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Abstract
Batch normalization is a key component of most
image classification models, but it has many
undesirable properties stemming from its depen-
dence on the batch size and interactions between
examples. Although recent work has succeeded
in training deep ResNets without normalization
layers, these models do not match the test
accuracies of the best batch-normalized networks,
and are often unstable for large learning rates
or strong data augmentations. In this work, we
develop an adaptive gradient clipping technique
which overcomes these instabilities, and design a
significantly improved class of Normalizer-Free
ResNets. Our smaller models match the test
accuracy of an EfficientNet-B7 on ImageNet
while being up to 8.7× faster to train, and our
largest models attain a new state-of-the-art top-1
accuracy of 86.5%. In addition, Normalizer-Free
models attain significantly better performance
than their batch-normalized counterparts when
fine-tuning on ImageNet after large-scale
pre-training on a dataset of 300 million labeled
images, with our best models obtaining an
accuracy of 89.2%. Code and pretrained models
are available at https://github.com/
deepmind/deepmind-research/tree/
master/nfnets

1. Introduction
The vast majority of recent models in computer vision are
variants of deep residual networks (He et al., 2016b;a),
trained with batch normalization (Ioffe & Szegedy, 2015).
The combination of these two architectural innovations has
enabled practitioners to train significantly deeper networks
which can achieve higher accuracies on both the training
set and the test set. Batch normalization also smoothens the
loss landscape (Santurkar et al., 2018), which enables stable
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Figure 1. ImageNet Validation Accuracy vs Training Latency.
All numbers are single-model, single crop. Our NFNet-F1 model
achieves comparable accuracy to an EffNet-B7 while being 8.7×
faster to train. Our NFNet-F5 model has similar training latency to
EffNet-B7, but achieves a state-of-the-art 86.0% top-1 accuracy
on ImageNet. We further improve on this using Sharpness Aware
Minimization (Foret et al., 2021) to achieve 86.5% top-1 accuracy.

training with larger learning rates and at larger batch sizes
(Bjorck et al., 2018; De & Smith, 2020), and it can have a
regularizing effect (Hoffer et al., 2017; Luo et al., 2018).

However, batch normalization has three significant practical
disadvantages. First, it is a surprisingly expensive computa-
tional primitive, which incurs memory overhead (Rota Bulò
et al., 2018), and significantly increases the time required to
evaluate the gradient in some networks (Gitman & Ginsburg,
2017). Second, it introduces a discrepancy between the be-
haviour of the model during training and at inference time
(Summers & Dinneen, 2019; Singh & Shrivastava, 2019),
introducing hidden hyper-parameters that have to be tuned.
Third, and most importantly, batch normalization breaks the
independence between training examples in the minibatch.

This third property has a range of negative consequences.
For instance, practitioners have found that batch normalized
networks are often difficult to replicate precisely on differ-
ent hardware, and batch normalization is often the cause of
subtle implementation errors, especially during distributed
training (Pham et al., 2019). Furthermore, batch normal-
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ization cannot be used for some tasks, since the interaction
between training examples in a batch enables the network to
‘cheat’ certain loss functions. For example, batch normaliza-
tion requires specific care to prevent information leakage in
some contrastive learning algorithms (Chen et al., 2020; He
et al., 2020). This is a major concern for sequence modeling
tasks as well, which has driven language models to adopt al-
ternative normalizers (Ba et al., 2016; Vaswani et al., 2017).
The performance of batch-normalized networks can also
degrade if the batch statistics have a large variance during
training (Shen et al., 2020). Finally, the performance of
batch normalization is sensitive to the batch size, and batch
normalized networks perform poorly when the batch size is
too small (Hoffer et al., 2017; Ioffe, 2017; Wu & He, 2018),
which limits the maximum model size we can train on finite
hardware. We expand on the challenges associated with
batch normalization in Appendix B.

Therefore, although batch normalization has enabled the
deep learning community to make substantial gains in re-
cent years, we anticipate that in the long term it is likely to
impede progress. We believe the community should seek
to identify a simple alternative which achieves competitive
test accuracies and can be used for a wide range of tasks.
Although a number of alternative normalizers have been pro-
posed (Ba et al., 2016; Wu & He, 2018; Huang et al., 2020),
these alternatives often achieve inferior test accuracies and
introduce their own disadvantages, such as additional com-
pute costs at inference. Fortunately, in recent years two
promising research themes have emerged. The first studies
the origin of the benefits of batch normalization during train-
ing (Balduzzi et al., 2017; Santurkar et al., 2018; Bjorck
et al., 2018; Luo et al., 2018; Yang et al., 2019; Jacot et al.,
2019; De & Smith, 2020), while the second seeks to train
deep ResNets to competitive accuracies without normaliza-
tion layers (Hanin & Rolnick, 2018; Zhang et al., 2019a; De
& Smith, 2020; Shao et al., 2020; Brock et al., 2021).

A key theme in many of these works is that it is possible to
train very deep ResNets without normalization by suppress-
ing the scale of the hidden activations on the residual branch.
The simplest way to achieve this is to introduce a learnable
scalar at the end of each residual branch, initialized to zero
(Goyal et al., 2017; Zhang et al., 2019a; De & Smith, 2020;
Bachlechner et al., 2020). However this trick alone is not
sufficient to obtain competitive test accuracies on challeng-
ing benchmarks. Another line of work has shown that ReLU
activations introduce a ‘mean shift’, which causes the hid-
den activations of different training examples to become in-
creasingly correlated as the network depth increases (Huang
et al., 2017; Jacot et al., 2019). In a recent work, Brock et al.
(2021) introduced “Normalizer-Free” ResNets, which sup-
press the residual branch at initialization and apply Scaled
Weight Standardization (Qiao et al., 2019) to remove the
mean shift. With additional regularization, these unnormal-

ized networks match the performance of batch-normalized
ResNets (He et al., 2016a) on ImageNet (Russakovsky et al.,
2015), but they are not stable at large batch sizes and do not
match the performance of EfficientNets (Tan & Le, 2019),
the current state of the art (Gong et al., 2020). This paper
builds on this line of work and seeks to address these central
limitations. Our main contributions are as follows:

• We propose Adaptive Gradient Clipping (AGC), which
clips gradients based on the unit-wise ratio of gradient
norms to parameter norms, and we demonstrate that
AGC allows us to train Normalizer-Free Networks with
larger batch sizes and stronger data augmentations.

• We design a family of Normalizer-Free ResNets, called
NFNets, which set new state-of-the-art validation ac-
curacies on ImageNet for a range of training latencies
(See Figure 1). Our NFNet-F1 model achieves similar
accuracy to EfficientNet-B7 while being 8.7× faster to
train, and our largest model sets a new overall state of
the art without extra data of 86.5% top-1 accuracy.

• We show that NFNets achieve substantially higher
validation accuracies than batch-normalized networks
when fine-tuning on ImageNet after pre-training on a
large private dataset of 300 million labelled images.
Our best model achieves 89.2% top-1 after fine-tuning.

The paper is structured as follows. We discuss the bene-
fits of batch normalization in Section 2, and recent work
seeking to train ResNets without normalization in Section 3.
We introduce AGC in Section 4, and we describe how we
developed our new state-of-the-art architectures in Section 5.
Finally, we present our experimental results in Section 6.

2. Understanding Batch Normalization
In order to train networks without normalization to com-
petitive accuracy, we must understand the benefits batch
normalization brings during training, and identify alterna-
tive strategies to recover these benefits. Here we list the four
main benefits which have been identified by prior work.

Batch normalization downscales the residual branch:
The combination of skip connections (Srivastava et al.,
2015; He et al., 2016b;a) and batch normalization (Ioffe &
Szegedy, 2015) enables us to train significantly deeper net-
works with thousands of layers (Zhang et al., 2019a). This
benefit arises because batch normalization, when placed on
the residual branch (as is typical), reduces the scale of hid-
den activations on the residual branches at initialization (De
& Smith, 2020). This biases the signal towards the skip path,
which ensures that the network has well-behaved gradients
early in training, enabling efficient optimization (Balduzzi
et al., 2017; Hanin & Rolnick, 2018; Yang et al., 2019).
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Batch normalization eliminates mean-shift: Activation
functions like ReLUs or GELUs (Hendrycks & Gimpel,
2016), which are not anti-symmetric, have non-zero mean
activations. Consequently, the inner product between the
activations of independent training examples immediately
after the non-linearity is typically large and positive, even
if the inner product between the input features is close to
zero. This issue compounds as the network depth increases,
and introduces a ‘mean-shift’ in the activations of different
training examples on any single channel proportional to the
network depth (De & Smith, 2020), which can cause deep
networks to predict the same label for all training examples
at initialization (Jacot et al., 2019). Batch normalization en-
sures the mean activation on each channel is zero across the
current batch, eliminating mean shift (Brock et al., 2021).

Batch normalization has a regularizing effect: It is
widely believed that batch normalization also acts as a regu-
larizer enhancing test set accuracy, due to the noise in the
batch statistics which are computed on a subset of the train-
ing data (Luo et al., 2018). Consistent with this perspective,
the test accuracy of batch-normalized networks can often be
improved by tuning the batch size, or by using ghost batch
normalization in distributed training (Hoffer et al., 2017).

Batch normalization allows efficient large-batch train-
ing: Batch normalization smoothens the loss landscape
(Santurkar et al., 2018), and this increases the largest stable
learning rate (Bjorck et al., 2018). While this property does
not have practical benefits when the batch size is small (De
& Smith, 2020), the ability to train at larger learning rates is
essential if one wishes to train efficiently with large batch
sizes. Although large-batch training does not achieve higher
test accuracies within a fixed epoch budget (Smith et al.,
2020), it does achieve a given test accuracy in fewer param-
eter updates, significantly improving training speed when
parallelized across multiple devices (Goyal et al., 2017).

3. Towards Removing Batch Normalization
Many authors have attempted to train deep ResNets to com-
petitive accuracies without normalization, by recovering
one or more of the benefits of batch normalization described
above. Most of these works suppress the scale of the activa-
tions on the residual branch at initialization, by introducing
either small constants or learnable scalars (Hanin & Rol-
nick, 2018; Zhang et al., 2019a; De & Smith, 2020; Shao
et al., 2020). Additionally, Zhang et al. (2019a) and De &
Smith (2020) observed that the performance of unnormal-
ized ResNets can be improved with additional regulariza-
tion. However only recovering these two benefits of batch
normalization is not sufficient to achieve competitive test
accuracies on challenging benchmarks (De & Smith, 2020).

In this work, we adopt and build on “Normalizer-Free

ResNets” (NF-ResNets) (Brock et al., 2021), a class of pre-
activation ResNets (He et al., 2016a) which can be trained to
competitive training and test accuracies without normaliza-
tion layers. NF-ResNets employ a residual block of the form
hi+1 = hi +αfi(hi/βi), where hi denotes the inputs to the
ith residual block, and fi denotes the function computed
by the ith residual branch. The function fi is parameter-
ized to be variance preserving at initialization, such that
Var(fi(z)) = Var(z) for all i. The scalar α specifies the
rate at which the variance of the activations increases after
each residual block (at initialization), and is typically set to a
small value like α = 0.2. The scalar βi is determined by pre-
dicting the standard deviation of the inputs to the ith residual
block, βi =

√
Var(hi), where Var(hi+1) = Var(hi) + α2,

except for transition blocks (where spatial downsampling
occurs), for which the skip path operates on the downscaled
input (hi/βi), and the expected variance is reset after the
transition block to hi+1 = 1 + α2. The outputs of squeeze-
excite layers (Hu et al., 2018) are multiplied by a factor of 2.
Empirically, Brock et al. (2021) found it was also beneficial
to include a learnable scalar initialized to zero at the end of
each residual branch (‘SkipInit’ (De & Smith, 2020)).

In addition, Brock et al. (2021) prevent the emergence of a
mean-shift in the hidden activations by introducing Scaled
Weight Standardization (a minor modification of Weight
Standardization (Huang et al., 2017; Qiao et al., 2019)).
This technique reparameterizes the convolutional layers as:

Ŵij =
Wij − µi√

Nσi
, (1)

where µi = (1/N)
∑

j Wij , σ2
i = (1/N)

∑
j(Wij − µi)

2,
and N denotes the fan-in. The activation functions are
also scaled by a non-linearity specific scalar gain γ, which
ensures that the combination of the γ-scaled activation func-
tion and a Scaled Weight Standardized layer is variance
preserving. For ReLUs, γ =

√
2/(1− (1/π)) (Arpit et al.,

2016). We refer the reader to Brock et al. (2021) for a
description of how to compute γ for other non-linearities.

With additional regularization (Dropout (Srivastava et al.,
2014) and Stochastic Depth (Huang et al., 2016)),
Normalizer-Free ResNets match the test accuracies achieved
by batch normalized pre-activation ResNets on ImageNet
at batch size 1024. They also significantly outperform their
batch normalized counterparts when the batch size is very
small, but they perform worse than batch normalized net-
works for large batch sizes (4096 or higher). Crucially, they
do not match the performance of state-of-the-art networks
like EfficientNets (Tan & Le, 2019; Gong et al., 2020).
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4. Adaptive Gradient Clipping for Efficient
Large-Batch Training

To scale NF-ResNets to larger batch sizes, we explore a
range of gradient clipping strategies (Pascanu et al., 2013).
Gradient clipping is often used in language modeling to sta-
bilize training (Merity et al., 2018), and recent work shows
that it allows training with larger learning rates compared
to gradient descent, accelerating convergence (Zhang et al.,
2020). This is particularly important for poorly conditioned
loss landscapes or when training with large batch sizes, since
in these settings the optimal learning rate is constrained by
the maximum stable learning rate (Smith et al., 2020). We
therefore hypothesize that gradient clipping should help
scale NF-ResNets efficiently to the large-batch setting.

Gradient clipping is typically performed by constraining the
norm of the gradient (Pascanu et al., 2013). Specifically, for
gradient vector G = ∂L/∂θ, where L denotes the loss and
θ denotes a vector with all model parameters, the standard
clipping algorithm clips the gradient before updating θ as:

G→

{
λ G
‖G‖ if ‖G‖ > λ,

G otherwise.
(2)

The clipping threshold λ is a hyper-parameter which must
be tuned. Empirically, we found that while this clipping al-
gorithm enabled us to train at higher batch sizes than before,
training stability was extremely sensitive to the choice of
the clipping threshold, requiring fine-grained tuning when
varying the model depth, the batch size, or the learning rate.

To overcome this issue, we introduce “Adaptive Gra-
dient Clipping” (AGC), which we now describe. Let
W ` ∈ RN×M denote the weight matrix of the `th layer,
G` ∈ RN×M denote the gradient with respect to W `,
and ‖ · ‖F denote the Frobenius norm, i.e., ‖W `‖F =√∑N

i

∑M
j (W `

i,j)
2. The AGC algorithm is motivated by

the observation that the ratio of the norm of the gradientsG`

to the norm of the weights W ` of layer `, ‖G
`‖F

‖W `‖F , provides
a simple measure of how much a single gradient descent
step will change the original weights W `. For instance, if
we train using gradient descent without momentum, then
‖∆W `‖
‖W `‖ = h ‖G

`‖F
‖W `‖F , where the parameter update for the `th

layer is given by ∆W ` = −hG`, and h is the learning rate.

Intuitively, we expect training to become unstable if
(‖∆W `‖/‖W `‖) is large, which motivates a clipping strat-
egy based on the ratio ‖G

`‖F
‖W `‖F . However in practice, we clip

gradients based on the unit-wise ratios of gradient norms to
parameter norms, which we found to perform better empiri-
cally than taking layer-wise norm ratios. Specifically, in our
AGC algorithm, each unit i of the gradient of the `-th layer

(a) (b)

Figure 2. (a) AGC efficiently scales NF-ResNets to larger batch
sizes. (b) The performance across different clipping thresholds λ.

G`
i (defined as the ith row of matrix G`) is clipped as:

G`
i →

{
λ
‖W `

i ‖
?
F

‖G`
i‖F

G`
i if ‖G

`
i‖F

‖W `
i ‖?F

> λ,

G`
i otherwise.

(3)

The clipping threshold λ is a scalar hyperparameter, and we
define ‖Wi‖?F = max(‖Wi‖F , ε), with default ε = 10−3,
which prevents zero-initialized parameters from always hav-
ing their gradients clipped to zero. For parameters in con-
volutional filters, we evaluate the unit-wise norms over the
fan-in extent (including the channel and spatial dimensions).
Using AGC, we can train NF-ResNets stably with larger
batch sizes (up to 4096), as well as with very strong data
augmentations like RandAugment (Cubuk et al., 2020) for
which NF-ResNets without AGC fail to train (Brock et al.,
2021). Note that the optimal clipping parameter λ may de-
pend on the choice of optimizer, learning rate and batch size.
Empirically, we find λ should be smaller for larger batches.

AGC is closely related to a recent line of work studying “nor-
malized optimizers” (You et al., 2017; Bernstein et al., 2020;
You et al., 2019), which ignore the scale of the gradient by
choosing an adaptive learning rate inversely proportional to
the gradient norm. In particular, You et al. (2017) propose
LARS, a momentum variant which sets the norm of the
parameter update to be a fixed ratio of the parameter norm,
completely ignoring the gradient magnitude. AGC can be
interpreted as a relaxation of normalized optimizers, which
imposes a maximum update size based on the parameter
norm but does not simultaneously impose a lower-bound
on the update size or ignore the gradient magnitude. Al-
though we are also able to stably train at high batch sizes
with LARS, we found that doing so degrades performance.

4.1. Ablations for Adaptive Gradient Clipping (AGC)

We now present a range of ablations designed to test the effi-
cacy of AGC. We performed experiments on pre-activation
NF-ResNet-50 and NF-ResNet-200 on ImageNet, trained
using SGD with Nesterov’s Momentum for 90 epochs at a
range of batch sizes between 256 and 4096. As in Goyal
et al. (2017) we use a base learning rate of 0.1 for batch
size 256, which is scaled linearly with the batch size. We
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consider a range of λ values [0.01, 0.02, 0.04, 0.08, 0.16].

In Figure 2(a), we compare batch-normalized ResNets to
NF-ResNets with and without AGC. We show test accuracy
at the best clipping threshold λ for each batch size. We find
that AGC helps scale NF-ResNets to large batch sizes while
maintaining performance comparable or better than batch-
normalized networks on both ResNet50 and ResNet200. As
anticipated, the benefits of using AGC are smaller when the
batch size is small. In Figure 2(b), we show performance
for different clipping thresholds λ across a range of batch
sizes on ResNet50. We see that smaller (stronger) clipping
thresholds are necessary for stability at higher batch sizes.
We provide additional ablation details in Appendix D.

Next, we study whether or not AGC is beneficial for all
layers. Using batch size 4096 and a clipping threshold
λ = 0.01, we remove AGC from different combinations of
the first convolution, the final linear layer, and every block
in any given set of the residual stages. For example, one
experiment may remove clipping in the linear layer and all
the blocks in the second and fourth stages. Two key trends
emerge: first, it is always better to not clip the final linear
layer. Second, it is often possible to train stably without
clipping the initial convolution, but the weights of all four
stages must be clipped to achieve stability when training at
batch size 4096 with the default learning rate of 1.6. For
the rest of this paper (and for our ablations in Figure 2), we
apply AGC to every layer except for the final linear layer.

5. Normalizer-Free Architectures with
Improved Accuracy and Training Speed

In the previous section we introduced AGC, a gradient clip-
ping method which allows us to train efficiently with large
batch sizes and strong data augmentations. Equipped with
this technique, we now seek to design Normalizer-Free ar-
chitectures with state-of-the-art accuracy and training speed.

The current state of the art on image classification is gener-
ally held by the EfficientNet family of models (Tan & Le,
2019), which are based on a variant of inverted bottleneck
blocks (Sandler et al., 2018) with a backbone and model scal-
ing strategy derived from neural architecture search. These
models are optimized to maximize test accuracy while mini-
mizing parameter and FLOP counts, but their low theoretical
compute complexity does not translate into improved train-
ing speed on modern accelerators. Despite having 10x fewer
FLOPS than a ResNet-50, an EffNet-B0 has similar training
latency and final performance when trained on GPU or TPU.

The choice of which metric to optimize– theoretical FLOPS,
inference latency on a target device, or training latency on an
accelerator–is a matter of preference, and the nature of each
metric will yield different design requirements. In this work
we choose to focus on manually designing models which

Figure 3. Summary of NFNet bottleneck block design and archi-
tectural differences. See Figure 5 in Appendix C for more details.

Table 1. NFNet family depths, drop rates, and input resolutions.

Variant Depth Dropout Train Test

F0 [1, 2, 6, 3] 0.2 192px 256px
F1 [2, 4, 12, 6] 0.3 224px 320px
F2 [3, 6, 18, 9] 0.4 256px 352px
F3 [4, 8, 24, 12] 0.4 320px 416px
F4 [5, 10, 30, 15] 0.5 384px 512px
F5 [6, 12, 36, 18] 0.5 416px 544px
F6 [7, 14, 42, 21] 0.5 448px 576px

are optimized for training latency on existing accelerators,
as in Radosavovic et al. (2020). It is possible that future
accelerators may be able to take full advantage of the poten-
tial training speed that largely goes unrealized with models
like EfficientNets, so we believe this direction should not
be ignored (Hooker, 2020), however we anticipate that de-
veloping models with improved training speed on current
hardware will be beneficial for accelerating research. We
note that accelerators like GPU and TPU tend to favor dense
computation, and while there are differences between these
two platforms, they have enough in common that models
designed for one device are likely to train fast on the other.

We therefore explore the space of model design by manu-
ally searching for design trends which yield improvements
to the pareto front of holdout top-1 on ImageNet against
actual training latency on device. This section describes the
changes which we found to work well to this end (with more
details in Appendix C), while the ideas which we found to
work poorly are described in Appendix E. A summary of
these modifications is presented in Figure 3, and the effect
they have on holdout accuracy is presented in Table 2.

We begin with an SE-ResNeXt-D model (Xie et al., 2017;
Hu et al., 2018; He et al., 2019) with GELU activations
(Hendrycks & Gimpel, 2016), which we found to be a sur-
prisingly strong baseline for Normalizer-Free Networks. We
make the following changes. First, we set the group width
(the number of channels each output unit is connected to) in
the 3× 3 convs to 128, regardless of block width. Smaller
group widths reduce theoretical FLOPS, but the reduction in
compute density means that on many modern accelerators
no actual speedup is realized. On TPUv3 for example, an
SE-ResNeXt-50 with a group width of 8 trains at the same
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Table 2. The effect of architectural modifications and data augmen-
tation on ImageNet Top-1 accuracy (averaged over 3 seeds).

F0 F1 F2 F3

Baseline 80.4 81.7 82.0 82.3
+ Modified Width 80.9 81.8 82.0 82.3
+ Second Conv 81.3 82.2 82.4 82.7
+ MixUp 82.2 82.9 83.1 83.5
+ RandAugment 83.2 84.6 84.8 85.0
+ CutMix 83.6 84.7 85.1 85.7
Default Width + Augs 83.1 84.5 85.0 85.5

speed as an SE-ResNeXt-50 with a group width of 128 un-
less the per-device batch size is 128 or larger (Google, 2021),
which is often not realizable due to memory constraints.

Next, we make two changes to the model backbone. First,
we note that the default depth scaling pattern for ResNets
(e.g., the method by which one increases depth to construct
a ResNet101 or ResNet200 from a ResNet50) involves non-
uniformly increasing the number of layers in the second
and third stages, while maintaining 3 blocks in the first and
fourth stages, where ‘stage’ refers to a sequence of residual
blocks whose activations are the same width and have the
same resolution. We find that this strategy is suboptimal.
Layers in early stages operate at higher resolution, require
more memory and compute, and tend to learn localized, task-
general features (Krizhevsky et al., 2012), while layers in
later stages operate at lower resolutions, contain most of the
model’s parameters, and learn more task-specific features
(Raghu et al., 2017a). However, being overly parsimonious
with early stages (such as through aggressive downsam-
pling) can hurt performance, since the model needs enough
capacity to extract good local features (Raghu et al., 2017b).
It is also desirable to have a simple scaling rule for construct-
ing deeper variants (Tan & Le, 2019). With these principles
in mind, we explored several choices of backbone for our
smallest model variant, named F0, before settling on the
simple pattern [1, 2, 6, 3] (indicating how many bottleneck
blocks to allocate to each stage). We construct deeper vari-
ants by multiplying the depth of each stage by a scalarN , so
that, for example, variant F1 has a depth pattern [2, 4, 12, 6],
and variant F4 has a depth pattern [5, 10, 30, 15].

In addition, we reconsider the default width pattern in
ResNets, where the first stage has 256 channels which are
doubled at each subsequent stage, resulting in a pattern
[256, 512, 1024, 2048]. Employing our depth patterns de-
scribed above, we considered a range of alternative pat-
terns (taking inspiration from Radosavovic et al. (2020))
but found that only one choice was better than this default:
[256, 512, 1536, 1536]. This width pattern is designed to
increase capacity in the third stage while slightly reducing
capacity in the fourth stage, roughly preserving training

speed. Consistent with our chosen depth pattern and the
default design of ResNets, we find that the third stage tends
to be the best place to add capacity, which we hypothesize is
due to this stage being deep enough to have a large receptive
field and access to deeper levels of the feature hierarchy,
while having a slightly higher resolution than the final stage.

We also consider the structure of the bottleneck residual
block itself. We considered a variety of pre-existing and
novel modifications (see Appendix E) but found that the best
improvement came from adding an additional 3×3 grouped
conv after the first (with accompanying nonlinearity). This
additional convolution minimally impacts FLOPS and has
almost no impact on training time on our target accelerators.

Finally, we establish a scaling strategy to produce model
variants at different compute budgets. The EfficientNet scal-
ing strategy (Tan & Le, 2019) is to jointly scale model width,
depth, and input resolution, which works extremely well
for base models with very slim MobileNet-like backbones.
However we find that width scaling is ineffective for ResNet
backbones, consistent with Bello (2021), who attain strong
performance when only scaling depth and input resolution.
We therefore also adopt the latter strategy, using the fixed
width pattern mentioned above, scaling depth as described
above, and scaling training resolution such that each vari-
ant is approximately half as fast to train as its predecessor.
Following Touvron et al. (2019), we evaluate images at infer-
ence at a slightly higher resolution than we train at, chosen
for each variant as approximately 33% larger than the train
resolution. We do not fine-tune at this higher resolution.

We also find that it is helpful to increase the regularization
strength as the model capacity rises. However modifying the
weight decay or stochastic depth rate was not effective, and
instead we scale the drop rate of Dropout (Srivastava et al.,
2014), following Tan & Le (2019). This step is particularly
important as our models lack the implicit regularization
of batch normalization, and without explicit regularization
tend to dramatically overfit. Our resulting models are highly
performant and, despite being optimized for training latency,
remain competitive with larger EfficientNet variants in terms
of FLOPs vs accuracy (although not in terms of parameters
vs accuracy), as shown in Figure 4 in Appendix A.

5.1. Summary

Our training recipe can be summarized as follows: First,
apply the Normalizer-Free setup of Brock et al. (2021) to
an SE-ResNeXt-D, with modified width and depth patterns,
and a second spatial convolution. Second, apply AGC to
every parameter except for the linear weight of the classifier
layer. For batch size 1024 to 4096, set λ = 0.01, and make
use of strong regularization and data augmentation. See
Table 1 for additional information on each model variant.
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6. Experiments
6.1. Evaluating NFNets on ImageNet

We now turn our attention to evaluating our NFNet models
on ImageNet, beginning with an ablation of our architectural
modifications when training for 360 epochs at batch size
4096. We use Nesterov’s Momentum with a momentum
coefficient of 0.9, AGC as described in Section 4 with a
clipping threshold of 0.01, and a learning rate which linearly
increases from 0 to 1.6 over 5 epochs, before decaying to
zero with cosine annealing (Loshchilov & Hutter, 2017).
From the first three rows of Table 2, we can see that the
two changes we make to the model each result in slight
improvements to performance with only minor changes in
training latency (See Table 7 in the Appendix for latencies).

Next, we evaluate the effects of progressively adding
stronger augmentations, combining MixUp (Zhang et al.,
2017), RandAugment (RA, (Cubuk et al., 2020)) and Cut-
Mix (Yun et al., 2019). We apply RA with 4 layers and scale
the magnitude with the resolution of the images, following
Cubuk et al. (2020). We find that this scaling is particularly
important, as if the magnitude is set too high relative to the
image size (for example, using a magnitude of 20 on images
of resolution 224) then most of the augmented images will
be completely blank. See Appendix A for a complete de-
scription of these magnitudes and how they are selected. We
show in Table 2 that these data augmentations substantially
improve performance. Finally, in the last row of Table 2,
we additionally present the performance of our full model
ablated to use the default ResNet stage widths, demonstrat-
ing that our slightly modified pattern in the third and fourth
stages does yield improvements under direct comparison.

For completeness, in Table 7 of the Appendix we also report
the performance of our model architectures when trained
with batch normalization instead of the NF strategy. These
models achieve slightly lower test accuracies than their NF
counterparts and they are between 20% and 40% slower to
train, even when using highly optimized batch normaliza-
tion implementations without cross-replica syncing. Fur-
thermore, we found that the larger model variants F4 and F5
were not stable when training with batch normalization, with
or without AGC. We attribute this to the necessity of using
bfloat16 training to fit these larger models in memory, which
may introduce numerical imprecision that interacts poorly
with the computation of batch normalization statistics.

We provide a detailed summary of the size, training latency
(on TPUv3 and V100 with tensorcores), and ImageNet vali-
dation accuracy of six model variants, NFNet-F0 through
F5, along with comparisons to other models with similar
training latencies, in Table 3. Our NFNet-F5 model attains a
top-1 validation accuracy of 86.0%, improving over the pre-
vious state of the art, EfficientNet-B8 with MaxUp (Gong

et al., 2020) by a small margin, and our NFNet-F1 model
matches the 84.7% of EfficientNet-B7 with RA (Cubuk
et al., 2020), while being 8.7 times faster to train. See
Appendix A for details of how we measure training latency.

Our models also benefit from the recently proposed
Sharpness-Aware Minimization (SAM, (Foret et al., 2021)).
SAM is not part of our standard training pipeline, as by
default it doubles the training time and typically can only
be used for distributed training. However we make a small
modification to the SAM procedure to reduce this cost to 20-
40% increased training time (explained in Appendix A) and
employ it to train our two largest model variants, resulting
in an NFNet-F5 that attains 86.3% top-1, and an NFNet-F6
that attains 86.5% top-1, substantially improving over the
existing state of the art on ImageNet without extra data.

Finally, we also evaluated the performance of our data aug-
mentation strategy on EfficientNets. We find that while RA
strongly improves EfficientNets’ performance over base-
line augmentation, increasing the number of layers beyond
2 or adding MixUp and CutMix does not further improve
their performance, suggesting that our performance improve-
ments are difficult to obtain by simply using stronger data
augmentations. We also find that using SGD with cosine
annealing instead of RMSProp (Tieleman & Hinton, 2012)
with step decay severely degrades EfficientNet performance,
indicating that our performance improvements are also not
simply due to the selection of a different optimizer.

6.2. Evaluating NFNets under Transfer

Unnormalized networks do not share the implicit regular-
ization effect of batch normalization, and on datasets like
ImageNet (Russakovsky et al., 2015) they tend to overfit un-
less explicitly regularized (Zhang et al., 2019a; De & Smith,
2020; Brock et al., 2021). However when pre-training on
extremely large scale datasets, such regularization may not
only be unnecessary, but also harmful to performance, re-
ducing the model’s ability to devote its full capacity to the
training set. We hypothesize that this may make Normalizer-
Free networks naturally better suited to transfer learning
after large-scale pre-training, and investigate this via pre-
training on a large dataset of 300 million labeled images.

We pre-train a range of batch normalized and NF-ResNets
for 10 epochs on this large dataset, then fine-tune all layers
on ImageNet simultaneously, using a batch size of 2048 and
a small learning rate of 0.1 with cosine annealing for 15,000
steps, for input image resolutions in the range [224, 320,
384]. As shown in Table 4, Normalizer-Free networks out-
perform their Batch-Normalized counterparts in every single
case, typically by a margin of around 1% absolute top-1.
This suggests that in the transfer learning regime, removing
batch normalization can directly benefit final performance.
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Table 3. ImageNet Accuracy comparison for NFNets and a representative set of models, including SENet (Hu et al., 2018), LambdaNet,
(Bello, 2021), BoTNet (Srinivas et al., 2021), and DeIT (Touvron et al., 2020). Except for results using SAM, our results are averaged over
three random seeds. Latencies are given as the time in milliseconds required to perform a single full training step on TPU or GPU (V100).

Model #FLOPs #Params Top-1 Top-5 TPUv3 Train GPU Train

ResNet-50 4.10B 26.0M 78.6 94.3 41.6ms 35.3ms
EffNet-B0 0.39B 5.3M 77.1 93.3 51.1ms 44.8ms
SENet-50 4.09B 28.0M 79.4 94.6 64.3ms 59.4ms
NFNet-F0 12.38B 71.5M 83.6 96.8 73.3ms 56.7ms

EffNet-B3 1.80B 12.0M 81.6 95.7 129.5ms 116.6ms
LambdaNet-152 − 51.5M 83.0 96.3 138.3ms 135.2ms
SENet-152 19.04B 66.6M 83.1 96.4 149.9ms 151.2ms
BoTNet-110 10.90B 54.7M 82.8 96.3 181.3ms −
NFNet-F1 35.54B 132.6M 84.7 97.1 158.5ms 133.9ms

EffNet-B4 4.20B 19.0M 82.9 96.4 245.9ms 221.6ms
BoTNet-128-T5 19.30B 75.1M 83.5 96.5 355.2ms −
NFNet-F2 62.59B 193.8M 85.1 97.3 295.8ms 226.3ms

SENet-350 52.90B 115.2M 83.8 96.6 593.6ms −
EffNet-B5 9.90B 30.0M 83.7 96.7 450.5ms 458.9ms
LambdaNet-350 − 105.8M 84.5 97.0 471.4ms −
BoTNet-77-T6 23.30B 53.9M 84.0 96.7 578.1ms −
NFNet-F3 114.76B 254.9M 85.7 97.5 532.2ms 524.5ms

LambdaNet-420 − 124.8M 84.8 97.0 593.9ms −
EffNet-B6 19.00B 43.0M 84.0 96.8 775.7ms 868.2ms
BoTNet-128-T7 45.80B 75.1M 84.7 97.0 804.5ms −
NFNet-F4 215.24B 316.1M 85.9 97.6 1033.3ms 1190.6ms

EffNet-B7 37.00B 66.0M 84.7 97.0 1397.0ms 1753.3ms
DeIT 1000 epochs − 87.0M 85.2 − − −
EffNet-B8+MaxUp 62.50B 87.4M 85.8 − − −
NFNet-F5 289.76B 377.2M 86.0 97.6 1398.5ms 2177.1ms

NFNet-F5+SAM 289.76B 377.2M 86.3 97.9 1958.0ms −
NFNet-F6+SAM 377.28B 438.4M 86.5 97.9 2774.1ms −

We perform this same experiment using our NFNet models,
pre-training an NFNet-F4 and a slightly wider variant which
we denote NFNet-F4+ (see Appendix C). As shown in Ta-
ble 6 of the appendix, with 20 epochs of pre-training our
NFNet-F4+ attains an ImageNet top-1 accuracy of 89.2%.
This is the second highest validation accuracy achieved to
date with extra training data, second only to a strong recent
semi-supervised learning baseline (Pham et al., 2020), and
the highest accuracy achieved using transfer learning.

6.3. Evaluating NFNets as Object Detection Backbones

Finally, we perform experiments to assess the viability of
NFNets as backbones for object detection on COCO (Lin
et al., 2014). We train models using Mask-RCNN (He et al.,
2017) and Feature Pyramid Networks, (Lin et al., 2017),

with training settings similar to Ghiasi et al. (2020), training
for 22500 steps using batch size 256, and report Box AP,
Mask AP, and training latency in Table 5. NFNets, with-
out any modification, can be successfully substituted into
this downstream task in place of batch-normalized ResNet
backbones.

Conclusion
We show for the first time that image recognition models,
trained without normalization layers, can not only match
the classification accuracies of the best batch normalized
models on large-scale datasets but also substantially exceed
them, while still being faster to train. To achieve this, we in-
troduce Adaptive Gradient Clipping, a simple clipping algo-
rithm which stabilizes large-batch training and enables us to
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Table 4. ImageNet Transfer Top-1 accuracy after pre-training.

224px 320px 384px

BN-ResNet-50 78.1 79.6 79.9
NF-ResNet-50 79.5 80.9 81.1

BN-ResNet-101 80.8 82.2 82.5
NF-ResNet-101 81.4 82.7 83.2

BN-ResNet-152 81.8 83.1 83.4
NF-ResNet-152 82.7 83.6 84.0

BN-ResNet-200 81.8 83.1 83.5
NF-ResNet-200 82.9 84.1 84.3

Table 5. COCO Detection Results with Mask-RCNN.

Model Box AP Mask AP Latency (ms)

ResNet-50 39.0 34.8 818.9
ResNet-101 42.9 37.7 883.8
NFNet-F0 46.7 40.9 968.5
NFNet-F1 48.1 41.7 1411.4

optimize unnormalized networks with strong data augmen-
tations. Leveraging this technique and simple architecture
design principles, we develop a family of models which at-
tain state-of-the-art performance on ImageNet without extra
data, while being substantially faster to train than competing
approaches. We also show that Normalizer-Free models are
better suited to fine-tuning after pre-training on very large
scale datasets than their batch-normalized counterparts.
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