The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning

Supplemental Material

A. Proofs of Section 3

Proposition A.1. The covariance matrix C satisfies:
c=ct, Cc>0, C+iJ>0. (54)
Proof. We give the proof for | X| = 1 and refer the reader

to (Simon et al., 1987) for the general case. Suppressing the
x index and denoting (-) = (¢| - |1)), we have:
_ 20% (o7 +7p) — 2(0)(7)
C=\ /5125 S\ 2
(P +7¢) = 2(p)(7) 20%,
(55)
where 0?2 = ($?) — ($)? and similarly for 7. For |X| = 1,
C +iJ > 0is equivalent to Det(C +iJ) > 0 or
do%o? > ((¢7 +70) — 2(2)(7))* +1. (56)

This is the uncertainty relation in the stronger form due to
Robertson—Schroedinger, proving the statement for | X'| =
1. O

Proposition A.2. The unitaries of (20) and (21) represent
symplectic affine transformations of the canonical operators

D(¢)'RD(§) = R+¢ (57)

&(S)TRH(S) = SR. (58)
Proof. The result then follows from the Baker-Campbell-
Hausdorff formula

e?Be * =l (B) =B+ [A,B] + 1[A,[A,B]] + -
(59

and the commutators:
iRTJE, R, = —¢& [—%ﬁTJXﬁ, R = (XR);.
O

Proposition A.3. Under the unitaries of (20) and (21), the
Gaussian states transform as

D(£)m,C) = [m+£,C) (60)
@(S)|m,C) = |Sm,SCST) . (61)

Proof. From proposition 3.3 and the definitions (16) and
(17), we have for any |¥):

(¥| D(&)TRD(€)) = (V| (R+€)|V) =m+¢
(W B(S)TRG(S) W) = Sm = m/
(U B(S)T S (RiR; + R; R)B(S) |) — mim); =
> Sik3CriSj = 3(SCST);; .
k,l

The result follows by specifying |¥) = |m, C). O

B. Proofs of Section 4
Proposition B.1. The ODEs (32), (33) have solutions

Pra(t) = F7H (F($2,0(0) +1) (62)
Ta,a(t) = % (ﬁz,a(O)m + hc> (63)

where F'(x) = 1/ f(z).

Proof. We can check directly the formulas by differenti-
ating w.r.t. ¢t to show that the time evolved fields satisfy
the equation of motions. Rewriting the first equation as
F(P2,a(t)) = F($4,4(0)) + t and differentiating the Lh.s.:

Paalt)

f(@zalt))’
(64)

OF (Pr.a(t)) = F'(Bua(t)Paalt) =

which equals 0; (F(©4,4(0)) +t) = 1, showing that @, ,(t)
satisfies (32). For the second equation we differentiate the
first term in the parenthesis:

. (0) (B0 (0)0: (f(Baa(t)) (65)

= e (B0 £ (@ea®) 5 66
20O F G) FGra() 2l (€O

= ~Tg,a(t) ' (Pr.alt)) (67)
which shows that 7, . (t) satisfies (33). O

C. Proofs of Section 6

Lemma C.1. Let |/m,C) be a Gaussian state and Ua
unitary such that:

UTeU = F(9). (68)
Then:
| U |m,C) | = (F#GP(m!, C™Y)) (p) (69)

where f#p denotes the push forward of p under f.

Proof. First we have:
[{plm, C) > = GP(m!,C')(¢). (70)
Now we note the representation of a projector as the average:
_ [DA AT

a formula which can be proved by comparing matrix el-
ements of the two operators in arbitrary states. Then we

The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning

have:
(ol U |m,C) [> = (m,C| T @) (0| U |m, C) (72)
/ D*e_iif” (m,C|UTeX ®U |m,C) (73)
DA e A TF@)
~ [P m. e @)

DA (F(e')—¢)
/D90/ < o @O 79)
71'

/D(p'é — @)GP(m!
= (F#GP(m/, C“))(). (77)

In going from the third to the fourth line we used the follow-
ing representation, valid for any f:

- / Dy f(¢) |9} (gl . (78)

and we have used the definition of push forward of a dis-
tribution, i.e. thatif x ~ px, then py = f#px is the
distribution of the random variable z = f(x) which can be
obtained explicitly via the change of variable formula:

pz(z) = “ox(fNz) (79)
= / dz's(f(2") = 2)px (2'), (80)

where the second equality follows upon changing variables
toz” = f(z').

,C)(@") (76)

Of(x
IDet(XE) 1)l

We also present an alternative proof the lemma, which relies

on:
U |z) = |Det(Z5E) 12 | F(x)) . (81)

The fact that U |z) =
from

c(x) |F(x)) for some c(x) follows

U |z) = UF (@) |z) = F(2)U |x) , (82)

and the delta normalization fixes the proportionality factor:
5z —x) = (2'|z) = (/| UTU |) (83)
=c(z")ec(x)5(F(2') — F(x)), (84)

using that for a g(x) having the unique solution g(x) = 0
at xg, one has

3(g(x)) = 6(x —)| Det (242 ,_,)| 1. (85)

Given equation (81), the lemma is immediate:
(| U [m,C) > = | (m,C| U) (86)
= [Det(2Z (2| - | (m, C|F () | (87)

= Det(25E |, _po1(p))| TIGP(m!, CM) (F 7 (g)),
(88)

which coincides with the definition of push forward.

D. Experiments

In this section we discuss numerical experiments to show
that the semi-classical neural networks introduced in Sec. 7
performs on par with its classical counterpart for a simple
irregular time series classification task.

D.1. Datasets

Similarly to (Li & Marlin, 2015), to perform controllable
experiments with irregular data, we select the UCR time
series dataset (Chen et al., 2015). We assume that the input
time series is uniformly sampled in [0, 1] and then sample
randomly a fraction f of the input time series, where f
varies from 1 (no subsampling) to .1 (only 10% of the data
is retained). This gives us coordinates x; and values y; that
can be used to prepare an input Gaussian state as discussed
below in the training algorithm section. We select the same
random subsampling mask for the the training data and a dif-
ferent one for the test data, which we expect is a good model
of a realistic irregular measurement and a more challenging
machine learning task.

Since our algorithm has cubic complexity in number of
points of the input signal and the purpose of the experiments
is only to validate that the semiclassical architecture can
perform on par with a classical probabilistic numeric base-
line, we restrict the focus here only to the following dataset
which has small number of data points: SyntheticControl
(train: 300, test: 300, classes: 6, length time series 60).

D.2. Training Algorithm

The training algorithm is composed of two steps. First, we
train the GP using Alg. 1. Then we use the resulting pos-
terior mean and covariance — more precisely the posterior
mean p/, the cholesky decomposition of the posterior covari-
ance L and its inverse M as inputs to the PNN and SPNN.
The PNN discards M, which is used for the momenta sector,
which is decoupled for PNN and does not intervene in the
prediction. Then we use u/, L, M to sample from a normal
distribution that is defined as in Alg. 2, i.e. we set all the
other means to zero and the covariance is k'~* = M M7
for the momenta sector and channel 0 while identity else-
where. This returns a batch of samples z° that are then
passed through the neural network as in Alg. 3 to finally be
averaged to produce the logits used for classification. The
next section describes the architectures in more details.

Note that GP inference is the bottleneck here and we could
use the methods of (Li & Marlin, 2016) to improve on that.
Our interest is however not to have a state of the art classifier,

The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning

Algorithm 1. PretrainGP

Algorithm 3. Semi-ClassicalNN

Input: data {z%,4°} b = 1,..., B (B being data size),
grid X, GP kernel parameters O.
Train GP: Compute © by maximizing marginal likeli-

hood of data in mini-batches:

B
1
max ; log(par(y'a’, ©)) (89)

Test GP: Compute 1./, kI,
z,x' € X.

Cholesky: Compute L® = cholesky(k'®), M® =
cholesky((k"®)~1)

Output: {1}, {L"}, {M"}

from Eq. (1) (main text) for

Algorithm 2. Sample

Input:y’, L, M (output of Alg. 1), number of channels
N¢, number of sample Namples-

Create Normal: ' (m,C) with : N, x |X| x 2 and C"
(Ne x |X] % 2) x (N x |X]| x2),

e JHe =] =0
ned 0 else

/
Ky o

_ /—1
Cocgiarery = (K

Op,20c,cr 05,50 else

j:j/:C:C/ZO
j=3 =1,c=c=0

with ¥’ = LLT k'~ = MMT:

Sample: z' from A (m, C) using the reparametrization
trick fori =1, ..., Neamples

Output: {2}

so we test the model in the simplest setting of O(N?) exact
GP inference and simply validate that the performance of
the semi-classical neural network architecture is on par with
a classical counterpart. Note that separating the GP training
from the neural network training allows us to amortize the
GP inference as a preprocessing step and have an O(N?)
algorithm for network propagation as in BNN case.

D.3. Architecture

For the GP to interpolate the data we take Matern kernel with
v = 0.5 as implemented in gpytorch (Gardner et al., 2018).
We compare three models: 1) a baseline MLP (BNN), 2) a
probabilistic numeric MLP (PNN) and 3) a semiclassical
version of the PNN (SPNN). All models share the same
basic architecture, which is a MLP with three layers. In all
cases the hidden sizes are equal to the number of points in

Input:y’, L, M (output of Alg. 1), number of channels
N¢, 8, number of sample Ngumples, learnable parameters
h(é)7 b
Sample: z' = Sample(y', L, M, N¢, Noamples) (see
Alg. 2).
for/{ =0to L —1do
2" = Linear(z*, h(9), p®))
2" = SympecticSofplus(z?, 3)
end for
2" = Linear(2, h(F) b(1))
le= Ns;nllples Ziv:sai"ples Z3—0,c,j=0
Output: Logits .

the original grid of the data, |X'|, times the number of chan-
nels N¢o. For BNN we parameterize the weight matrices
directly i.e. the learnable parameters are the weight matrices.
Instead for PNN and SPNN we parametrize the logarithm
of the weight matrix as the learnable parameters. We did
check that for PNN this did not impact perform comparing
to the case where we use the same parameterization of BNN.
We do this to ensure simply that the weight matrices of the
SPNN are symplectic. Indeed recalling the definitions from
the main text, see Sec. 3.2, a linear layer with input/output
dimensions 2N has learnable parameters A, B, C € RV*N
and the weight matrix S is then constructed as:

A §(B+BT)> C0)

§ = oxp (;(c Lory AT

A, B, C are denoted & in Alg. 3. For PNN we simply take
B = C = 0 and discard the lower right block. We have also
tried to restrict S to be a free matrix and use the parametriza-
tion from (de Gosson, 2006) but found that the matrix ex-
ponential (which allow use to parametrize more general
symplectic matrices) worked best. We used pytorch (Paszke
et al., 2019) to run the experiments and initialized all the ma-
trices W using nn.init.kaiming_uniform_, with
mode fanin and nonlinearity ’relu’. For SPNN we further
multiplied the learnable parameters by a scale factor 0.1
which we found important with the training settings de-
scribed below to prevent large values at the beginning of
training.

Finally, we took for non-linearity the softplus for BNN and
PNN and its symplectic version of section 7.2 for SPNN.
In all cases, 5 = 0.1 was chosen. This ensures that in the
SPNN we do not create very large values for large negative
o that would make training unstable, and was chosen the
same for all models for comparison. We checked that one
could get similar results for BNN and PNN by using the
more conventional value of 8 = 1.

The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning

SAMPLING BNN PNN SPNN
1 94 94 95
0.9 84.66 = 0.47 93.33£1.69 93.00+2.82
0.8 80.66 =3.68 91.00+2.82 91.33£2.05
0.7 77.33 £6.02 89.00+2.16 86.66 £ 1.25
0.6 7499 +7.87 82.33 £5.31 82.00 +=2.94
0.5 68.33 £6.85 75.99+849 74.33+11.12
0.4 68.33 £5.44 72.66 £3.68 72.33+4.11
0.3 66.33 =5.25 66.99 £+ 4.55 66.66 + 5.44
0.2 38.99 £8.04 4233 +5.25 41.66 +4.78
0.1 28.33 £8.18 36.00£5.35 40.33 +8.05

Table 1. Classification accuracies for a baseline MLP (BNN), the
classical probabilistic numeric network (PNN) and the semiclassi-
cal network (SPNN). Sampling stands for the subsampling fraction
f of the input as explained in the main text. The results are ob-
tained by computing statistics over three random subsampling
masks.

D.4. Results

We present results in table 1. We pretrained the GPs using
Adam optimizer with learning rate 0.1 from (Paszke et al.,
2019) for 20 epochs using batch size of 50. We trained
the neural network using default Adam optimizer for 1000
epochs with batch size 50 as well. We used Ngamples = 100
and No = 2.

The BNN baseline as well as PNN and SPNN perform on
the original unsampled dataset similarly to the MLP used
in (Wang et al., 2016) (95 for SyntheticControl), which also
has three layers but additionally dropout and uses ReLLU
instead of softplus. This validates the choice of architecture
we made.

The results presented are on the average over three random
seeds for the random sampling. The error bars are consid-
erable in all cases due to the fact that different sampling
masks lead to different data points that are retained and this
choice affects the classification of the signal. When we start
to subsample the data (using the same procedure for all mod-
els), both the PNN and SPNN n average perform better than
the BNN, confirming the findings of (Li & Marlin, 2015;
2016; Finzi et al., 2020) showing the the usefulness of the
GP model for irregularly sampled data. (Li & Marlin, 2015)
report accuracies averaged over all the 43 UCR datasets and
not directly comparable with our restricted setting, while
(Li & Marlin, 2016; Finzi et al., 2020) use different datasets
for which scalable methods for GP inference are required.
Finally, we note that the performance of PNN and SPNN
have a considerable overlap within the confidence region of
the results, validating the claim that they perform similarly.

E. Details of quantum optical implementation
E.1. State preparation strategies

The state preparation step encodes the input signal D =
{(z4,y:)}, into quantum registers. There a several op-
tions for that. First we note that while the prescription of
lemma 4.1, i.e. to create a prior state and to project onto y;
the registers associated to locations z;, is appealing concep-
tually and allows us to formulate inference entirely in quan-
tum language, it is not straightforward to implement. This
is because projections are enacted by partial measurements
and those give outcome y; only with a small probability
of success. To overcome this, we consider the following
alternatives. The simplest is the one explained in the main
text, that we repeat here. We use classical hardware to com-
pute the GP posterior as in (1) for a set of points x € X.
Then we create a an input Gaussian state by acting on the
vacuum state |Q2) defined in Sec. 5 with the linear layer
D(€ = (1/,0))@(S = A@® (A)~1), where A is a square
root of k’. The vacuum state can be created using lasers
(Nielsen & Chuang, 2000) and we defer to the next section
the implementation of the linear layer. While this procedure
is straightforward it incurs a complexity similar to the clas-
sical GP inference, that is O(N3). Another alternative is
to use the fact that on quantum hardware we can perform
matrix inversion exponentially faster (Harrow et al., 2009).
Under some conditions (in particular access to QRAM) one
can compute posterior mean and covariance in polylog time
(Zhao et al., 2019; Das et al., 2018a). Under similar condi-
tions, quantum singular value decomposition can compute
A in polylog time (Kerenidis & Prakash, 2016). The catch
in our setting however is that to read out the values of p’ and
A we would still need O(N?) operations. We leave devel-
oping a more efficient quantum implementation of quantum
GP inference as in interesting future challenge.

E.2. Linear layer

The implementation of a unitary &(.S) on a quantum op-
tical computer is a well studied problem and we limit
here to give a high level description, see (Weedbrook
et al., 2012) for more details. We first decompose the
unitary in terms of elementary linear optical gates, we
use the group homomorphism property @(S)&w(S') =
@(SS") together with the Bloch-Messiah decomposition
S = KXL with K, L symplectic and orthogonal and
¥ = diag(e™,..., .,e" ™) ¥ can be imple-
mented directly using optical parametric amplifiers. The
orthogonal matrices K, L can be further decomposed us-
ing Givens rotations as product of rotations of two compo-
nents and implemented in terms of beamsplitters and phase
shifters. Note that the number of gates required to decom-
pose an arbitrary matrix can grow quadratically with the
dimension (Reck et al., 1994). The bias D can be also easily

a —-r
e'™ e, ..

The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning

implemented (Weedbrook et al., 2012).

E.3. Non linearity

Quantum computers can perform arbitrary computations if
given a set of universal gates. For quantum optical comput-
ers, one can take the quadratic Hamiltonians and the cubic
gate, whose Hamiltonian is $* (Lloyd & Braunstein, 1999).
We can implement a non-linearity with Hamiltonian (30) by
approximating it with the truncation of the Taylor series of
the function f to order k:

k
H=>fH, H =

£=0

7o+ ¢'7) . 91)

DN =

where for notational simplicity in this section we are going
to omit the indices x, a from the quantum fields. We can
then use the standard procedure for quantum simulation,
see e.g. (Nielsen & Chuang, 2000). A first step is to trade
i iefefle g0 that
the problem boils down on how to implement e**/¢#¢, This
is explained in the next proposition:

—1/(4(¢ + 2)), define the

e'™<H for the m times application of H?:o e

Proposition E.1. Denoted oy =

unitaries
[7476 = exp (ieflg) 92)
Wi, = exp(ieam?) (93)

‘75,5 = exp(i€Q)U exp(lap)Ug’é. %94)
We have

Urir,e = WoyeVoarsW, V] +0(). (95)

Proof. Consider the Trotter formula:

[eieﬁl eieﬁg . eieﬁk][eieﬁkeieﬁk,l . eiEEH]

_ eQiEﬁ + 0(63) .

The error in replacing e with the m-th power of the Lh.s. is
smaller than ame® for some constant o (see Eq. 4.107 of
(Nielsen & Chuang, 2000)). So we can concentrate on im-
plementing e’“!’¢, Suppose that we know how to implement
e'*He Then we show how to construct e’“/¢+1 using the
universal cubic and linear gates. Note that

%, Hyl = £.18°, 73" = £e'18°, 7] = 2i £,
72, (2%, Hel] = 2ifo[72, 6%
_ 2f£(€+2)(%§0\€+1 +90€+17?)
e

(41

— 4 (g + Q)H,g_;,_l

Now if we know how to implement two gate e*“4, e“B, we

also know how to implement the gate with Hamiltonian
given by their commutator:

e—i\/aie—iﬁﬁeﬂ\/éﬁeﬂﬁé
— o~ iVe(A+B) =3 e[A,B] +iVe(A+B) -3 ¢[A,B] + 0(63/2)
— o—€lAB] + 0(63/2).

So if we know how to implement e*/¢, we can implement
e'*Het1 ysing the fact that 72 and 2 are universal gates and
using the above formula two times. Since we know how
to implement Hy—y = 7, we can implement all the higher
Hamiltonians recursively. O

The number N of universal gates to implement a gate with
Hamiltonian H satisfies the recursion:

Nﬁz-u = 2Nz + 2(2N(53 + QNEQ) s (96)
where setting Nz2 = Ng2 = Ny = 1 we get the recursion
Nﬁz+1 =06+ 4Np , Ny = 1 whose solution is exponen-
tial in £, and therefore in k, the truncation parameter of the

non-linearity. Depending on the hardware, a low value of &
might be required with the proposed procedure.

To understand what function the approximated gates imple-
ment, let us consider:

heo(@) i=e ig (7P 4p° ﬂ)@ —i g (FR'+3F)

o3
=3+ adt + Z(pe 154+ ?Z(% — 1)@ .
J)
=5y ‘%e(% —1BC-2).. (- Dl - (G- 2)FEY,
: J:
Jj=0
h1,a(®) = €@
-~ @
h o = =
2,0(P) 1—ap
~ 9
h3,a(P) =

V1= 2ap?

So consider the Hamiltonian of softplus by setting
(-1)"
1l

and truncating to order k and using Trotter, the function
implemented by our procedure is:

ap=¢€ 97

[eieHl . eier][eier . eieHl]. (98)
9’0\ . [efieHl L efier][efier L efieHl] (99)
= hl,al O:-+0 hk,ak o hk,ak -0 hl,ozl (Q’O\) . (100)

Define the m-th power of this function by o, ¢ . (9).

The Hintons in your Neural Network: a Quantum Field Theory View of Deep Learning

in
— softplus
25 k=3,eps=0.05,m=5
—— k=3,eps=0.1m=5
204 —— k=3,eps=0.05,m==8
15 k=3,eps=0.1,m=8
10
05
00
-0.5
-1.0

-100 -75 -50 -25 00 25 50 75 100

Figure 4. Truncated non-linearity o, e m ()

Figure 4 shows these non-linearity against the original soft-
plus function for different values of the parameters showing
the effect of the choice of m and € for k = 3.

