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1. Analysis of Gradients
1.1. Problem Setup

In this section we analyse the effect of the accept/reject step on the gradients obtained through the reparameterization trick.
We will work on a generic form of the objective which can be written as

ExT [L(xT )] (1)

where xT ∈ Rn is the final sample from a T step HMC chain and L is some loss function. For the objective we propose,
L(xT ) would be log p∗(xT ). We are looking to differentiate this objective with respect to the step size at some layer k:
εk ∈ Rn, k ∈ [1, T ]. We will do this using the reparameterization trick. The primitive variables we will use for this are

x0 ∼ q0(x0) (2)
νt ∼ N (0, I) for t ∈ [0, T − 1] (3)
ut ∼ U(0, 1) for t ∈ [1, T ] (4)

For the analysis that follows we will assume all masses are unity and consider only the differentiation with respect to the
step sizes. All ideas easily transfer to the non-unity mass case. For the reparameterization trick, in order to exchange the
order of integration and differentiation, we need to make sure the mapping from the primitive variables to xT is smooth.
This is not the case with the accept/reject step, however, just for the purpose of this analysis we can approximate it with
a sigmoid, the approximation being improved as the sigmoid becomes sharper. Thus we can make inferences about the
gradient behaviour when we use the normal accept/reject step by examining the effect in the limit as the sigmoid becomes
infinitely sharp. Using this formulation, we will write the accept/reject step as

xt = x′tS(ut, p
(t)
MH) + xt−1(1− S(ut, p

(t)
MH)) (5)

where x′t is the proposed new state from the leapfrog operator applied for L steps,

x′t = LF (xt−1,νt−1, εt) (6)

p
(t)
MH is the Metropolis-Hastings acceptance ratio,

p
(t)
MH = min{1, exp(−H(x′t,ν

′
t) +H(xt−1,νt−1))} (7)

and S(ut, p
(t)
MH) is a sigmoid that will approximate the indicator function: I{ut < p

(t)
MH}.

S(ut, p
(t)
MH) =

1

1 + exp(−s(p(t)
MH − ut))

(8)
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s is a ‘sharpness’ parameter, as s → ∞ the sigmoid becomes a better and better approximation to the indicator function
centered on p(t)

MH .

1.2. Derivation of Gradient Estimator

We begin by taking gradients of the objective using the reparameterization trick

∂

∂εk
ExT [L(xT )] (9)

= Ex0,ν0:T−1,u1:T

[
∂

∂εk
L(xT )

]
(10)

= Ex0,ν0:T−1,u1:T

[
∂xT
∂εk

∂L(xT )

∂xT

]
(11)

We use ‘denominator layout’ for vector derivatives i.e. ∂xT∂εk
is a matrix with element ij corresponding to ∂(xT )j

∂(εk)i
.

To find ∂xT
∂εk

xT = x′TS(uT , p
(T )
MH) + xT−1(1− S(uT , p

(T )
MH)) (12)

∂xT
∂εk

=
∂x′T
∂εk

ST +
∂ST
∂p

(T )
MH

∂p
(T )
MH

∂εk
x′TT + (1− ST )

∂xT−1

∂εk
− ∂ST
∂p

(T )
MH

∂p
(T )
MH

∂εk
xTT−1 (13)

∂x′T
∂εk

=
∂xT−1

∂εk

∂LF (xT−1,νT−1, εT )

∂xT−1
+
∂LF (xT−1,νT−1, εT )

∂εk︸ ︷︷ ︸
zero if k 6=T

(14)

On the last line we have separated εk’s contributions to the gradient. The first is if εk affects xT−1 and the second is εk’s
effect on this current leapfrog step (only non-zero if k = T ). Substituting back in we get

∂xT
∂εk

=
∂xT−1

∂εk

[
∂LFT
∂xT−1

ST + I(1− ST )

]
+
∂LFT
∂εk

ST +
∂ST
∂p

(T )
MH

∂p
(T )
MH

∂εk
(x′TT − xTT−1) (15)

We can now recurse this equation. Define

αt =
∂LFt
∂xt−1

St + I(1− St) (16)

βt =
∂LFt
∂εk

St (βt = 0 for k 6= t) (17)

γt =
∂St
∂p

(t)
MH

∂p
(t)
MH

∂εk
(x′Tt − xTt−1) (18)

∂xT
∂εk

= βkαk+1 . . . αT +

T∑
t=k

γtαt+1 . . . αT (19)

where we slightly abuse notation and let αt+1 . . . αT = I when t = T . Substitute this back into the equation for the overall
gradient

Ex0,ν0:T−1,u1:T

[
(βkαk+1 . . . αT +

T∑
t=k

γtαt+1 . . . αT )
∂L(xT )

∂xT

]
(20)

= Ex0,ν0:T−1,u1:T

[
βkαk+1 . . . αT

∂L(xT )

∂xT

]
+

T∑
t=k

Ex0,ν0:T−1,u1:T

[
γtαt+1 . . . αT

∂L(xT )

∂xT

]
(21)
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Therefore, the true gradient estimator for a single sample is

βkαk+1 . . . αT
∂L(xT )

∂xT︸ ︷︷ ︸
autodiff term

+

T∑
t=k

γtαt+1 . . . αT
∂L(xT )

∂xT︸ ︷︷ ︸
bias term

(22)

The first term is the gradient estimator that is obtained from standard automatic differentiation which simply accumulates
gradients for leapfrog steps that are accepted. The second term is a bias term that is caused by the step size’s effect on the
acceptance probability. We now ask what is the behaviour of the bias term as s→∞.

1.3. Expected Value and Variance of Bias Term

First, we examine the expected value of the bias term. Picking out just one term of the summation,

Ex0,ν0:T−1,u1:T

[
γtαt+1 . . . αT

∂L(xT )

∂xT

]
(23)

= Ex0,ν0:T−1,u1:T

[
∂St
∂p

(t)
MH

∂p
(t)
MH

∂εk
(x′Tt − xTt−1)αt+1 . . . αT

∂L(xT )

∂xT

]
(24)

The problematic term is ∂St
∂p

(t)
MH

. As a function of ut, it becomes more and more peaked as s → ∞. However, the integral

with respect to ut is bounded:
∂St
∂p

(t)
MH

= s
exp(−s(p(t)

MH − ut))
(1 + exp(−s(p(t)

MH − ut)))2
(25)

∫ 1

0

s
exp(−s(p(t)

MH − ut))
(1 + exp(−s(p(t)

MH − ut)))2
dut (26)

The limits are taken to be [0, 1] because ut ∼ U(0, 1). Let y = exp(−s(p(t)
MH − ut))∫ exp(−s(p(t)MH−1))

exp(−sp(t)MH)

1

(1 + y)2
dy =

1

1 + exp(−sp(t)
MH)

− 1

1 + exp(−s(p(t)
MH − 1))

(27)

For 0 < p
(t)
MH < 1, as s→∞ the first fraction tends to 1 and the second tends to 0. We also know that ∂St

∂p
(t)
MH

as a function

of ut becomes more and more peaked around p(t)
MH . Therefore it acts more and more like δ(ut − p(t)

MH). Thus the bias
terms tend towards

Ex0,ν0:T−1,u1:T/t

[
∂p

(t)
MH

∂εk
(x′Tt − xTt−1)αt+1 . . . αT

∂L(xT )

∂xT

∣∣∣∣∣ut = p
(t)
MH

]
(28)

which is evidently non-zero (we have neglected the case where p(t)
MH = 1 but this simply introduces another non-zero term

which doesn’t change our conclusions).

We now examine the variance of the bias term.

V

[
T∑
t=k

γtαt+1 . . . αT
∂L(xT )

∂xT

]
=

T∑
t=k

V
[
γtαt+1 . . . αT

∂L(xT )

∂xT

]
+ cross terms (29)

V
[
γtαt+1 . . . αT

∂L(xT )

∂xT

]
= E

[
γtαt+1 . . . αT

∂L(xT )

∂xT

(
γtαt+1 . . . αT

∂L(xT )

∂xT

)T]
︸ ︷︷ ︸

a©

−µµT︸︷︷︸
finite

(30)
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a© = E

( ∂St
∂p

(t)
MH

)2
∂p

(t)
MH

∂εk
(x′Tt − xTt−1)αt+1 . . . αT

∂L
∂xT

(
∂L
∂xT

)T
αTT . . . α

T
t+1(x′t − xt−1)

(
∂p

(t)
MH

∂εk

)T (31)

This time we have to look at
(

∂St
∂p

(t)
MH

)2

. Again writing the integral,

∫ 1

0

(
s

exp(−s(p(t)
MH − ut))

(1 + exp(−s(p(t)
MH − ut)))2

)2

dut (32)

As before, let y = exp(−s(p(t)
MH − ut))∫ exp(−s(p(t)MH−1))

exp(−sp(t)MH)

s
y

(1 + y)4
dy = s

[(
−1

2

1

(1 + e−s(p
(t)
MH−1))2

+
1

3

1

(1 + e−s(p
(t)
MH−1))3

)
− (33)(

−1

2

1

(1 + e−sp
(t)
MH )2

+
1

3

1

(1 + e−sp
(t)
MH )3

)]
(34)

For 0 < p
(t)
MH < 1, as s→∞, this value tends towards s

6 giving infinite variance for this bias term in the limit.

From this analysis, we have found that the true gradient estimator can be split into a term that corresponds to a
standard application of automatic differentiation and a bias term originating from the dependence of the acceptance
probability on the hyperparameters. As the sigmoid is made sharper to better approximate the indicator function, the
bias term’s expected value does not vanish and furthermore it’s variance diverges. In this work, we wish to keep the
accept/reject step and so ignore the bias term in our calculations for the gradient. We have found good empirical success
making this approximation, the intuition being that the comparative magnitude of this bias is small in practice. We now
examine why this is the case.

1.4. Order of Magnitude Analysis

In equation (28) we found that the expected value of the tth bias term in the summation from equation (22) depends on the

value of ∂p
(t)
MH

∂εk
. Expanding this term

∂p
(t)
MH

∂εk
=

∂

∂εk

[
min{1, exp(−H(x′t,ν

′
t) +H(xt−1,νt−1))}

]
(35)

= −∂∆Ht

∂εk
exp(−∆Ht)I{exp(−∆Ht) < 1} (36)

where ∆Ht = H(x′t,ν
′
t) −H(xt−1,νt−1) is the error in the value of the Hamiltonian due to the leapfrog discretization.

Consider first the case when k = t. It is known that the Hamiltonian error for the leapfrog integrator has order ε3 (Neal,
2011) - ‘local error’ applies in this case as we have a fixed number of leapfrog steps as opposed to a fixed integration
time. The derivative ∂∆Hk

∂εk
will therefore have order ε2. For the case t > k, εk will affect the acceptance probability only

through its effect on xt−1,

∂p
(t)
MH

∂εk
= −∂xt−1

∂εk

∂∆Ht

∂xt−1
exp(−∆Ht)I{exp(−∆Ht) < 1} (37)

Therefore we only get the derivative ∂∆Ht
∂xt−1

which will have order ε3.

Comparing this to the ‘autodiff’ term in equation (22) used for optimization, we see the post multiplication by
αk+1 . . . αT

∂L(xT )
∂xT

is the same between the autodiff term and the kth bias term. The difference is introduced with βk,
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βk =
∂LFk
∂εk

Sk (38)

It is easy to see this will have order ε0. Examining just the final of L leapfrog steps

xL = xL−1 + νL− 1
2
◦ εk (39)

∂LFk
∂εk

=
∂xL
∂εk

=
∂xL−1

∂εk
+
∂νL− 1

2

∂εk
diag(εk) + diag(νL− 1

2
) (40)

We see we have already obtained a term independent of εk.

In summary, we have shown that the bias term for the true gradient estimator is of order ε2 whereas the ‘autodiff’ term has
order ε0. Since in practice we keep ε small to obtain high acceptance probabilities, the relative effect of ignoring the bias
term is small. We note here that it is useful to keep the accept/reject step even though most steps are accepted because in the
case we enter an unstable regime we would have no mechanism to reject a sample that is the result of divergent dynamics.
This could then throw off any sample based estimate involving this sample. Furthermore, without the accept/reject step,
we lose all ergodic guarantees, however, this is of less importance when we only consider short chains.

2. Auxiliary Optimization Objectives Details
2.1. α-divergence

The original α divergence estimator was proposed by Hernández-Lobato et al. (2016). To reduce the variance of the estima-
tor, we use a doubly reparameterized gradient estimator for the Monte-Carlo α-divergence objective (Tucker et al., 2019).
We derive the form of this estimator here. For an unnormalized target p∗(x) and approximation qφ(x), let wi = p∗(xi)

qφ(xi)

and x1:K ∼
∏
i pφ(xi) can be sampled using reparameterization trick: xi = x(εi;φ), then minimizing α-divergence is

equivalent to maximizing the following objective:

Lα = Ex1:K
[log

1

K

K∑
i=1

wαi ] = Eε1:K [log
1

K

K∑
i=1

wαi ] (41)

The gradient of Lα is

∇φEε1:K [log
1

K

K∑
i=1

wαi ] = Eε1:K [

K∑
i=1

1∑K
j=1 w

α
j

∇φwαi ]

= Eε1:K [

K∑
i=1

αwα−1
i∑K

j=1 w
α
j

∇φwi]

= Eε1:K [

K∑
i=1

αwα−1
i∑K

j=1 w
α
j

(∇xiwi∇φxi − wi∇φ log qφ(xi))]

= Eε1:K [

K∑
i=1

αwαi∑K
j=1 w

α
j

(∇xi logwi∇φxi −∇φ log qφ(xi))]

(42)
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Now we would like to rewrite the term Eε1:K [
∑K
i=1

αwαi∑K
j=1 w

α
j

∇φ log qφ(xi)], which can contribute significant variance to

the gradient estimator (Roeder et al., 2017), to a form with less variance.

Eε1:K [

K∑
i=1

αwαi∑K
j=1 w

α
j

∇φ log qφ(xi)] =

K∑
i=1

Eε1:K [
αwαi∑K
j=1 w

α
j

∇φ log qφ(xi)]

=

K∑
i=1

Ex1:K
[

αwαi∑K
j=1 w

α
j

∇φ log qφ(xi)]

= α

K∑
i=1

Ex−ixi [
wαi∑K
j=1 w

α
j

∇φ log qφ(xi)]

(43)

where x−i represents x1:i−1∪xi+1:K . The equation above can be rewritten by taking advantage of the equivalence between
the REINFORCE gradient and the reparameterization trick gradient (proved in (Tucker et al., 2019)):

Exi [
wαi∑K
j=1 w

α
j

∇φ log qφ(xi)] = Eεi [∇xi(
wαi∑K
j=1 w

α
j

)∇φxi]

= αEεi [(
wαi∑K
j=1 w

α
j

− w2α
i

(
∑K
j=1 w

α
j )2

)∇xi logwi∇φxi]
(44)

Plugging 44 into 42, we can get

∇φEε1:K [log
1

K

K∑
i=1

wαi ] = α

K∑
i=1

Eεi [(
wαi∑K
j=1 w

α
j

− α wαi

(
∑K
j=1 wj)

α
+ α

w2α
i

(
∑K
j=1 w

α
j )2

)∇xi logwi∇φxi]

= α

K∑
i=1

Eεi [((1− α)
wαi∑K
j=1 w

α
j

+ α(
wαi∑K
j=1 w

α
j

)2)∇xi logwi∇φxi]

(45)

Therefore, the gradient of DReG-Lα with respect to φ is

αEε1:K [

K∑
i=1

((1− α)
wαi∑K
j=1 w

α
j

+ α(
wαi∑K
j=1 w

α
j

)2)∇xi logwi∇φxi] (46)

Thus in Algorithm 1 in the main text, ∇ψDα(q
(0)
ψ (x) || p(x)) corresponds to the a sample based estimator of (46) with

wi = p∗(xi)

q
(0)
ψ (xi)

.

2.2. SKSD

This discrepancy metric is taken from recent work by Gong et al. (2021). In that work, they derive the following scalable
discrepancy metric

SKmax(q, p) =
∑
r∈Or

sup
gr

Eq(x)q(x′)[hp,r,gr (x,x
′)]

where

hp,r,g(x,y) =srp(x)krg(x
Tg,yTg)srp(y) + rTgsrp(y)∇xT gkrg(xTg,yTg)+

rTgsrp(x)∇yT gkrg(xTg,yTg) + (rTg)2∇2
xT g,yT gkrg(x

Tg,yTg)

srp(x) = (∇xlog p(x))Tr is the projection of the score using r ∈ Or a vector from an orthogonal basis (we use the
one-hot vectors) and krg(xTg,yTg) is some kernel operating on scalar values. They show that SKmax is equal to 0 if and
only if p = q almost everywhere (Corollary 3.1).
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For our experiments, we use a sample based estimate of this discrepancy. Using the notation from our main paper, the
estimator is

SKSD(x
(T )
1:N , score(x)) =

1

N(N − 1)

∑
r∈Or

∑
1≤i 6=j≤N

hp,r,gr (x
(T )
i , x

(T )
j )

To perform optimization over gr values, we again utilize SGD on this sample based estimator. We optimize gr jointly
with s, maximizing with respect to each gr vector and minimizing with respect to s.

For the kernel krg(xTg,yTg), we use the Radial Basis Function kernel.

krg(x
Tg,yTg) = exp

(
−|x

Tg − yTg|2

σ

)
The bandwidth σ is set to be the median squared pairwise distance calculated on a batch of xTg samples.

3. 2D Distributions Experiment
As described in the main text we use 30-step HMC chains to draw samples from the targets. The initial distribution
trained through α = {0, 1} divergence is trained to convergence. The HMC hyperparameters are tuned using the maxELT
objective. We apply 200 gradient updates using this objective for the Gaussian and Laplace targets and 500 for the others.

3.1. Baselines

The first baseline is taken from Hoffman (2017), where the step size in each dimension k is given by σkε0 with σk being
the standard deviation in dimension k, as estimated by a Gaussian fitted by minimizing the α = 0-divergence and ε0 being
adjusted as to control the minimum acceptance probability over a batch of parallel chains. In line with Hoffman (2017),
we set this minimum acceptance probability to 0.25.
The second baseline is the method from Ruiz and Titsias (2019), where the initial factorized Gaussian is tuned by minimiz-
ing a novel divergence metric which incorporates feedback from the final states of HMC, and the HMC step size in each
dimension is defined as in Hoffman (2017), but this time we adjust ε0 to ensure that the mean acceptance probability over
a batch of parallel chains is equal to 0.65.
The final baseline is the No-U-Turn Sampler (Hoffman and Gelman, 2014)1. We use the dual averaging variant of the
No-U-Turn Sampler, which includes a method for tuning the step size as to encourage an equivalent of the HMC average
acceptance probability towards a target δ ∈ (0, 1). We set δ = 0.2 in our experiments.

3.2. Equations for 2D targets

We list the probability density functions for all targets in Table 1.

3.3. Comparison between −Ep
[

log p∗(x)
]

and −E
q
(T )
φ

[
log p∗(x)

]
Here, we compare−Ep

[
log p∗(x)

]
with−E

q
(T )
φ

[
log p∗(x)

]
to quantify the mode seeking behaviour of the different meth-

ods. We display our results in Table 2. We see that the SKSD helps the method better match the ground truth and on some
distributions e.g. Gaussian, helps prevent−E

q
(T )
φ

[
log p∗(x)

]
from underestimating−Ep

[
log p∗(x)

]
. This may occur with

a narrow initial distribution (α = 0) because the optimization will encourage the chains to remain in the region of high log
target, artificially inflating the E

q
(T )
φ

[
log p∗(x)

]
value.

4. Sparse Signal Recovery Experiment
Here we cover in more detail the setup for the sparse signal recovery experiment. We repeat the overall description of the
model for ease of exposition. The aim is to recover the sparse signal w ∈ Rd from measurements y ∈ Rn where n < d.
The observation model is

y = Xw + e (47)
1We use the implementation from https://github.com/mfouesneau/NUTS in our experiments.

https://github.com/mfouesneau/NUTS
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Table 1. Unnormalized log densities for the 2D distributions used in the first experiment.
Name Unnormalized log density, log p∗(x)

Gaussian − 1
2

(
32
19x

2
1 − 60

19x1x2 + 40
19x

2
2

)
Laplace −|x1 − 5| − |x2 − 5|

Dual Moon −3.125
(√

x2
1 + x2

2 − 2
)2

+ log
[
exp

(
−0.5

(
x1+2
0.6

)2)
+ exp

(
−0.5

(
x1−2
0.6

)2)]
Mixture log

[∑7
i=1 exp

(
−0.5

[(
x1 − 5cos

(
2iπ
7

))2
+
(
x2 − 5sin

(
2iπ
7

))2])]

Wave 1
log

[
exp

(
−0.5

[
x2+sin(0.5πx1)

0.35

]2)
+

exp

(
−0.5

[
−x2−sin(0.5πx1)+3 exp(− 0.5

0.36 (x1−1)2)
0.35

]2
)]

Wave 2

log

[
exp

(
−0.5

[
x2+sin(0.5πx1)

0.4

]2)
+

exp

−0.5

[
−x2−sin(0.5πx1)+ 3

1+exp− x1−1
0.3

0.35

]2
]

Table 2. −E
q
(T )
φ

[
log p∗(x)

]
values for the baselines and the 4 variations of our method on each of the synthetic test distributions. The

ground truth value −Ep
[
log p∗(x)

]
is found using rejection sampling.

Gaussian Laplace Dual Moon Mixture Wave 1 Wave 2
Ground-truth 2.8083 2.0075 0.8511 0.9282 -0.1703 0.1483

α = 0 2.4911 1.9937 1.0315 0.9216 0.0463 0.1314
α = 1 2.7861 2.0431 2.9218 0.9197 -0.1050 0.6938

SKSD & α = 0 2.8390 2.0074 0.8439 0.9174 -0.1293 0.2500
SKSD & α = 1 2.8183 2.0281 0.7987 0.9198 -0.1814 1.2002
min p̄ = 0.25 3.0148 1.9140 4.1515 2.4894 1.4220 1.0397

Ruiz and Titsias 2.7993 2.0012 2.8102 0.9765 -0.0709 0.1661
NUTS 2.7862 1.9955 0.7828 0.9379 -0.1979 0.0911
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with a fixed measurement matrix X ∈ Rn×d (each row being a uniform sample from the unit hypersphere) and additive
Gaussian noise e ∈ Rn, e ∼ N (0, σ2

0I). For the Bayesian approach we also need a prior onw that expresses our knowledge
of the sparsity of w. We use the horseshoe prior for this which can be written as

p(w) =

d∏
i=1

∫
N (wi; 0, τ2λ2

i )C
+(λi; 0, 1)dλi

where C+(λi; 0, 1) = 2π−1(1 + λ2
i )
−1 is a positive Cauchy distribution. This involves an intractable integral and so we

are forced to sample from the joint posterior p(w, λ|y,X) keeping only the w samples in order to obtain samples from
p(w|y,X). Specifically, this means that for HMC the unnormalized posterior target we use is given by

p(w, λ|y,X) ∝ p(y|w, λ,X)p(w|λ)p(λ)

= N (y;Xw, σ2
0I)

d∏
i=1

N (wi; 0, τ2λ2
i )C

+(λi; 0, 1)

In our experiment, we used n = 6, d = 64, σ0 = 0.005, τ = 0.01. Note this means the HMC chains will be sampling from
a 2× 64 = 128 dimensional posterior. We used chain lengths of 20 accept/reject steps each consisting of 5 leapfrog steps.
We trained the chain using maxELT for 103 iterations with a batch size of 128 and learning rate 10−2. For evaluation we
draw an additional 1000 test observations i.e. we keep w the same but we create an extra 1000 rows of X and sample a
1000 dimensional noise vector to give 1000 more scalar observations. We then calculate the marginal likelihood of the test
observations using the posterior samples from HMC using

p(y∗|X∗, y,X) = Ep(w|y,X)

[
p(y∗|w,X∗)

]
The log marginal likelihood can be safely calculated from a batch of posterior samples using the ‘logsumexp’ numerically
safe function. We compared against three baselines in this experiment. The first two baselines are parallel samplers (like
our method) meaning independently for each sample, we first sample the initial distribution and then run 20 accept/reject
HMC steps. For the first of these, we set all masses to the same scalar value and all stepsizes to the same scalar value
and grid searched over the possible values of these two scalars. To assess the best combination in the grid, we created a
validation set of 1000 extra observations and picked the combination with the largest validation set marginal log likelihood.
For the second, we kept the masses constant (at the initialization point for maxELT) and trained a single scalar stepsize
that is used for all steps in the HMC chain such that the average acceptance probability was 0.65. The final sampler is
a sequential sampler meaning we first sample the initial distribution once and then run 5000 accept/reject burn in steps
before finally running 10000 accept/reject steps taking a sample from each of these 10000 steps. We use NUTS with dual
averaging for this sequential sampler as in the 2D distribution experiment. We set the dual averaging target to be δ = 0.5
which tunes the stepsizes during the initial 5000 step burn in phase.

5. Deep Latent Gaussian Model Experiment
5.1. Experimental Details

In these experiments, we set the dimension of the latent variable z to be 32. For our HMC variational distribution, q(T )
φ (z|x),

we set T = 30 and use 5 leapfrog updates. We only consider training the step sizes here and leave all masses at 1. As there
are multiple parameters being optimized jointly, we summarise the entire method in this section for clarity. The parameters
being optimized are: θ - the decoder neural network parameters, φ - the HMC step sizes (a total of 30 × 32 = 960 scalar
values), ψ - the encoder (q(0)

ψ (z|x)) neural network parameters and s - the scale factor used to scale samples from q
(0)
ψ (z|x).

There are then 4 optimization objectives:

L1 = E
q
(T )
φ (z|x)

[
log pθ(x, z)

]
maxELT objective (48)

L2 = SKSD
(
z

(T )
1:N , score(z)

)
SKSD between q(T )

φ (z|x) and pθ(z|x) (49)

L3 = E
q
(0)
ψ (z|x)

[
log pθ(x, z)− log q

(0)
ψ (z|x)

]
Standard ELBO (50)

L4 = E
z1:k∼q(0)ψ (z|x)

 k∑
i=1

(
ωi∑k
j=1 ω

j

)2

logωi

 , ωi =
pθ(x, z

i)

q
(0)
ψ (zi|x)

DReG IWAE objective (51)
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Using these 4 objectives, we then follow Algorithm 1 during training. In our experiments we set I1 = 105 and I2 = 5×104.
We have introduced pre-training steps before starting HMC optimization as these updates are very quick to do and make
sure the HMC optimization has a reasonable starting point. We see that when α = 0, we train ψ by maximising (50) which
is equivalent to minimising the α = 0 divergence with the target. When α = 1 we use (51) as the objective for ψ which
is the doubly reparameterized version of the IWAE objective (Tucker et al., 2019). This is equivalent to minimizing the
α = 1 divergence with the target, as shown by Hernández-Lobato (2016). For the case where we do not use the SKSD
then we simply omit s from our model and omit the updates to s from Algorithm 1. For the VAE and IWAE baselines we
simply run the pre-training steps for the full 1.5× 105 steps using the α = 0 or α = 1 updates respectively.

Algorithm 1 DLGM Training Algorithm

Input: Initial θ0, ψ0, φ0 and s0, number of iterations I1 and I2, data batch size N1, sample batch size N2

Define score(x) = stop gradient(∇zlog pθ(x, z))
# Pre-training steps
for i = 1 to I1 do

if α = 0 then
θi ← Adam update(θi−1,∇θi−1

L3, i)
ψi ← Adam update(ψi−1,∇ψi−1

L3, i)
else if α = 1 then
θi ← Adam update(θi−1,∇θi−1L4, i)
ψi ← Adam update(ψi−1,∇ψi−1

L4, i)
end if

end for
sI1−1 ← s0

φI1−1 ← φ0

# HMC-training steps
for i = I1 to I1 + I2 do
x← minibatch of size N1

for j = 1 to N1 do # These loops are vectorized in practice
µj ← mean of q(0)

ψi−1
(z|xj)

for k = 1 to N2 do
z

(0)
jk ∼ q

(0)
ψi−1

(z|xj)
z

(0)′

jk ← si−1(z
(0)
jk − µj) + µj

z
(T )
jk ← HMCφi−1

(z
(0)′

jk , score(xj))
end for

end for
θi ← Adam update(θi−1,∇θi−1L1, i)
φi ← Adam update(φi−1,∇φi−1L1, i)
si ← Adam update(si−1,∇si−1

L2, i)
if α = 0 then
ψi ← Adam update(ψi−1,∇ψi−1

L3, i)
else if α = 1 then
ψi ← Adam update(ψi−1,∇ψi−1L4, i)

end if
end for

5.2. Effectiveness of the Scaling

To demonstrate the scaling’s effectiveness, we run our optimization scheme on the MNIST dataset for a range of fixed scale
factors and then compute Ep(z|x)

[
log pθ(x, z)

]
− E

q
(T )
φ (z|x)

[
log pθ(x, z)

]
with samples from p(z|x) found through HAIS

(Sohl-Dickstein and Culpepper, 2012). The results for α = 0 and α = 1 are shown in Figure 1. For small scales, the metric
is negative implying q(T )

φ (z|x) is oversampling high probability regions of the target with a higher scale factor alleviating
this issue. Figure 1 also shows the scale found by SKSD training when this is included in the optimization run, we see it



A Gradient Based Strategy for Hamiltonian Monte Carlo Hyperparameter Optimization - Supplementary Material

1 2 4 8 16 32 64 128 256
Scale factor

−2

0

2

4

6

8

10

12

14

 p
(z|
x)
[lo

gp
(x
,z
)]
−
 q

T θ
(z|
x)
[lo

gp
(x
,z
)] θ=0

θ=1
SKSD scale θ=0
SKSD scale θ=1

Figure 1. Ep(z|x)
[
log pθ(x, z)

]
−E

q
(T )
φ

(z|x)

[
log pθ(x, z)

]
averaged over 200 randomly chosen MNIST test images for a range of fixed

scalings used during training. The ground truth posterior p(z|x) is estimated using 100 HAIS samples. The final scales found when
running the training with the SKSD are also plotted.

can find an appropriate scale factor that is large enough to prevent this pathology whilst also ensuring stable performance.

5.3. Deep Latent Gaussian Model paired t-tests

We carry out a paired t-test for each model pairing with the null hypothesis that the two population means of the log-
likelihoods log p(x) are equal. Log-likelihood values are paired between models by observed data point x. The p-values
for the tests on the MNIST dataset are given in Table 3 and the p-values for the Fashion MNIST dataset are given in Table
4. A 0 value represents that the p-value is numerically indistinguishable from 0. We use different letters to denote different
models: we denote VAE, DReG-IWAE, maxELT α = 0, maxELT α = 1, maxELT α = 0 SKSD , maxELT α = 1 SKSD,
(Hoffman, 2017), (Ruiz and Titsias, 2019), (Salimans et al., 2015) and (Caterini et al., 2018) with a, b, c, d, e, f , g, h, i
and j respectively.

Table 3. p-values for paired t-tests on test log-likelihood values on the MNIST dataset.
b c d e f g h

a 0 0 0 0 0 0 0
b - 4.93e-18 0 0 0 0 0
c - - 0 0 0 0 9.84e-252
d - - - 1.07e-115 1.50e-104 2.04e-173 0.7038
e - - - - 0.2405 1.45e-14 3.70e-108
f - - - - - 2.95e-19 3.27e-104
g - - - - - - 1.25e-179
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Table 4. p-values for paired t-tests on test log-likelihood values on the Fashion MNIST dataset.
b c d e f g h i j

a 0 0 0 0 0 0 0 0 0
b - 2.51e-22 1.25e-94 2.12e-205 0 4.54e-217 3.38e-36 3.33e-1 1.47e-9
c - - 6.46e-42 6.48e-124 0 5.90e-129 4.32e-114 4.87e-13 4.75e-5
d - - - 8.45e-28 1.05e-262 2.04e-40 8.11e-231 1.13e-64 2.50e-51
e - - - - 1.35e-135 4.81e-4 0 4.90e-138 3.49e-128
f - - - - - 1.27e-79 0 0 0
g - - - - - - 0 2.78e-158 4.04e-144
h - - - - - - - 1.06e-29 7.63e-58
i - - - - - - - - 1.31e-5

6. Molecular Configurations Sampling Experiments
6.1. Details about the setup

All the RNVP models we used as initial distributions have the same architecture. They consist of five coupling blocks
composed of two alternating coupling layers. The scale and shift within the coupling layers is given by fully connected
networks having three layers with 128 hidden units each. Before each coupling block, we applied activation normalization
(Kingma and Dhariwal, 2018). The models where trained for 30000 iterations with their respective objectives.

For use in scaling the initial distribution samples, we use an empirical estimate of the normalizing flow sample
mean using 105 samples. To calculate the SKSD metric, to save computation, we use fixed vectors for what (Gong et al.,
2021) refer to as gr instead of optimizing them. This was because we found gr ended up very close to one-hot vectors
during optimization anyway so this approximation does not make a large difference to the method.

Training the RNVP model with the α-divergence when α = 0 was achieved by using the reverse KL-divergence
as a training objective (Papamakarios et al., 2021; Hernández-Lobato et al., 2016).

As baselines for tuning HMC parameters we used a grid search as well as training the acceptance probability. For
the grid search, 25 different parameter settings were tested for each initial distribution. In each setting the step size and log
mass is held constant over all HMC layers but 5 different step size constants are tested in combination with 5 different log
mass constants giving 25 total combinations. The metric used to find the best combination was the median KL-divergence
over all 60 marginals computed using 104 samples against the 105 molecular dynamics training data. When training the
acceptance probability, the log mass was held at 0 for all layers and the step size was a constant for all layers with this step
size constant being adjusted so that the average acceptance probability was 0.65. The constant was updated each training
iteration with an update of the form εt+1 = εt − at(0.65 − pa), where pa is the average acceptance probability and at
being a parameter decreasing according to the Robbins-Monro conditions (Robbins and Monro, 1951).

When tuning the HMC hyperparameter with our method, i.e. maxELT and maxELT & SKSD, we did so by per-
forming 1000 iterations with the Adam optimizer.

When testing the models, the KL-divergences of the Ramachandran plots were computed from the histograms and
for the one-dimensional marignals they were obtained by first computing a kernel density estimate for each marginal
using a Gaussian kernel with bandwidth chosen using Scott’s rule and then finding the KL-divergence between the kernel
density estimates using numerical integration.

6.2. Coordinate groups and model comparison

The coordinate transformation, introduced in (Noé et al., 2019), which we used, splits the feature dimensions in four
different groups: 17 bond angles, 17 bond lengths, 17 dihedral angles, and 9 Cartesian coordinates, adding up to 60
dimensions in total. The different coordinate types are illustrated and explained in Figure 2. Due to their differing physical
meaning and relevance, they follow different distributions. For each group, three sample marginals are shown in Figure 3,
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Table 5. Mean of the KL-divergences of the one-dimensional marginals of the four models with respect to the ground truth for each of
the proposals. Bold values indicate that this model has the lowest average KL-divergence for the given proposal.

maxELT maxELT & SKSD Grid search pa = 0.65
α = 0 0.0494 0.0486 0.0498 0.0496
α = 1 0.0513 0.0460 0.0350 0.0345
ML 0.00520 0.00657 0.0121 0.0391

Table 6. Median of the KL-divergences of the one-dimensional marginals of the four models with respect to the ground truth for each of
the proposals. Bold values indicate that this model has the lowest median KL-divergence for the given proposal.

maxELT maxELT & SKSD Grid search pa = 0.65
α = 0 0.00156 0.00159 0.00166 0.00163
α = 1 0.00320 0.00152 0.00205 0.00197
ML 0.00136 0.00134 0.00139 0.00142

Figure 4, and Figure 5. We used the MacCallum lab’s implementation for our coordinate transform which can be found at
https://github.com/maccallumlab/BoltzmannGenerator.

A

B

C

Db

ψ

ϕ

x

z y

Figure 2. Illustration of molecular coordinates. The state of the molecule can be described through the Cartesian coordinates, i.e. x, y,
and z, of each of the four atoms A, B, C, and D. Alternatively, internal coordinates, i.e. bond lengths, bond angles, and dihedral angles,
can be used. Here, the bond length b is the distance between atom A and B, the bond angle ϕ is the angle between the bonds between
B and C as well as C and D, and the dihedral angle ψ is the angle between the plans spanned by A, B, and C as well as B, C, and D.
Combining Cartesian and internal coordinates is also possible, as (Noé et al., 2019) did.

The bond lengths and angles follow mostly unimodal, almost Gaussian, distributions which is due to the regular vibrations
of the atoms within the molecule. The dihedral angles can have multiple modes while the Cartesian coordinates are quite
irregular.

As evaluating the KL-divergences of low-dimensional distributions is much easier than approximating it for higher
dimensional distributions, we compare our models using the KL-divergences of the Ramachandran plots and all the
one-dimensional marginals. Ramachandran plots are an important tool to visualize how proteins fold locally and, hence,
their KL-divergence with respect to the ground truth, i.e. the test set determined through a MD simulation, is an important
performance measure. While the KL-divergences are given in the main paper, the respective plots are shown in Figure
6–8.

For the one-dimensional marginals, we computed the KL-divergences with respect to the ground truth. The result are 60
values which we compare to each other in two ways. First, we computed the mean and the median of the KL-divergences,
which are given in Table 5 and 6. In most cases, our methods, i.e. maxELT and maxELT & SKSD clearly outperform
the baselines. Second, we performed a paired one-sided Wilcoxon rank test for pairs of models to assess the statistical
significance of our results. The alternative hypothesis for this test is that one model has consistently lower KL-divergences
with respect to the ground truth than the other. The resulting p-values are listed in Table 7, 8, and 9. Overall, we see again
that our method of tuning HMC parameters, especially maxELT & SKSD, is competitive or outperforms the baselines, i.e.
the grid search and the training to get an average acceptance probability of 0.65.

https://github.com/maccallumlab/BoltzmannGenerator
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Figure 3. Sample distributions of marginals from the four coordinate groups. The graphs compare the ground truth with models having
a RNVP as initial distribution followed by 50 HMC steps. The RNVP was trained with the α = 0-divergence and the HMC parameters
were tuned with the indicated methods.
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Figure 4. Sample distributions of marginals from the four coordinate groups. The graphs compare the ground truth with models having
a RNVP as initial distribution followed by 50 HMC steps. The RNVP was trained with the α = 1-divergence and the HMC parameters
were tuned with the indicated methods.
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Figure 5. Sample distributions of marginals from the four coordinate groups. The graphs compare the ground truth with models having
a RNVP as initial distribution followed by 50 HMC steps. The RNVP was trained via maximum likelihood and the HMC parameters
were tuned with the indicated methods.
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(a) Ground truth (MD) (b) Proposal

(c) maxELT (d) maxELT & SKSD

(e) Acceptance probability (f) Grid search

Figure 6. Ramachandran plots of Alanine Dipeptide. (a) shows the ground truth determined with a MD simulation, (b) the proposal
trained with the α = 0-divergence, and (c)–(f) HMC models using the proposal from (b) which were tuned with different procedures.
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(a) Ground truth (MD) (b) Proposal

(c) maxELT (d) maxELT & SKSD

(e) Acceptance probability (f) Grid search

Figure 7. Ramachandran plots of Alanine Dipeptide. (a) shows the ground truth determined with a MD simulation, (b) the proposal
trained with the α = 1-divergence, and (c)–(f) HMC models using the proposal from (b) which were tuned with different procedures.
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(a) Ground truth (MD) (b) Proposal

(c) maxELT (d) maxELT & SKSD

(e) Acceptance probability (f) Grid search

Figure 8. Ramachandran plots of Alanine Dipeptide. (a) shows the ground truth determined with a MD simulation, (b) the proposal
trained with maximum likelihood, and (c)–(f) HMC models using the proposal from (b) which were tuned with different procedures.
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Table 7. P-values of the Wilcoxon test comparing models with initial distribution trained with α = 0-divergence. The alternative
hypothesis is that the model in the row has smaller KL-divergences of the marginals than the model in the column. The smaller the
p-value is, the more likely the alternative hypothesis is true.

maxELT maxELT & SKSD Grid search pa = 0.65
maxELT - 0.83 0.58 0.61
maxELT & SKSD 0.17 - 0.0030 0.39
Grid search 0.42 1.0 - 0.68
pa = 0.65 0.39 0.61 0.32 -

Table 8. P-values of the Wilcoxon test comparing models with initial distribution trained with α = 1-divergence. The alternative
hypothesis is that the model in the row has smaller KL-divergences of the marginals than the model in the column. The smaller the
p-value is, the more likely the alternative hypothesis is true.

maxELT maxELT & SKSD Grid search pa = 0.65
maxELT - 1.0 1.0 0.61
maxELT & SKSD 4.5e-4 - 0.0030 0.0040
Grid search 0.0041 1.0 - 0.72
pa = 0.65 0.0040 1.0 0.28 -

6.3. Scale progression during training

To improve the overlap of the initial distribution with the target, we scale the former and learn the scaling parameter
through the SKSD. Figure 9 shows the progression of the scale parameter during training for different initial distributions.
The distributions trained using the α-divergence with α = 0 tend to be mode seeking. Hence, we expect the scale to be
larger than 1 so the proposal covers the whole target distribution, and this is indeed the case. With α = 2 the distribution
tends to be mode covering, so it needs to be shrunken. The model trained with maximum likelihood already has a low
KL-divergence (see e.g. Figure 6 in the main text) so there is not much modification needed, i.e. the scale is close to 1.

Table 9. P-values of the Wilcoxon test comparing models with initial distribution trained with maximum likelihood. The alternative
hypothesis is that the model in the row has smaller KL-divergences of the marginals than the model in the column. The smaller the
p-value is, the more likely the alternative hypothesis is true.

maxELT maxELT & SKSD Grid search pa = 0.65
maxELT - 0.94 0.41 0.30
maxELT & SKSD 0.058 - 0.010 5.1e-5
Grid search 0.59 0.99 - 0.0074
pa = 0.65 0.70 1.0 0.99 -
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Figure 9. Progression of scale factor for maxELT & SKSD models during training. RNVP models trained by maximum likelihood and
the α-divergence with α = 0, 1, 2 was used as initial distribution.
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