Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections
SUPPLEMENTARY DOCUMENT

The supplementary document is organised as follows.

1. The supplementary document begins first with a presentation of additional experiments that are referenced directly in
the main text (Section A).

2. We then cover the cost-functions used to train neural networks in Section B; and give an overview in Section C of the
other potential sources of the implicit effect gradient noise skew which we explored.

3. In Section D, we provide an overview of the assumptions we will be making in our analysis. We then describe in
Section E the numerical method we use to approximate the drift term b(w, a, 8) defined in (4.7).

4. We end with metastability analysis of asymmetric stable processes (Section F); followed by the technical proofs of

the lemmas, theorems, and corollaries that we present in the main body and the supplementary document of the paper
(Section G).

Before beginning the supplementary document we make a quick note of network architectures and training hyper-
parameters.

Network Architectures Networks were trained using stochastic gradient descent with a learning rate of 0.0003 and batch
sizes specified in text. MLP network architectures are specified in text. Convolutional (CONV) networks are 2 hidden layer
networks. The first layer has 32 filters, a kernel size of 4, and a stride length of 2. The second layer has 128 filters, a kernel
size of 4, and a stride length of 2. The final output layer is a dense layer.

A. Additional Experimental Results
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Figure A.1. We measure the skewness and kurtosis at initialisation of, the noise accumulated on network activations at each layer ¢ for
a 4-layer 256-unit wide MLP trained to regress the function A(x) =  sin@mgix + @(7)) withg ! (5,10,...,4550), x ! Rand
experiencing additive-GNIs. We plot the probability density function of positive samples, comparing against half-normal (non-heavy-
tailed) and half-Cauchy (heavy-tailed) distributions, where E (X; w,!) is defined in (2.9). Each blue point represents the noise on an
individual activation in a layer % for a point X. This noise is Gaussian (low skew and kurtosis) with a p.d.f. that tracks that of a half-normal.



Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections

10 ve » 10 10
10 ) -1
Lol NG 107 1
B 10-3 10 [ N, TTe==s
10 107 -3
- » 10
- e 10 10 0°
‘] _, Skew=-0.00 _; skew=0.03 skew =0.00 skew = 0.00 5 skew=-0.02
10 kurt= —0.02 10 kurt=7.59 10 kurt=4.86 10 kurt =5.05 10 kurt=4.78
—— halfnorm . 107 — halfnorm —— halfnorm T halfnorm , — halfnorm
s -
1o~ halfeauchy _11  —-—- halfcauchy 10 — == halfcauchy — == halfcauchy 10 — =~ halfcauchy
data 10 data data 10 . data data
0 2 4 0 5 10 0 5 0 5 10 0.0 25 5.0 7.5
Eo(x; W, €) &1(%; W, €) &(X; W, €) &(%; W, €) E4(X; W, €)

Figure A.2. Here we show the same plots as in Figure A.1 but for multiplicative-GNIs. The forward pass here experiences symmetric
heavy-tailed noise for all layers past the data layer.
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Figure A.3. Here we show the same plots as in Figure 2 but for multiplicative-GNIs. The gradient noise is skewed and heavy-tailed, with a
p-d.f. that is more Cauchy-like than Gaussian. The kurtosis decays as the gradients approach the input layer, as predicted by Theorem 3.1.
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Figure A.4. We model # E| (§ as being drawn from some Q-stable distribution S; and estimate the tail-index o and skewness 8 using
maximum likelihood estimation as in Nolan (2001). We plot the results as a scatter for a batch of size B = 512 for CIFAR10 and SVHN
and B = 32 for Boston House Prices. Additive (+) and multiplicative (" ) GNIs have 62 = 0.1.
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B. Cost Functions
B.1. Mean Square Error
In the case of regression the most commonly used loss is the mean-square error.

L(x,y) = (y! hy(x))*.

B.2. Cross Entropy Loss

In the case of classification, we use the cross-entropy loss. If we consider our network outputs h to be the pre-softmax of
logits of the final layer then the loss is for a data-label pair (x,y)

1C

L(x,y) =" . v log (softmax(hy (x))c) , (B.1)
c=0

where c indexes over the C' possible classes of the classification problem.

C. Other Potential Sources of the Skewness in the Gradient Noise

The product of correlated random variables can be skewed (Oliveira et al., 2016; Nadarajah & Pogany, 2016). Our first
hypothesis was that the skew came from the correlation of (OE (§/0h™ ) and (Oh™ /OW,); ). As a test, Figure C.5 of the
Appendix reproduces Figure 2 with linear , isolating gradient correlation as a potential source of skew. Gradients are not
skewed, demonstrating that the asymmetry stems from non-linear k.

8 . skew= —0.03 10 skew=0.01 107" 1o skew=0.02
10 kurt=3.75 107 kurt=4.31 kurt=4.23 kurt=4.47
-15

- 10 -17
10°  —— halfnorm 107  — halfnorm —— halfnorm fo —— halfnorm

1 halfcauchy L halfcauchy 107" halfcauchy 1072 halfcauchy
10 . data 10 +  data data data

0.0 25 5.0 75 0 5 10 0 5 10 0 5 10
E.(D; w, €)/0W JE.(D; w, €)/0W OE.(D; w, €)/oW3 OE(D; w, €)/oW 4

Figure C.5. Here we reproduce Figure 2 but with no non-linearities. This gradient noise is clearly heavy-tailed but not skewed.

D. Overview of the Assumptions

Due to space limitations and to avoid obscuring the main take home messages of our theoretical results, we did not present
the two assumption required for Theorem 4.2. These two assumptions are properly presented in their respective sections
(Sections E and G.6), where we first provide the required technical context for defining them in each section. In this section,
we will shortly discuss the semantics of these assumptions from a higher-level perspective for the convenience of the
reader.

¥ Assumption E.1. This assumption is essentially an assumption of the tails of the function d¢, with o(w) = ' ),
In particular, in order to make our approximation scheme (to the fractional derivatives) convergent, this assumption
makes sure that outside of a compact region, the function dy exponentially decays.

¥ Assumption G.1. This assumption enforces a certain structure on the Euler-Maruyama discretisation given in Section 4:

~ ~ ~ i "
Wn+1 = Wp + Jn+1 bh,K (Wn y Oy 9) + €M ALn'#il :

As a first condition, we make sure that the step-sizes are decreasing while their sum is diverging, which is a standard
assumption. The second condition is essentially a Lyapunov condition that requires the modified drift b behaves well,
so that we can control the weak error of the sample averages by using (Panloup, 2008). The final condition is similar to
the second condition in nature, and requires ergodicity of an SDE defined through the approximate drift by k , in order
to enable us link the weak error to the error induced by the approximation scheme used for the fractional derivatives.
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E. Fractional Differentiation and the Approximation Scheme
In this section, we provide the details of the Riesz-Feller type fractional derivative D" , whose definition was omitted

in the main document for clarity. We then present the details of the approximation method for the drift term b(w, «, 6)
defined in (4.7).

2,1 #

The building block of our analysis is a first-order approximation of D" 2! #9,, ¢ for any ¢ " L*(R) # C*(R). We
consider the one-dimensional case for simplicity since the Lévy motion we consider has independent coordinates, and the
multi-dimensional numerical approximation can be reduced to the one-dimensional case. Assume the tail index 1 < a < 2
and the skewness parameter satisfies ! 1 < 6 < 1.

When 6 = 0, Simgekli (2017) developed the numerical approximation method for the drift term b(w, «, 0) by approximately
computing the Riesz potential® D® via the fractional centred difference method provided by Ortigueira (2006); Ortiguera
(2006b). It is shown that for any ! 1 < vy < 0, we have the following numerical error,

" " #
"D p(w)! A dwp(w)" =0 h2+1/(hK)$,

ash$ 0,where K" N%{0} is the truncation parameter and O, o (w) satisfies some regularity conditions, and the operator
Aﬁ,K is given by

1K
AP fw)= = g f(w! Kh),

$
h k=1 K

for any test function f satisfying some regularity conditions, where

ok = (! D*R(y 1)
D 3 k+1T S4k+1

We study the numerical error when approximating the drift term b(w, v, §) with the skewness parameter ! 1 < 6 < 1 and

provide the truncation error with a truncation parameter K in Corollary E.1. Based on this result, Theorem 4.2 follows,

which quantifies the bias induced by a-stable noise on gradient updates using the Euler-Maruyama scheme.

Instead of using the centred difference method to implement the approximation for the # = 0 case, we tackle the more general
0 & 0 case by using shifted Griinwald-Letnikov difference operators to approach the left and right fractional derivative
respectively. Let us define the parameter ! 1 < v :=a! 2 < 0. Then, we can now formally define the Riesz-Feller type
fractional derivative operator as follows:

% | ! &
D$! #f(w) — m E)l | 9)| ! $f(w) + (1 + 9)| B $f(,w) \ (E.1)
with B
118 f(w) = w7 Jo® e, (E2)

L('y) o £+l

Before we proceed, we first introduce difference operators Aﬁ p and Bﬁ q» Where p and ¢ are two non-negative integers
chosen to be the shifted parameters,

AS,fw) =5 Gskflw! (K1 p)h), ©3)
k=0

By f(w) =5  dowf(w+ (k! q)h). (E.4)
k=0

Essentially, we defined a forward shifted difference operator Aﬁ'p to approximate the left fractional derivatives, and a

(! DRI $+k)

m are from the

backward shifted difference operator B:hr"p to approximate the right one. The coefficients gg x :=

3Note that when 8 =0, D" ' 2 = D'"' 20 recovers the Riesz potential.
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coefficients of of the power series (1! 2)® with! 1 <~y < 0Oand|z|" 1. For any negative fractional number ! 1 < v < 0
and |z| ' 1, we have

" ( )
(10 2= (1K %ka! Uk, (E.5)
k=0
. . . #l $+ k! ]_$ . . . . '
where the binomial coefficient K is well-defined and the binomial series converges for any complex number |z| ' 1;
see e.g. Kroneburg (2011). Indeed, when! 1 < v < 0, we get
(!'y+k! 1) _ I v+ k) (E.6)
k Lk+ 1) ~)° '

We first present the following first-order approximation result of the fractional derivative D®' #.

Theorem E.1. Ler D®' # denote the fractional derivative for!' 1 < v < 0 and! 1 < 6 < 1 as in (E.1). Suppose the
function f" L*(R)# C*(R). Define
1 +

Mg 1) = 5oy (1+OAR () + (11 0BL, f(w) - (E.7)

Then Aﬁ";; f(w) is an approximation of D®' * f (w) with the first-order accuracy:

D A fw)t AT )"

. +
n !77-[- " C

gl +10l(p+q! 7)+"tan —— "(p+q! v+|0|lp! I+ 2)

Ip! al +10l(p+4q! v) 5 gl v+ 1llpt al) i +2)

#
h+0 h%, (E.8)

as h'$ 0, uniformly for allw" R, where C > 0 is a constant that may depend on f and O(§ hides the dependence on p, q
and 7.

Next, we provide an error bound for numerically computing the drift term b(w, o, 6) by truncating the approximation series
in Theorem E.1 as follows. Let us first define the operators Aﬁ pk and Bﬁ QK

1 !X

Atk (@) =75 Gswf(w! (k! p)h), (E9)
k=0
I

BE k f(w) = s skf(wt (kL gh), (E.10)
k=0

with g = (KIS and K " N % {0},

Before we state the next result, let us first introduce the following assumption.

Assumption E.1. Suppose the function Oy " L*(R) # C*(R). In addition, there exist constants Cp, Cq > 0 satisfying
[Bwe(w!] kY p|h)|" C’pe” KEPIn | owe(w + k! glh)] C’qe” ktalh (E.11)

and min{| k! p|, |k! q|} > K for the constant K" N % {0}.

We have the following result.

Corollary E.1. Suppose Assumption E. 1 holds for Oy v, and recall the truncated series Aﬁ'p’K and Bﬁ'q’K with K " N%{0}
defined in (E.9) and (E.10). Let us also define the operator:
* +

1
(1! H)Bﬁyqu +(1+9)Aﬁ'pyK . (E.12)

hpak =9 cos(ym/2)
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Then the truncation error is bounded in first-order accuracy as follows,

"D #5, p(w) ! Aﬁ:;’jK Bwp(w)"
c R ¥
m p! gl +101(p+q! v)+"tan 5> "“(p+q! v+10llp! ql) h

+((140)Cp + (11 0)Cq) % + 0(h?), (E.13)

where C, Cp, Cq > 0 are constants that may depend on Oy and O(§ hides the dependence on p and q.

In particular, by taking p = ¢ = 0, Corollary E.1 implies that

D8 o)t ALY o Dl
C o :

' E’ 16] + “tan " B+ (L4 60)Cpmo + (1! )Ca) 57 +O(R2), (E.14)

S0 # _ A #
where Ay " = Ah,p:O =0 K -

Corollary E.1 implies that one can approximate D¥' # by the truncated Aﬁj,i # instead of Aﬁ’! # Based on this result, we
are able to quantify in Theorem 4.2 the bias induced when implementing Euler-Maruyama scheme to approximate the
expectation of a test function g with respect to the target distribution 7, where v(g) = g(w)w(dw).

F. Metastability Analysis

In this section, we will focus on the metastability properties of the process
dwy = (o f(w)dt +edL* . (F.1)

We will be interested in the first exit time, which is, roughly speaking, the expected time required for the process to exit a
neighborhood of a local minimum. We will summarise the related theoretical results, which show that the first exit time
behaviour of systems driven by asymmetric stable processes are similar to the ones of driven by symmetric stable processes.
This informally implies that the process will quickly escape from narrow minima regions and will spend more time (in fact
will get stuck) in wide minima regions. In this section, we make this argument rigorous.

For simplicity of the presentation, we consider the one-dimensional case where Lt’# is an asymmetric a-stable Lévy process
with Lévy measure

( )
1146 1+40 dy
I/(dy) = 5 Cr ].y< o+ TC" 1y> 0 W, (FZ)
where 0" (! 1,1)anda " (0,2) and ¢+ := m Then, the left and right tails of the Lévy measure are given
by
1146 "
H (1 u) = v(dy) = Cou' ",
L) 2
1+46 "
H: (u) := v(dy) = LC’" u
(u+") 2
— i
where C := 27T ")cos(%T 2)° and
H(u):=H (' u)+He(u)=Cvau' ", for any u > 0.

Let us assume that the function w )$ f(w) satisfies the following conditions:

Assumption E.1. (i) f"CY(R)#C3([! K, K]) for some K > 0;



Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections

(it) f has exactly n local minimam;, 1' i' nandn! 1local maxima si, 1' i' n! 1, enumerated in increasing order
with so = and sy, = +* :

¥ <mp <sp<mp<aa&sm 1 <mp<+*. (F.3)
All extrema of f are non-degenerate, i.e. 92 f(m;) >0,1"' i' n,and 92 f(s) <0,1' i' n! 1.
(iii) |Ow f(w)]| > c1|w|¥ 2 asw $£*  for some c1,cp > 0.
First, we consider the first exit time from a single well. For ¢ > 0 and v > 0, define
Q= [si1 1+ 265,51 2%, (F.4)

with the convention that Qf := (* | s1! 2c%]and O := [sn1 1 + 2%, +* ). The first exit time from the i-th well is
defined as

o' (e;0) ;= inf{t + 0w Y [sii 1+, 8! %1}, (E.5)
fort =1,...,n. Let us also define
- 1! nsi 1! omin 1 nsil min
Ny = Ll nsal i (1E0, st min (E6)
2 € 2 €

fori =1,...,n. We have the following first exit time result from Imkeller & Pavlyukevich (2008).

Proposition F.1 (Proposition 3.1. in (Imkeller & Pavlyukevich, 2008)). There exists o > O such that forany 0 < vy"' 7o,

i=1,2,...,n,
N (g;0)a' (:0) $ exp(1), in distributionas € $ 0, (F.7)
where exp(1) denotes the exponential distribution with mean 1, and
%. . &
}}#H(l) Ew N (g0)0'(g;0) =1, (F.8)
where the limit holds uniformly over w " Q.
The above result implies thatase $ 0,
% & 011
0, 110 w146 " "
Ew o' (g;0) , TC'" Isin 2! mi' +%C’-~ Isi ! mil g, (F9)

If [si ! mi| > |sii 1! mj], i.e. the i-th well is asymmetric and the local minimum m; is closer to the saddle point on
the left s, 1 than the saddle point on the right s;, then \'(g;6) < A (;0) and Ey [0 (¢;0)] > Ew[o' (£;0)] for positive
0 and X (;0) > N (£;0) and Ey[o' (¢;0)] < Ewl[o'(¢;0)] for negative 6. Similarly, if |s; ! mi| < |siy 1! mil, i.e.
the ¢-th well is asymmetric and the local minimum m; is closer to the saddle point on the right s; than the saddle point
on the left si; 1, then A (;60) > A (g;0) and Ey[c' (;0)] < Ewl[o' (;0)] for positive 6 and A (g;60) < M (g;0) and
Ewlo' (g;0)] > Ewlo' (¢;0)] for negative 6. The intuition is that when the well is asymmetric, the dynamics can exit the
well faster when there is a skewness 6 towards the the saddle point closer to the minimum of the well.

Next, we consider transitions between the wells. For any 0 < A < Ag := minigign{|mi ! sir 1],|mi! s} andw ™ R
denote B+ (w) :={v:|w! v|' A}. Define

7 (;0) :=1inf{t + 0 : wy " Yokesi B (mi)} . (F.10)
Then, we have the following result about transitions between the wells from Imkeller & Pavlyukevich (2008).
Proposition E.2 (Proposition 4.3. in (Imkeller & Pavlyukevich, 2008)). Forany 0 < A < Agand j & i
$_ g
— 4

#
Iljl;‘n%) PW Wei (1;#) B- (mJ) = 4 s (Fll)
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uniformly forw" B+ (mj), i =1,...,n, where
( ) "
110 1+6 , " e
gij = 5 Lj<i +72 Ljsi alsj! 1! mi|! !l s ! mill , 1& 7, (F.12)
I
: 11 0 . 140 .
Vagi =g = ¢ = 5 lsi 2! il + lsi ! mil' . (F.13)
 %i
From (F.11)-(F.13), we can compute that
2
—Sigllmill!” sj!mi|!!| . . .
Gij _ ilsioal mittH st ]! ity >, (F.14)
Qi - —Sigllmill!” sj!mil”| 1f<Z :
[siv 2! mil' '+ F=[sit mi|"! J ’

Therefore, gj /g is increasing in 6 for j > 7 and decreasing in 6 for j < 4. This is consistent with the intuition that when
6 > 0, it is more likely for the dynamics to transit to a well on the right side, and when 6 < 0, it is more likely for the
dynamics to transit to a well on the left side.

Next, we consider the following metastability result due to Theorem 1.1. in Imkeller & Pavlyukevich (2008). It describes
the metastability phenomenon, which basically says that there exists a time scale under which the system behaves like a
continuous time Markov process with a finite state space consisting of values in the set of stable attractors.

Theorem F.1 (Theorem 1.1. in (Imkeller & Pavlyukevich, 2008)). Ifwo = w " (si1 1, 8i) for some i =1,2,...,n, then
for any t > 0, in the sense of finite-dimensional distributions,

wyn an ) $ Yi(mi), ase$ 0, (F.15)

where wy is defined in (F.1) and H(1/e) = C+ €', where Y;(mj) that starts at m; is a continuous-time Markov process on a
finite states space {my, ..., mn} with the infinitesimal generator Q = (gj )i} =1 , where qj is defined in (F.12).

The Markov process Y; (m; ) admits a unique invariant distribution 7 satisfying QT = = 0. In the case of double well, i.e.
n = 2and m1 < s1 = 0 < my separated by a local maximum at s; = 0, where without loss of generality we assume that
mgp > |my], i.e. the second local minimum lies in a wider valley. A simple calculation yields that

146 1 1161

q12 = =!qi, and ¢ = 5 T =1 g2, (F.16)
my

2 |mal

so that it follows from QT 7 = 0 and 7, + 7, = 1 that

_ (1+6)" Hma|
W0 Gl (1! 0) Ty (F17)
r1 "
T = (L 0) “my E15

(1+6)" Ymal” + (11 6) tmy

% _ 1+# m, M2
% — 1T # [mq] [ma]

spend more time in the second valley if the second valley is wide and there is a drift towards to the right. In the symmetric
case, i.e. § = 0, mp > w1 since my > |m1] so that in the equilibrium the process spends more time in the wider valley.

In the asymmetric case, i.e. 8 & 0, if there is a strong skewness towards the left, i.e. # < 0 and || is large, then in the
Ima]' ! m}
Imql" +m; -

In particular, the ratio is increasing in and 6. That reveals that in the equilibrium the process will

equilibrium the process may spend more time in the narrower valley. Indeed 7, > 7 if and only if 6 >

G. Postponed Proofs
G.1. Proof of Lemma 3.1
Before we proceed to the proof of Lemma 3.1 we present some intermediary results that are required for the proof.

Definition G.1. (Asymptotic order of magnitude) A positive sequence am is of the same order of magnitude as another

positive sequence by (am . bm, i.e. ‘asymptotically equivalent’) if there exist some ¢, C > 0 such that: ¢’ f‘)—’m" " C for

anym" N.
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Lemma G.1 (Lemma A.1 in (Vladimirova et al., 2019)). Let X be a normal random variable such that X , N (0, 02).
Then the following asymptotic equivalence holds

-

-X-m . m.

We know that the centering of variables does not change their tail properties (Vershyl}in, 2018; Kuchibhotla & Chakrabortty,
2018). As such Lemma G.1 also appliesto X , N (p,02),as-X-.- X! pu-. m.

Lemma G.2 (Lemma 3.1 of Vladimirova et al. (2019)). Let x : R $ R be a non-linearity that obeys the extended envelope
property. And let X be a variable for which - X+ -m . - Xi -m where X, and X denote the left and right tail of the
variable respectively *. Then we have:

-k(X)-m - Xom, foranym + 1. (G.1)

Lemma G.3. Let X1, ..., Xy be variables that each obeys - Xi-m ' m',p" R,i=1,...,Nand (W;,...,Wy)" RN,

Fod

i=1 m

Proof of Lemma G.3. By Minkowski’s inequality we have that

IN IN IN
Wixil -WiXi-m ' [Wi Ailm", (As,...,An)" RN

i=1 m =l I=1
IN
0 Wi Xi I m'.
i=1 m
The A here are constants that upper bound the asymptotics of each norm - Xj -, in the sum. O

Proof of Lemma 3.1. Additive Noise. Consider first the noised data, fig(x) = x + !¢, o, N (0, 03). As Lemma G.1

shows, Gaussian random variables have an 7™ norm that is asymptotically equivalent to 7,

1 i I _
QOJ (x)I . m, foranyl=1,...,n0,

m

where ng is the dimensionality of data.

[

Let us now assume that i@u (x)I !  m,foranyl=1,...,n;, for some layer i. The pre-non-linearity at this layer is
m

given by g; = Wi ;. The 4 element of g; is defined as a sum,

I

gij (x)= Wiy By (%),
I=1
where Wi, | is the weight that maps from the 1™ neuron in layer i to the ;" in layer i + 1. By Lemma G.3,
-
-gij (xX)-, ' m, m=1,...,nj.

As such if we assume the non-linearities ¢ at each layer obey the extended envelope property, then we have by Lemma G.2:

-0(gij (X)) = hwl i (X)im = k(gij (%)),

[
0 %i+l,j (X)i ! m, 7=1,...,nj+1 .
m

*We weaken Vladimirova et al. (2019)’s requirement for X to be symmetric as the proof they give still holds here.
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, . I -
Note that By = Kis1 +!is1 ,liern , N (0,07, ). By Lemma G.3, once again - B j(xX)-m ! m,is Gaussian in its

tails. By recursion, with ﬁo as the base case, we have that

|
i@u(x)i I m, foranym + 1;i=1,...,L! 1;1=1,...,n.
m

Multiplicative Noise. Consider first the noised data, fig(x) = x 11¢,! o N (1 03). As Lemma G.1 shows, Gaussian
random variables have an m™ norm that is asymptotically equivalent to 7,

i i I _
QOJ (x)I . m, foranyl=1,...,n0,

m
where ny is the dimensionality of data.
Let us now assume that i@u (x)i ' m", 2l =1,...,n;, for some layer i. The pre-non-linearity at this layer is given by
m
g =Win ;. The 41 element of g; is defined as a sum,

In;
gij (x) = Wisyj 8 (%),
=1

lth

where Wi,y ; is the weight that maps from the ["" neuron in layer ¢ to the 4™ inlayer i + 1. By Lemma G.3,

gy (x)-, ! m', om=1,....n.

As such if we assume the non-linearities ¢ at each layer obey the extended envelope property, then we have by Lemma G.2:

-0(gij (%)) = hi+1 J (X)im - k(g (%)
0 iziﬂ‘j (x)im I'm', j=1,...,mi+1 .

Note that By = Risqg 1141 Jiss , N (1,02 ). By Holder’s inequality we have that,

iﬁm,j (X)im ot J=1...nia .

By recursion, with ﬁo as the base case, we have that

i@“ (x)im ! mHTl, foranym+ 1;i=1,...,L! 1;1=1,...,n.
O

G.2. Proof of Theorem 3.1
Before we proceed to the proof of Theorem 3.1 we present some intermediary results that are required for the proof.
Lemma G.4. Let X be a bounded random variable such that | X|"' C, then X is sub-Weibull with parameter 6§ = 0,

- X! m?, foreverym + 1. (G.2)
Proof of Lemma G.4. The moments of X obey

E(IX|"]" CF.

Taking the root of this we find that - X -, := E[|X|™ ] is not dependent on mn and scales as a constant, - X- . . m°® O
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Proof of Theorem 3.1. We first consider the gradient for a single data-label pair of Wj; the weight that maps from neuron
linlayer ¢! 1 toneuron j in layer ¢. We study this gradient using the chain rule, where we decompose 0E (8/0W;,; as
0B (8 , %
8% aVVi,I,j ’

where @i,j is the (noised) activation of the j™ neuron in the i layer. Thus, the gradient noise on the weights can be
described as the product of two random variables.

Additive Noise. Let us first consider the properties of 0F| (8/ 6@”‘ for the additive case.

Regression. In the case of regression we use a mean-square-error (MSE) we have that:
2
AL(x,y) =2(y! h (x)BE () + (B (%)),

where we imply all terms’ dependence on w,! for brevity of notation. One can already see that the derivative of this object
with respect to each element of f, will have tail properties that are asymptotically equivalent to those of E_, which we
know by Lemma 3.1. i

aAL(W% I m=1...,n.
o8 ’ o

If we center this distribution the tail properties of this variable are unchanged (Vershynin, 2018; Kuchibhotla & Chakrabortty,
2018). In particular the asymptotic behaviour of - & -1, is unchanged and we have that:

8 9
%8AL(X,y) | E OAL (x,y) % ! / —
OB S 08y ’
i J m

I S
o, ’ o

m

0

Classification. In the case of classification we use a cross-entropy (CE) error. There is no easy closed-form for AL (x,y)
here, but we can infer the properties of ( ;, AL (x,y) by studying the properties of the gradient ( n, L (x,y). For CE we
know that:

( n, L(x,y) =sigmoid(h (x))! y

in the binary label case. In the multi-label classification case we typically use a softmax, which is also a bounded function.
We can already see that any noise B added to hy (x) will induce a change in the gradient that is inherently bounded by
the sigmoid non-linearity, meaning that AL (x,y) will be bounded. As such the centered variable E| (x,y) will also be
bounded and zero mean,. By Lemma G.4 any bounded and zero mean distribution will be sub-Weibull with parameter
0 = 0, and will thus also be sub-Gaussian

iaEL(X’Y)% !/E m=1,...,n_.
o ’ o

Synthesizing the regression and classification settings we can conclude that each constitutive element of ( he E (x,y) will
be sub-Gaussian and will have zero mean.

We can now turn to the partial derivatives of the form dE (§ /98" . Assume ( h, EL (x,y) is of order m", with,

%(M}gy)% I m' m=1,...,nj
agi’j R 5 ) )

which entails for gradients at the previous (i ! 1)1 layer we have

OEL (8
i 1,

:( hiEL (va)( hiv 1) ﬁi (X>7
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where

(s B0 = Wiy B (%) LW,

where 1 denotes the element wise product and W is the /" column of the weight matrix W;. By definition, activation
functions that obey the extended envelope property will have gradients that are bounded in norm, by some constant dy. As

such, by Lemma G.4 x&will be sub-Weibull with » = 0. By Holder’s inequality we have that

z’n&’wi,ﬁnlJ(x)“;i ' iuﬁ“"’”& i H&’Wi"@i!l"(xf’i |

m 2m 2m

1, (ph EL(xy)

where j indexes over the elements of both Jacobians. By definition, we know that there exists A > 0 and B > 0 such that
-((p, BL(Y))zm2m - A(2m)P and - (kWi iy 1(x)))j-2m © B. As such

i’ (p, EL(xy) , L& Wi B 1, (X)“ ji ' i (p, EL(x, Y)-Ji 1 K& Wi i 1y (X)“ J& " AB2°m' .

m 2m 2m
Thus we know that the product of these two variables will be asymptotically upper-bounded by
i ( h.EL(X’y) j k& Wi, @i! 11 (x) Ji I m'.
m

We now need to take into account the weighted sum across rows and columns (i.e. over indices j) that occurs. By Lemma G.3
we know that

Ini - - -

K h BL(x,y) J_ i Wi B (x) 1(Wy) J_ Lom',
j=1 m
0 %8&'(@% ' m', m=1,...,n.
Oy 141

By recursion, with fi, as the base case, gradients at layer 4 bounded in norm by m' induce gradients at layer 7! 1, also
bounded in norm by m' . By recursion with the L™ layer as the base case we can claim that,

%3EL(@§ | /R
oy I - '

We have now defined the first constitutive term of 0Ey (8/0Wj,; . Defining c’iﬁi,j JOW,); is much simpler:

661)/;/9::, _— Wi, Bir 1, (x)-, B 1 (x)-

Here @i! 1,1 (x), which we know is sub-Gaussian by Lemma 3.1, is once again multiplied to a bounded variable, k& Thus
reapplying Holder’s inequality we obtain that
% o9 % -
I m.
oW
m

We can now bring together the characterisations of the gradients that constitute 0Ey (§/0Wi,j . We can re-use Holder’s
inequality to show that the product of these variables will be sub-exponential

iaEL ((x,y);w,!
oW

)i I' 'm, foreverym + 1.

m
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Multiplicative Noise. In the case of multiplicative noise we know that by Lemma 3.1, the accumulated noise at layer L will
be of the same order as that at layer L ! 1, because we are not multiplying noise to the final layer, thus

iaEL (X7 Y)

L
' ' mz, m=1,...,n_.
o8 §

Repeating the analysis done for the additive case we can claim that,

16@" (3 i | m?.
ofm 1
We have now defined the first constitutive term of 0E (§/0Wj,; . We now define a@i,j JOWii -

Am , o -
8(314;,,- = 1% Wiy B (x) B u(x) .

Here 8, 1,1 (x), which we know is sub-Weibull with a parameter p = '5 by Lemma 3.1, is once again multiplied to a bounded
variable, k& Thus reapplying Holder’s inequality we obtain that

1 8§'m % [ mif.
oW,y -
L+i

We can re-use Holder’s inequality to show that the product of these variables will be sub-Weibull with p = =5

1@EL(Q>%?;W,!)1 o

, foreverym + 1.

Mean of Noise. Finally, by definition these gradients are zero mean,

OEL ((x,y);w,!) _ OAL (x,y) | E " OAL(x,y)’
oW oWy OWiy4 ’

G.3. Proof of Theorem 4.1
Before we proceed to the proof of Theorem 4.1, we present some technical results that will be used in the proof of
Theorem 4.1 later.

For the d-dimensional asymmetric fractional Langevin dynamics wr, its infinitesimal generator is given in the following
proposition.

Proposition G.1. The asymmetric fractional Langevin dynamics wy has the infinitesimal generator:

rd ( ) 1d
K . o ofw) 1Y
"f(w)__l blw, )it e e T ITAT @) owm T © - Hul ' f(w), G.3)
where
() »
v 0] 1 a T pwrge! f(w)! A f(w)E
Hul ' f(w) = 5:5 cgs(aﬂ'/Q) ra! a) o, &t at
Lo 1 o L f(w! gei)! f(w) + B f(W)E
+ 5! 2 cos(am/2) T(1! ) , & dg, (G4)

where €j is the i-th basis vector in RY ie. a d-dimensional unit vector with i-th coordinate being 1 and all the other
coordinates being 0.
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Proof of Proposition G.1. Since the asymmetric fractional Langevin dynamics is driven by the d-dimensional L't"# , it
suffices to show that the infinitesimal generator of d-dimensional Lt’# is given by

d d oy, a B

) = i) | w).
1G‘Ni f(w) - Hyp ' f(w)! - cos(ar/2) (a! 1)I(1! a)&'wif( )

(G.5)

We start the proof by considering the dimension d = 1 first. The one-dimensional a-stable Lévy motion with tail-index
1 < a < 2and skewness 8" (! 1, 1) has the infinitesimal generator given by:

N o dz
G f(w) = 5 COS(OHT/Q) F(l I a) 0 [f(w + z) ! f(w) ! 1|Z|$ 1f&(w)z] |Z|1+ "
e 1 a dz
2 cos(ar/D AT @) 4eq [f(w+2)! flw)! Lzs 1f4w)z] EEa + afiw), (G.6)

where a " R is chosen so that G** w = 0 to be consistent with x = 0 in L,* 1 LJ* , S« ((¢! s)Y |0, ) forany ¢ > s.
Thus, we can compute that

1+6 1 dz 116 1 d
_ -t a i @ - (G.7)

G*w —
2 cos(ar/2)T(1! a) .54 2 2 cos(am/2)T(1! @) .54 2

which yields that

1 o
a=! 0005(0477/2) (! DAY ) G38)

Therefore, with 1 < o < 2,

1 o

G flw) =H" f(w)! 000s(a7r/2) (! DT @) fHw), G9)
where
( ) t
16 1 o flw+&! fw)! fqw)¢
HY flw) = 2 + 5( cos(ag/Q) 1! «) o ' &l de
1.0 1 a D fw! O f(w) + fHw)E
T3 g cos(am/2)T(1! «a) o &l de. (G.10)

Similarly, for the multi-dimensional case, we can show that the infinitesimal generator for L't' # s given by:

td » rd vy rd 0, a 9
i f(w) = i W) = f(w
- G‘Ni f( ) i HWi ( ) - COS(OZ']T/Q) (Oél 1)F(1| Oé) 8’U}i f( )7 (Gll)
where
( ) .
e _ L 6 1 a fw+&ei)! f(w)! Ow f(W)E
Hal ! fw) = 2 " 2( cos(omg/Q) (1! a) o . g dg
L, o 1 o fw! ge)! f(W)+ 8w f(W)E
T3 Y e/ TA ) o & oo

where e; is the i-th basis vector in RY, i.e. a d-dimensional unit vector with i-th coordinate being 1 and all the other
coordinates being 0. O

We recall that forany 6; " (! 1,1),1"' ' d,and 1 < a < 2, we have

D, 2 (B (W), p(w)=é T, (G.13)

(b(w,a,0))i = W wi
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where
Dy, > (B = %1'9-I2’"8W L4617y, (O . G.14
wi ( .@(W))-—m (L1 0 S, (Bwio(w)) + (L+0)1 7y, (Ow p(W)) (G.14)
and
2 ,7 1 " dwp(wt ei)
I + W (6Wi QO(W)) T F(2 I Oé) 0 6“ 11 dé (GlS)
In the next result, we provide an alternative formula for b(w, «,0) = ((b(w,a,0))i,1 "' i ' d) that is defined in
4.7).
Proposition G.2. Forany 6; " (! 1,1),1"' i' d,and1 < a < 2, we have
) S
£ 1.6 1 a w,  PWH(y! wie)dy! p(w)§
(b(w, . 0))i := o(w) 5! 2 cos(am/2) T(1! @) o & de
¢ (Lrg) 1 a C e e(w et (y! wi)e)dy + p(w)E
p(w) 2 2 cos(ar/2)T(1! ) o ¢ ¢
" 1 «
T slar2) (a1 ITAT @) (G.16)

with p(w) :=exp(! € " f(w)).
Proof of Proposition G.2. Let us first consider the case when 6 =0,1"' i' d. We have

Dy, 2(Ow, o(W)) :=11 & " (Ow, p(W))
11 %., . &

I 1 B o1
= Teostany2) |+ G e(W)) +1 i (G (W) G.17)
where
P ' Ow: ;
12 (B, p(W)) = F@} = .wg‘jirée ) e, G
x " O, I Cej
P B p(w)) := F(; a) o 'SOSV! 1 i) ge. (G.19)

Similarly, when 6; * (! 1,1),1" ¢' d,and 1 < a < 2, we have

3

(b(w,a,ﬁ))i = (W) DW: 2,1 # (B, (W), o(w) = ¢ e f(w)7 (G.20)
where
20 # 11 % 21 " 21" &
Dy, = ™ (Ow; p(w)) == 2cos(an/2) (11 01 2, (Ow, (W) + (L4001 7, (Ow, p(W)) (G.21)
O

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. We recall from Proposition G.1 that the asymmetric fractional Langevin dynamics w; has the
infinitesimal generator:

rd ( ) ) 1d

~ | b a of(w) | ey,
Lf(w)_i:1 (b(w,a,0))i ! e cos(an/2) @l ITAT &) 9 +e . Hyf ' f(w), (G.22)




Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections

where H . ' f(w) is given in (G.4).
It follows that the adjoint operator L™ of L is given by:

1d 9 (( . ) ) 1 d

- 0; e . '
L' f(w)="! . —  (b(w,,0))! € cos(an/2) (@1 DT(T o) fw) +e | Hy' i f(w). (G.23)

The probability density function p(w, t) of the Lévy-driven SDE satisfies the Fokker-Planck equation (Schertzer et al.,
2001):

8tp(wv t) =L p(W, t)

14y .. 1 o ) N L
=1 _ Bu (b(w,a,0))i ! € 6 cos(ar/2) (a1 DI(T ) p(w,t) +e¢ . Hy, " p(w,t).
(G.24)
We can compute that
1d 8 :( i 1 o ) ’ ) 1d -
i, Ow (b(w, @, 0))i < 6 cos(arm/2) (a! 1)I(1! «) plw) +e - Hu, ™ o(w)
8 C e 9
IR (1' 0. 1 a S P! wedyt p(w)E
c i Owi 2° 2 cos(am/2)T(1! a) o &+ $
8 ' Cwi 9
R, G ei) 1 a o ewt(y! wa)ei)dy+so(W)§d
0w 22 cosfan/)) T a) o £ ¢
1d
LMy p(w)
i=1
ol )y o plwerge) ! plw)! By p(we
T2 2 cos(an/2)T(AL a) 4 ¢
AR O L R S VSIS T B0
T 272 cos(an/2) T @) 4 €1
1 d

+¢€ H;\’,i! #o(w) = 0.
i=1

Hence, we conclude that 7(dw) = exp(! &' " f(w))dw/ 4 exp(! & " (w))dw is an invariant distribution of the asym-

metric fractional Langevin dynamics (4.6). Finally, if b(w, «, ) is Lipschitz continuous in w, then 7(dw) is the unique
invariant distribution of (4.6), see e.g. Schertzer et al. (2001). O]

G .4. Proof of Theorem E.1
Theorem E.1 provides a first-order approximation of the fractional derivative D®' # when d = 1.

Based on the work of Meerschaert & Tadjeran (2004), we will show a first-order approximation for the asymmetric fractional
derivative D' ®' # when ! 1 < ~ < 0 by using the shifted Griinwald-Letnikov difference operators defined in (E.3) and

(E.4). Before we proceed to the proof of Theorem E.1, we will first present the Fourier transform property from equations
(1) and (12) in Tian et al. (2015).

Property G.1 ((Tian et al., 2015)). Let! 1 <~ < Oand f" L*(R). The Fourier transform of | | $fand . ® f satisfy the
following identities:

%), ¢ & g f %, ¢ & S f
F ooy flw) (€ =060 f(Q), F 1.7 f(w) (€)= (i¢)*f(C), (G.25)
where f(C) denotes the Fourier transform of f, such that f(() =" , e W f(w)dw.
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Now, we are ready to prove Theorem E.1.

Proof of Theorem E.1. The main idea for the proqf of Theorer}%%.l is to use the Fourier trargform g) estimate the difference
' $ $ I's ''s

between F (L+0)Ap, + (1! 0)By, f(w) ((JandF (1+6) PS4 (1 0L % f(w) (€), and then apply the

inverse Fourier transform to complete the proof. By the linearity of Fourier transforms, we can apply Fourier transform

to (E.3) to obtain

* + 1 ( ) _ .
FOALfw) (=5 (uf TR T aceon g
k=0
Loon 1y w0 g
( 11 ¢ ith ) s o
=@° —g— <O
= Wy (i¢h)(i¢)® £ (<) (G.26)
Similarly, we can compute that
* + 1" ( _ .
F Bl /) (=g (1f TR Tk an g
k=0
= (! i<)$( = Z: )$€! )
L)
= Wi o(! iCh) (1 iQ)* F(C). (G.27)

In addition, since Wy (z) and W, 4(! z) are analytic for any complex number |z| ' 1, there exist series expansions so that
by the first-order Taylor expansion we have

(

) s -
11 ¢z ) # . %
Wp(z) = ¢ e =14 p! % 240 |2,
z
( ) s .
11 ¢? ’ # %
Wi q(! 2) = - Ze ¢ =11 ¢! % 240 |22 . (G.28)

* - +

Nebxt, define a function ®(h,() as the difference between F (1+0)Aﬁ’p +(1! 9 Bﬁ'q fw) (¢) and

ott
F o(1+0), ¥4 (1! o)L $ f(w) (¢). By the linearity of Fourier transform, we have

R , ¥ + %, & - , * +

G(h, Q)= (1+0) F AL fw) (O'F T/ °f(w) (¢) +(1! 6) F B, f(w)

= (1+60)(i0)* () (Wp(iCh) ! 1) + (11 8)(1 i¢)* F(¢) (Wi (1 iCh)! 1)
i¢)® f(

¢ !
= (L+0)GOPFQ) p! T () (1L O QPO at T (ich)

%, 4. & "
OMF 17 f(w) (O

—~

MNM“Q

= (1+OGOT Q) Pt G A+ OO Q) ¢ b

@*(1+9)ei%$/27p! % hi (11 g)e 92 g ;-Jr 1K™ ® F(Oh )

2 o' T (1 ) +0 gt ) +sin T (gl )10 @)i IKFSAOR (G29)
where we used the fact that for any real 2, 0 < 1+ v < 1, we have iz = |z|e' SII%/2 5o that (iz)*% =

|zt $el SInCAUSH) 12 — gion (g)|z| Sl SIINI%S/2 which implies equality (a), and we applied Euler’s formula with
I 1 <7 < 0to get equality (b). By our assumption f " C*#(R), we have

IFOI ca+1n'*,
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for a constant C' > 0 that may depend on f. Hence, by taking a sufficiently small i, we obtain,
.o, i iy
(R QI " cos® T2 (! q+0(p+ql ) +sin® I (prql v+0(p! )7 " CL+ICN *h+ coh?
* ) " ) +

1 77- ||. 7T n
cos 77 Ip! ¢+0(p+q! )|+ "sin % "p+q! v+ g CL+ICDY 2h+ coh?,

where we also used the inequality that [¢|®** ' (1 +|¢])®*! for! 1 < v < 0, and ¢p > 0 is a constant may depend on p, q.

When f " L*(R), the inverse Fourier transform exists with | 1 <y < 0,i.e. ¥(h,w) = 55 , e' (W 4(h, ¢)dc, and it
follows that
1 . ,
[W(hw)l=5—  d(h Qe ™ dC
T,
T
5= o Q)lde
.
* - " - +
1) n i) n # $
' AL 9 I ngiy AT w I O(p ! _Cc hiO R2
cos o Ipt g+0p+gl y)l+"sin o= lp+gl y+0(p! gl L :
(G.30)
where O(§ hides the dependence on p, ¢ and v, and C' > 0 is a constant that may depend on f " L*(R) # C*(R).
Hence, we conclude that .
iy $.! $,! "
D& #f(w)t Afp g f(w) "
1 " 'S $ .0\ ' oS $ 0\ o
:W@Jre) App flw) !l 7 fw) + (@11 0) By flw)!l ¥ f(w)
* n _ n +
St A 10 +a! ) +tan 2 gt v+ 16l ql) ¢ h+O#hZ$ (G.31)
p: q prqg: 7 9 prqg: v p:q dn(y]+2) .
The proof is complete. O

G.5. Proof of Corollary E.1

With the definitions of the truncated series A‘:’p’K defined in (E.9) and Bﬁ‘q‘K in (E.10), we are now ready to prove
Corollary E.1I.

Proof of Corollary E.1. We will first control the difference "Aﬁ"f); Owp(w) ! Aﬁ"’;é k Owe(w)". Then the triangular

inequality can be applied with the fractional derivative approximation error bound in Theorem E.1 to get the numerical
truncation error.

By using the definitions of App,Bng and Appk ,Bhgk , under the Assumption E.1, there exist two universal constants
Cp > 0and Cq > 0 so that

"Alpddwe(w) ! ALy Buo(w)”
A _

=W"(1+9)’Aﬁ,p8w¢(w! (k! p)h) 1A § k Bup(w! (k! p)h) "

+(11 0) By dwp(w+ (k! q)h) 1B § o dwep(w+ (k1 q)h) "
<

, 1 1 1. " Ttk
2|cos(my/2)| T(Y ~) h® I'(k+1)

(L+0)owp(w! (k! p)h)l
k=K + p+1 S

" (! v+ k)

+ T(k+1)

(11 O)owe(w+ (k! q)h)|?
k=K +qg+1
Il ¢ 7+k)ez (ki ph (1! 6)Cq " I 7+k)e! (ki gh_

$ $
h T(k+1) B e DD

(G.32)
k=K +p+1
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Next, by applying Stirling’s formula, we have as k $ *

Pyt k) o aT o)kt 11 R B ki us)

T

Lk+1) ° ok kK ! K
B (k'! 11 ’V)k! 1/ 2! $61+$
- k+1/2
)k ( )ivas
s oqy LEY R EEEE
' k k
AT
Therefore, it follows from (G.32) that
.-Aﬁy’;:awgp(w)! Aﬁ;)é#K Awep(w)"
!" !"
f (1+9)Cph (hk_)‘ $! le! (k! p)h _|_(1| H)th (hk)l $! 16! (k! p)h
k=K +p+1 k=K + g+l
) 1
(1+0)Cp+ (1! 6)Cq) TR (G.33)

where we abused the notation such that Cp, Cq in (G.33) may differ from Cp, Cy in (G.32). Finally, the triangular inequality
yields that

DS ()l AR S Bugplw) :

' ups! #owp(w) ! A #8Wg0(w)::+::A$'! #owp(w) ! AS # A o(w)”
" X +

h,p.q h,p,q h,p,q.K
* " C
R
- "(p+aqt y+0lp! q) =P
( ) (vl +2)
1 #.%

2
+((1+0)Co+ (11 6)Cq) 7= + 0O h?",

where Cj, and Cq are two universal constants following Assumption E.1. The proof is completed. O

p! ql+10l(p+q' ~)+ "tan

G.6. Proof of Theorem 4.2
1

First, let us recall that 7y (g) = Ao Ezl nkg(wy) is the sample average, where wy satisfies the Euler-Maruyama
discretisation with the approximated drift by k :

Wne1 = Wn + 7ine bk (W, a,6) +enp'ey ALY (G:34)
The corresponding SDE of (G.34) is given as
dwy = box (Wi , o, 0)dt + edLy™ | (G.35)
and we define 7(g) = g(w)7(dw), where 7 is the stationary distribution of (G.35).

Next, let us introduce the following assumption that is needed for Theorem 4.2.

Assumption G.1. (i) Assume that the step sizes are decreasing and the sum diverges such that limpg 1y, =
O,limN #" HN =*

. !/ _
(ii) Let V : R$ R, be afunction in C?, if limyp V(w)=*,lowV|" C V withsome constant C > 0 and 02V is
bounded. Then there exists a." (0,11, 6 > 0and 8" R, such that [b|> ' CV? and b(8, V)" B! 6V with b defined
in (4.7). And the statement also holds for b.

(iii) The SDEs defined in (4.6) and (G.35) are geometrically ergodic with their unique invariant measures.

Before we proceed to the proof of Theorem 4.2, let us state a technical lemma bounding the error of |E[g(w¢)]! E[g(W1)]],
where (Wt )¢( 0 and (Wy )¢( o follow SDEs in (4.6) and (G.35).
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Lemma G.5. Let (wt)i( o and (Wt )i( o follow SDEs in (4.6) and (G.35) and g be a given test function with bounded |0y g|.
Suppose K " N % {0} is a constant satisfying Assumption E.I with respect to Oy and Assumption G.1 holds, then the
following bound holds:

) o b +
' ] - - ' | . o " | '
[E[g (wo)]! Elg (wi)]l T P! al +10l(p + ¢! ) +"tan = "(p+q! y+10llp! dl) h
# $ 1 #.$
+ (L+0)CE+ (11 )Cy =+ 0 n?, (G.36)

where the constants C, C’S‘, C’g‘ > 0 may depend on the function Oy and the bound for |0y g|.

Proof. The proof is inspired by the proof of Lemma 3 in Simsekli (2017). Let { " }¢( 0 and { P* }( o be the corresponding
Markov semigroups, i.e. P g(w) = Ew[g(wt)], B¥ g(w) = Ewl[g(W¢)]. Using the Markov semigroup property, following
Lemma 3 in Simgekli (2017), we have

" t n

n # $
[Elg(wol! Elg(Wwo)ll=» P LY L % R sg(w)ds
0

where LW and L% are the linear generators of PV and P, such that, for ¢ " L?(r),0:P,g = LP.g = PiLg. The
infinitesimal generators L™ and L are computed in (G.22). By the interchangeability of integration and differentiation, we
have

m " m "
n t " n t "
n

# $ .o "
PPV LML *TRY gg(w)dsi =1 PY (b(w,,0)! buk (w,,0)) BY (dug(w)dst.
0 0

By the ergodicity assumptions, for a bounded function f, there exist some constants ¢ > 0 and Ay, Ay > 0 so that

[P S cet Do fee o IRTGfIT ce mOfen (G:37)

Using the boundedness assumption for |y g| and Corollary E.1, and the fact that (; e )wsds )iw, we have

e Y +
|[E[g(wi)]! Elg(wi)ll' T2 Ip! al+10l(p+q! v)+ "tan 5 (p+ql v+16llp! ql) R
# $1 # .9
& & 2

+ (1+0)Cy+ (1! 0)Cq K +0 h° (G.38)
where the constants C' = 7 C, Cf = 7= Cp and Cf = ;& Cq may depend on Oy ¢ and the bound for |9y g]- O

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. With the ergodicity assumptions, we have

v(g)! [Jim in(9)"="v(g)! #(g)+u(g)t lim in(g)"" Lm [E[g(wo)]! Elg(Wo)ll +"2(g)! lim on (9)"

(G.39)
By Assumption G.1(ii), (Panloup, 2008) and similar arguments as in (Simsekli, 2017), we get,
"U(g)! ngﬂ n(g)"=0, as.
By applying Lemma G.5 as ¢ $* , we obtain:
"w(g)! Jlim o (g)"" lim |Elg(wo)l! Elg(wo)ll
oot o .
1 " 1 ,yﬂ- "
e P! 0 ! "tan - " ! ollp! ql) h
iy P deleat )t S gl v+ Pllpt D)
# $ 1 # .9
& & 2
+ 1+ 0CE+ (1 08—+ 0 R, (G.40)

where C, C’g‘, Cg‘ > 0 are constants that may depend on J, ¢ and the bound of |0y g|. Finally, by taking p = ¢ = 0, we
complete the proof. O
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