We let bi denote the i-th column of B and ci = Cii ∈ [0, 1].
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For any i ∈ [k − d], let (x, yei) with any x ∈ Rd, y ∈ R denote a k-dimensional vector with the first d entries being x, the
d+ i-th entry being y and all others being 0s. Since W is PSD, we have

(x, yei)
>W (x, yei) = x>Wx + 2yb>i x + ciy

2 ≥ 0 .

For any j = d− d′ + 1, . . . , d, let x = vj and y = −b>i vj , then we have

(2− ci)(b>i vj)2 ≤ v>j Wvj = 0 ,

and thus b>i vj = 0 for all j = d − d′ + 1, . . . , d. By Lemma 3, we know that W (θ
eq − θ) = 0. Hence θ

eq − θ lie
in the null space of W , i.e., there exists α 6= 0 ∈ Rd′ such that θ

eq − θ =
∑d′

i=1 αivd+1−i. Then b>i (θ
eq − θ) =∑d′

i=1 αib
>
i vd+1−i = 0.

Now we are ready to prove Theorem 6.

Theorem 6. Let θeq be an optimal stable equilibrium for linear utilities ui(θ) = W>i θ and µi = µ for i ∈ [k], where
W is a symmetric PSD matrix. Let Iθeq = {i | θeq

i = 0} be the set of non-contributing agents and let W and θ
eq

be the
restriction of W and θeq to [k] \ Iθeq . Then θ

eq
is a socially optimal solution for the set of agents i ∈ [k] \ Iθeq , i.e., agents

with utilities ui(θ) = W
>
i θ for i ∈ [k] \ Iθeq .

Furthermore, let θ̃ represent the extension of θ by padding 0s at Iθeq , i.e., θ̃i = 0 for i ∈ Iθeq and θ̃i = θi for i ∈ [k] \ Iθeq .
For any θ that is a socially optimal solution for agents [k] \ Iθeq , θ̃ is an optimal stable equilibrium for agents [k].

Proof. Lemma 2 proves the first part of the theorem. For the second part of the theorem, we prove it by using Lemma 4. For
i ∈ Iθeq , W>i θ̃ = W iθ = µ. For i ∈ [k] \ Iθeq , by Lemma 4 we have W>i θ̃ = b>i θ = b>i θ

eq
= W>i θ

eq ≥ µ. Therefore,
θ̃ is a stable equilibrium. Combined with that 1>θ̃ = 1>θ = 1>θ

eq
= 1>θeq, θ̃ is an optimal stable equilibrium for

agents [k].

Corollary 1. Consider an optimal equilibrium θeq. If θeq > 0, then θeq is socially optimal.

Corollary 1 is a direct result of Theorem 6.

G. Proof of Theorem 7
Theorem 7. When Wij < Wii for all i, j ∈ [k], any stable equilibrium is also envy-free.

Proof. Note that only agents with non-zero number of samples can envy others. Assume on the contrary that there is agent i
with θeq

i > 0 that envies another agent j. By the definition of a stable equilibrium, we have that W>i θ
eq = µi. Let θ(i,j)

represent the strategy with i and j’s contributions swapped. Then,

ui(θ
(i,j)) = ui(θ) + (θi − θj)(Wij −Wii) < ui(θ) = µi,

where the second transition is by θi > θj and Wii > Wij . This shows that no agent can have envy in an equilibrium.

H. Structure of Equilibria in Random Coverage
In Section 5.1, we show that the optimal stable equilibrium can be computed by a convex program in the linear case.
However, this is not true in random coverage. In the following, we provide an example in which the utility function is
non-concave and the the stable feasible set is non-convex. In addition, we provide another example in which the envy-free
feasible set is non-convex.

H.1. Proof of Theorem 8

Theorem 8. There exists a random coverage example with strategy space Θ = Rk+ such that Θeq is non-convex, where
Θeq ⊆ Θ is the set of all stable equilibria.
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Figure 4. Illustration of the example.

Proof. Let us consider an example where there are 2 agents and both are with a uniform distribution over the instance space
X = {0, 1}. Then for any i ∈ [2], agent i’s utility function is

ui(θ) = 1− 1

2
Em

[(
1

2

)m1+m2
]
.

By direct computation, we have ui(e1) = ui(e2) = 1− 1
2 ·

1
2 = 3

4 . For α ∈ (0, 1),

ui(αe1 + (1− α)e2) = 1− 1

2

(
α · 1

2
+ (1− α) · 1

)(
(1− α) · 1

2
+ α · 1

)
=

3

4
− α(1− α)

8
,

which is smaller than αui(e1) + (1− α)ui(e2). Therefore, the utilities in this example are non-concave.

Let µi = 3
4 for i = 1, 2. Then, e1 and e2 are stable equilibria as no agent has incentive to decrease her number of samples.

However, since αe1 + (1− α)e2 is not a feasible solution, the stable feasible set is non-convex.

H.2. Proof of Theorem 9

Theorem 9. There exists a random coverage example with strategy space Θ = Rk+ such that Θef is non-convex, where
Θef ⊆ Θ is the set of all envy-free equilibria.

Proof. Now we consider another example showing that the envy-free feasible set is non-convex. Considering the complete
graph on 4 vertices and let each edge correspond to one agent. As illustrated in Figure 4, we put one point in the middle of
every edge and one point on every vertex and let each agent’s distribution be a uniform distribution over Xi, which is the 3
points on agent i’s edge.

Then agent i utility function is

ui(θ) = 1− 1

6
Em

[∑
x∈Xi

(
2

3
)nx

]
,

where nx =
∑
j:x∈Xj mj . Let µi = 0.6 for all i. Then we consider a solution: pick any perfect matching on this complete

graph and then let θi = 1 if edge i is in this matching and θi = 0 otherwise. Such a θ is an envy-free solution. In this
solution, for agent i with θi = 1, any point x ∈ Xi has nx = 1 and the utility is

ui(θ) = 1− 1

6

(
3 · 2

3

)
≥ 0.6 ;

for agent i with θi = 0, two points in Xi has nx = 1 and one point (in the middle of the edge) has nx = 0, and the utility is

ui(θ) = 1− 1

6

(
2 · 2

3
+ 1

)
=

11

18
≥ 0.6 .
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If θi = 1 and agent i envies another agent j with θj = 0, agent i’s utility after swapping θi and θj is

ui(θ
(i,j)) = 1− 1

6

(
2

3
+ 2

)
=

5

9
< 0.6 .

Therefore, this is an envy-free solution.

Then let θ = e1 + e3 and θ′ = e2 + e4. Both are envy-free solutions. Now we show that θ′′ = 0.9θ + 0.1θ′ is not
envy-free. First we show that the agent 2 meets her constraint in solution θ′′.

u2(θ′′) = 1− 1

6

(
2 ·

(
0.09 ·

(
2

3

)2

+ 0.82 · 2

3
+ 0.09

)
+

(
0.1 · 2

3
+ 0.9

))
≥ 0.6 .

Now we show that agent 2 can still meet her constraint after swapping with agent 6. After swapping θ′′2 and θ′′6 , agent 2’s
utility is

u2(θ′′(2,6)) = 1− 1

6

((
0.09 ·

(
2

3

)2

+ 0.82 · 2

3
+ 0.09

)
+ 1 +

(
0.9 · 2

3
+ 0.1

))
≥ 0.6 .

Therefore, θ′′ is not envy-free and the envy-free feasible set in this example is non-convex.

I. Experimental
I.1. Dataset

We use the balanced split of the EMNIST, which is meant to be the broadest split of the EMNIST dataset (Cohen et al.,
2017). The task consists of classifying English letters and whether they are capitalized or lowercase. Some letters which are
similar in their upper and lower case forms, such as C and P, are merged, resulting in just 47 distinct classes. From this
dataset, we randomly sample 60,000 points for training and validating the federated learning algorithms. We then take a
disjoint sample of an additional 30,000 points to pre-train the model that we will later fine-tune via federation. To select
hyperparameters for this model (which we will also use for the federated algorithms), we take the remaining 31,600 points
as a validation set. We use top-1 accuracy as the performance metric.

Dataset Number of Points

Potential Training and Validation for Agents 60,000
Pre-Training 30,000

Pre-Training Validation 41,600

I.2. Learning model

Model We use a straightforward four-layer neural network with two convolutional layers and two fully-connected layers.
We optimize the model with Adam (Kingma & Ba, 2017) and use Dropout (Srivastava et al., 2014) for regularization.
Architecture details and an implementation can be found via Collaborative-Incentives on Github. As stated previously, we
pre-train the model for 40 epochs to an accuracy of approximately 55%.

Algorithm Batch Size Per Agent Learning Rate Threshold Accuracy Local Batches

Individual Learning 256 0.002 N/A% N/A%
FedAvg 64 0.002 N/A% 1

MW-FED 64 (Average) 0.002 70% 1

We select hyperparameters using a randomized search on the pre-training validation set. The grid for this search consists
of logarithmically-weighted learning rates between 1e − 06 and 1e − 02 and batch sizes of 4, 8, 64, 128, 256, and 512
all together sampled 40 times. Parameters selected for the individual learning sampling are equivalently translated to the
federated learning algorithms.

https://github.com/rlphilli/Collaborative-Incentives
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Algorithm 1 FedAvg (simplified to sample all populations each iteration) Let η be the learning rate, m be the minibatch
size, B be the number of local batches, k be the number of clients, Xi be the set of points for agent i, and ` the loss function

1: initialize server weights βserv and client weights β0 . . . βk
2: for each round t=1,2 . . . T do
3: for each client i ∈ k do
4: βi ← βserv
5: for each local batch j from 1, 2, . . . B do
6: sample m points x from Xi

7: βi ← βi − η∇` (βi;x)
8: end for
9: end for

10: βserv ← 1
B·k

∑k
i=1 βi

11: end for
12: return βserv

Algorithm 2 MW-FED Let η be the learning rate, m be the average minibatch size, B be the average number of local
batches, k be the number of clients, c be the multiplicative factor, Xtrain

i and Xval
i be the sets of training and validation

points, respectively, for agent i, εi the desired maximum loss for agent i, and ` the loss function
1: initialize server weights βserv and client weights β0 . . . βk
2: initialize contribution-weights w1, w2, . . . wk = 1

k
3: for each round t=1,2 . . . T do
4: for each client i ∈ k do
5: βi ← βserv
6: mi ← m ·B · k·wi∑

w

7: for each local batch j from 1, 2, . . .
⌊
mi
m

⌋
do

8: sample m points x from Xtrain
i

9: βi ← βi − η∇` (βi;x)
10: end for
11: end for
12: βserv ← 1∑k

i=1bmim c
·
∑k
i=1 βi ·

⌊
mi
m

⌋
13: for each client i ∈ k do
14: if `

(
βserv;X

val
i

)
≥ ε then

15: wi ← c · wi
16: end if
17: end for
18: end for
19: return βserv

I.3. Encouraging heterogeneity across agent datasets

To encourage heterogeneity between the different agents, we run a series of sampling trials to determine which training
points lead to convergence on a holdout data set most quickly. Specifically, over 10, 000 trials we randomly sample the
potential agent training set for 1000 points. Then, we train a newly instantiated instance of our network on this data with a
batch size of 16 until it reaches a cross-entropy loss of 0.5. For each trial we record the number of iterations it takes for the
model to reach 60% accuracy. At the end of the trials we find the average number of iterations for trials that each point
was involved in. The range of these values is from 235 to 670 batches. The mean is 286 and the standard deviation is 21.6
iterations. We then generate agents using mixtures of samples from the top 10% and bottom 10% of difficult examples in
terms of time to reach the threshold.

This is an imperfect proxy for difficulty, but we found it useful for producing observable heterogeneity in our chosen samples.
We considered other proxies for data value and uncertainty such as output entropy for a sample on the pre-trained model, but
found that, in many cases, these samples did not do as much to create differences in how quickly a model trained.
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For the main experiment of this section, we create 4 different mixtures : one distribution of 100% difficult samples, a mixture
of 90% difficult samples, a mixture of 90% easier samples, and one distribution of 100% easy samples. As opposed to
individual devices, these mixtures might be considered as four different populations with similar, but not identical, objectives.
One-hundred averaged training runs for each of these 4 distributions can be found in Figure 1.4 This figure also shows that
they are, in fact, distinct from one another over many repetitions of their training regimes.

Non-federated defection is not enough An important note is that distributions that are often happy while making large
defections in the federated settings in Figure 2 are not generally happy with much less data. Figure 5 shows the averaged
learning trajectories over agents who, in the non-federated setting, only use a fraction of their data. In this setting, agents
can reduce their contributions by very little if they still hope to be successful.
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Figure 5. Individual (non-federated) learning averaged over all four agents with different individual contribution levels. At the size of
each agent’s training dataset (1600), using half or fewer of an agent’s unique data points will generally not lead to success.

I.4. Connections with algorithms in prior work

Algorithm 2 mirrors the multiplicative weights-based solutions that (Blum et al., 2017; Chen et al., 2018; Nguyen &
Zakynthinou, 2018) use in the learning-theoretic setting. Specifically, the algorithms in the above prescribe learning in
rounds. Each round involves sampling from a weighted mixture of distributions, testing the performance of the learned
model on each distribution, and up-weighting those that have not yet reached their performance threshold for the following
rounds.

Section 5.1 shows that, in the linear setting, we can use a convex program to find a minimum-cost equilibrium. As previously
stated, ensuring there are no 0-contributors means that we can simply use LP 1 to find an equilibrium. Packing LPs such as
this are frequently solved using similar multiplicative-weights based strategies (Plotkin et al., 1995; Arora et al., 2012).

I.5. Computing infrastructure

The experiments in this work were run using a NVIDIA V100 Tensor Core GPU.

4Note that, as the batch size differs, these iteration counts can not be directly compared with other statistics in this section.


