
Parameter-free Locally Accelerated Conditional Gradients

Alejandro Carderera * 1 Jelena Diakonikolas * 2 Cheuk Yin (Eric) Lin * 2 Sebastian Pokutta * 3

Abstract
Projection-free conditional gradient (CG) meth-
ods are the algorithms of choice for constrained
optimization setups in which projections are often
computationally prohibitive but linear optimiza-
tion over the constraint set remains computation-
ally feasible. Unlike in projection-based meth-
ods, globally accelerated convergence rates are
in general unattainable for CG. However, a very
recent work on Locally accelerated CG (LaCG)
has demonstrated that local acceleration for CG is
possible for many settings of interest. The main
downside of LaCG is that it requires knowledge
of the smoothness and strong convexity param-
eters of the objective function. We remove this
limitation by introducing a novel, Parameter-Free
Locally accelerated CG (PF-LaCG) algorithm, for
which we provide rigorous convergence guaran-
tees. Our theoretical results are complemented
by numerical experiments, which demonstrate lo-
cal acceleration and showcase the practical im-
provements of PF-LaCG over non-accelerated al-
gorithms, both in terms of iteration count and
wall-clock time.

1. Introduction
Conditional gradient (CG) (or Frank-Wolfe (FW)) meth-
ods (Frank & Wolfe, 1956; Levitin & Polyak, 1966) are a
fundamental class of projection-free optimization methods,
most frequently used to minimize smooth convex objec-
tive functions over constrained sets onto which projections
are computationally prohibitive; see Combettes & Pokutta
(2021) for an overview. These methods have received sig-
nificant recent attention in the machine learning and op-
timization communities, due to the fact that they eschew
projections and produce solutions with sparse representa-

*Equal contribution 1Georgia Institute of Technology, Atlanta,
GA, USA 2Department of Computer Sciences, University of
Wisconsin-Madison, Madison, WI, USA 3Zuse Institute Berlin
and Technische Universität Berlin, Berlin, Germany. Correspon-
dence to: Jelena Diakonikolas <jelena@cs.wisc.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

tions (Jaggi, 2013; Garber, 2016; Hazan & Luo, 2016; Braun
et al., 2017; 2019; Lei et al., 2019; Tsiligkaridis & Roberts,
2020; Combettes et al., 2020).

While CG methods have been applied to many different
problem settings (see, e.g., Hazan & Luo (2016); Zhou
et al. (2018); Pedregosa et al. (2020); Lei et al. (2019);
Tsiligkaridis & Roberts (2020); Dvurechensky et al. (2020);
Zhang et al. (2020); Négiar et al. (2020); Carderera &
Pokutta (2020); Kerdreux et al. (2021)), in this paper, we
are interested in using CG-type methods to solve problems
of the form:

min
x∈X

f(x), (P)

where f is anL-smooth (gradient-Lipschitz) andm-strongly
convex function and X ⊆ Rn is a polytope.

We assume that we are given access to the objective function
f and to the feasible set X via the following two oracles:

Oracle 1.1 (First Order Oracle (FOO)). Given x ∈ X , the
FOO returns f(x) and∇f(x).

Oracle 1.2 (Linear Minimization Oracle (LMO)). Given
c ∈ Rn, the LMO returns argmin

x∈X
〈c,x〉.

While being of extreme practical importance, these LMO-
based methods in general do not achieve the globally opti-
mal rates for smooth (and possibly strongly convex) mini-
mization that are attained by projection-based methods. In
particular, LMO-based algorithms cannot converge globally
faster than O(1/k) for the class of smooth strongly convex
functions where k is the number of iterations (up to the
dimension threshold n) (Lan, 2013; Jaggi, 2013). Moreover,
the dependence of the convergence rate on the dimension is
unavoidable in general.

At the same time, it was shown by Diakonikolas et al. (2020)
that optimal rates can be obtained asymptotically, referred
to as locally optimal rates. That is, after a finite number of
iterations (independent of the target accuracy ε) with poten-
tially sub-optimal convergence, optimal convergence rates
can be achieved. While Diakonikolas et al. (2020) resolve
the question of acceleration for CG-type methods, it unfortu-
nately depends on the knowledge of m and L. Although the
latter can be removed with the common line search-based
arguments, the knowledge of a good estimate of the former
is crucial in achieving acceleration. This makes the Locally-

Parameter-free Locally Accelerated Conditional Gradients

accelerated Conditional Gradient (LaCG) algorithm from
Diakonikolas et al. (2020), despite being of theoretical inter-
est, of limited use in practice. Not only is it usually hard to
come by a good estimate of the parameter m, but working
with an estimated lower bound does not take advantage of
the potentially better local strong convexity behavior in the
vicinity of an iterate.

To remedy these shortcomings, we devise a new Parameter-
Free Locally-accelerated Conditional Gradient algorithm
(PF-LaCG) that is based on a similar coupling between a
variant of the Away-step Frank-Wolfe (AFW) method (Guélat
& Marcotte, 1986; Lacoste-Julien & Jaggi, 2015) and an
accelerated method as used in LaCG. However, beyond
this basic inspiration, not many things can be reused from
Diakonikolas et al. (2020), as in order to achieve parameter-
freeness, we need to devise a completely new algorithm
employing a gradient-mapping technique that out-of-the-
box is incompatible with the approach used in LaCG.

1.1. Contributions and Further Related Work

Our main contributions can be summarized as follows (see
Section 3.1 for a detailed overview of the main technical
ideas).

Near-optimal and parameter-free acceleration with in-
exact projections. To devise PF-LaCG, we introduce a
parameter-free accelerated algorithm for smooth strongly
convex optimization that utilizes inexact projections onto
low-dimensional simplices. While near-optimal (i.e., op-
timal up to poly-log factors) parameter-free projection-
based algorithms were known in the literature prior to our
work (Nesterov, 2013; Ito & Fukuda, 2019), their reliance
on exact projections which are computationally infeasible
makes them unsuitable for our setting.

Parameter-free Locally-accelerated Conditional Gra-
dient (PF-LaCG) algorithm. We propose a novel,
parameter-free and locally accelerated CG-type method. Up
to poly-logarithmic factors, our algorithm PF-LaCG attains
an optimal accelerated local rate of convergence. PF-LaCG
leverages efficiently computable projections onto low di-
mensional simplices, but is otherwise projection-free (i.e.,
it does not assume access to a projection oracle for X).
Local acceleration is achieved by coupling the parameter-
free accelerated method with inexact projections described
in the previous paragraph and AFW with a fractional exit
condition (Kerdreux et al., 2019). This coupling idea is in-
spired by the coupling between µAGD+ (Cohen et al., 2018)
(where AGD stands for Accelerated Gradient Descent) and
AFW (Guélat & Marcotte, 1986) used in Diakonikolas et al.
(2020); however, most of the similarities between our work
and Diakonikolas et al. (2020) stop there, as there are major
technical challenges that have to be overcome to attain the

results in the parameter-free setting.

Computational experiments. We demonstrate the effi-
cacy of PF-LaCG using numerical experiments, comparing
the performance of the proposed algorithms to several rel-
evant CG-type algorithms. The use of PF-LaCG brings
demonstrably faster local convergence in primal gap with
respect to both iteration count and wall-clock time.

1.2. Outline

In Section 2 we introduce the notation and preliminaries that
are required for stating our main results. We then present our
approach to parameter-free local acceleration in Section 3
and derive our main results. Finally, we demonstrate the
practicality of our approach with computational experiments
in Section 4, and conclude with a discussion in Section 5.

2. Notation and Preliminaries
We denote the unique minimizer of Problem (P) by x∗. Let
‖·‖ and 〈·, ·〉 denote the Euclidean norm and the standard
inner product, respectively. We denote the diameter of the
polytope X by D = maxx,y∈X ‖x− y‖, and its vertices
by vert (X) ⊆ X . Given a non-empty set S ⊂ Rn, we
denote its convex hull by co (S). For any x ∈ X we denote
by F (x) the minimal face of X that contains x. We call a
subset of vertices S ⊆ vert(X) a support of x ∈ X if x can
be expressed as a convex combination of the elements of
S . A support S of x is a proper support of x if the weights
associated with the convex decomposition are positive. Let
B(x, r) denote the ball around x with radius r with respect
to ‖·‖. We say that x is r-deep in a convex set C ⊆ Rn if
B(x, r) ∩ aff(C) ⊆ C, where aff(C) denotes the smallest
affine space that contains C. The point x is contained in
the relative interior of C, x ∈ rel.int(C), if there exists an
r > 0 such that x is r-deep in C.

Measures of optimality. The two key measures of opti-
mality that we will use in this paper are the Strong Wolfe
Gap and the Gradient Mapping. We define the former as:

Definition 2.1 (Strong Wolfe Gap). Given x ∈ X , the
strong Wolfe gap w(x) of f over X is defined as

w(x) := min
S∈Sx

w(x,S),

where Sx denotes the set of all proper supports of x and
w(x,S) := maxy∈S,z∈X 〈∇f(x),y − z〉.

Note that any polytope X satisfies what is known as a δ(X)-
scaling inequality, where δ(X) is the pyramidal width of
the polytope (see, e.g., (Lacoste-Julien & Jaggi, 2015; Beck
& Shtern, 2017; Peña & Rodrı́guez, 2019; Gutman & Peña,
2018)) and where the inequality is defined as:

Parameter-free Locally Accelerated Conditional Gradients

Definition 2.2 (δ-scaling inequality). There exists δ > 0
such that for all x ∈ X \ x∗ we have that Problem (P)
satisfies w(x) ≥ δ(X) 〈∇f(x),x− x∗〉 / ‖x− x∗‖.

To implement a parameter-free variant of a projection-based
accelerated algorithm, we will rely on a second measure
of optimality, the gradient mapping. Recall that we do not
assume the availability of projections onto the polytope X ;
instead, our algorithm will only rely on low-complexity
projections onto simplices spanned by a small number of
vertices of X (see Diakonikolas et al. (2020) for a more
detailed discussion). In the following, given a convex set C,
we denote the projection of x ∈ Rn onto C by PC(x).

Definition 2.3 (Gradient mapping). Given a convex set C ⊆
Rn, a differentiable function f : C → R, and a scalar η > 0,
the gradient mapping of f w.r.t. η, C is defined by:

Gη(x) = η
(
x− PC

(
x− 1

η
∇f(x)

))
.

The gradient mapping is a generalization of the gradient
to constrained sets: when C ≡ Rn, Gη(x) = ∇f(x). The
norm of the gradient mapping can also be used as a measure
of optimality: the gradient mapping at a point x is zero if
and only if x minimizes f over C; more generally, a small
gradient mapping norm for a smooth function implies a
small optimality gap. See Beck (2017, Chapter 10) and
Appendix B for more useful properties.

2.1. Assumptions

We make two key assumptions. The first one, the strict
complementarity assumption (Assumption 2.4) is key to
proving the convergence of the iterates to F (x∗), and is a
common assumption in the Frank-Wolfe literature (Guélat
& Marcotte, 1986; Garber, 2020), which is related to the
stability of the solution with respect to noise, and rules out
degenerate instances.

Asssumption 2.4 (Strict complementarity). We have that
〈∇f (x∗) ,x− x∗〉 = 0 if and only if x ∈ F (x∗).
Or stated equivalently, there exists a τ > 0 such that
〈∇f (x∗) ,x− x∗〉 ≥ τ for all x ∈ vert (X) \ F (x∗).

Lastly, to achieve local acceleration, similar to Diakonikolas
et al. (2020), we require that the optimal solution x∗ is
sufficiently deep in the relative interior of a face of X . We
make the following assumption about the problem, which
covers all cases of interest.

Asssumption 2.5 (Location of x∗). The optimum satisfies
x∗ /∈ vert (X), or conversely, there exists an r > 0 such
that x∗ is r-deep in a face F of X .

Note that the entire polytope X is an n-dimensional face of
itself, and thus Assumption 2.5 allows x∗ ∈ rel.int(X).

Note that if x∗ ∈ vert (X) and the strict complemen-
tarity assumption is satisfied (Assumption 2.4), then the
projection-free algorithm that will be presented in later sec-
tions will reach x∗ in a finite number of iterations (see
Garber (2020)), and so there is no need for acceleration. For
computational feasibility, we assume that r is bounded away
from zero and much larger than the desired accuracy ε > 0.

3. Parameter-Free Local Acceleration
This section provides our main result: a parameter-free
locally-accelerated CG method (PF-LaCG). Before delv-
ing into the technical details, we first describe the core
ideas driving our algorithm and its analysis. Due to space
constraints, most of the proofs are omitted and are instead
provided in the supplementary material.

3.1. Overview of Main Technical Ideas

A standard idea for achieving acceleration in smooth and
strongly convex setups where m is unknown is to use a
restart-based strategy, which can be described as follows:
run an accelerated method for smooth (non-strongly) convex
minimization and restart it every time some measure of
optimality is reduced by a constant factor. The measures
of optimality used in these strategies are either f(x) −
f(x∗) (Roulet & d’Aspremont, 2020) or ‖Gη(x)‖ (Ito &
Fukuda, 2019; Nesterov, 2013).

Neither of these two optimality measures can be applied
directly to our setting, as neither can be evaluated: (i) it is
rarely the case that f(x∗) is known, which is needed for
evaluating f(x)− f(x∗), and we make no such assumption
here; and (ii) the gradient mapping norm ‖Gη(x)‖ is a
valid optimality measure only for the entire feasible set
and requires computing projections onto it; and we do not
assume availability of a projection operator onto X .

Even though our algorithm utilizes a restarting-based strat-
egy, the restarts are not used for local acceleration, but for
the coupling of a CG method and a projection-based accel-
erated method. This idea is similar to Diakonikolas et al.
(2020); however, there are important technical differences.
First, the restarts in Diakonikolas et al. (2020) are scheduled
and parameter-based; as such, they cannot be utilized in our
parameter-free setting. Our idea is to instead use w(x,S) as
a measure of optimality over the polytope, which is observ-
able naturally in many CG algorithms (see Definition 2.1),
where S, dubbed the active set of the CG algorithm, is a
proper support of x. We perform restarts each time w(x,S)
is halved. The idea of using w(x,S) as a measure of op-
timality comes from Kerdreux et al. (2019); however in
the aforementioned paper w(x,S) was not used to obtain a
locally accelerated algorithm.

The aforementioned idea of coupling an active-set-based

Parameter-free Locally Accelerated Conditional Gradients

CG method and an accelerated projection-based method can
be summarized as follows. Because the objective function
is strongly convex, any convergent algorithm (under any
global optimality measure) will be reducing the distance
between its iterates and the optimal solution x∗. The role
of the CG method is to ensure such convergence without
requiring projections onto the feasible set X . When x∗ is
contained in the interior of a face of X , it can be argued
that after a finite burn-in phase whose length is independent
of the target accuracy ε, every active set of the utilized CG
method will contain x∗ in its convex hull. As it is possible
to keep the active sets reasonably small (and their size can
never be larger than the current iteration count), projections
onto the convex hull of an active set can be performed effi-
ciently, using low-complexity projections onto a probability
simplex. Thus, after the burn-in phase, we could switch
to a projection-based accelerated algorithm that uses the
convex hull of the active set as its feasible set and attains an
accelerated convergence rate from then onwards.

There are, of course, several technical challenges related to
implementing such a coupling strategy. To begin with, there
is no computationally feasible approach we are aware of that
could allow detecting the end of the burn-in phase. Thus
any reasonable locally accelerated algorithm needs to work
without this information, i.e., we do not know when x∗ is
contained in the convex hull of the active set. In Diakoniko-
las et al. (2020), this is achieved by using a parameter-based
accelerated algorithm that monotonically decreases the ob-
jective value, running this accelerated algorithm and a CG
method (AFW or the Pairwise-step Frank-Wolfe (PFW)) in
parallel, and, on restarts, updating the iterate of the acceler-
ated method and the active set to the ones from the coupled
CG method whenever the iterate of CG provides a lower
function value. Thus, after the burn-in phase, if the feasi-
ble set of the accelerated method does not contain x∗ (or
its close approximation), CG eventually constructs a point
with the lower function value, after which the accelerated
algorithm takes over, leading to local acceleration.

We can neither rely on the scheduled restarts nor the accel-
erated algorithm used in Diakonikolas et al. (2020), as both
are parameter-based. Instead, our monotonic progress is
w.r.t. w(x,S) (i.e., upon restarts we pick a point and the
active set with the lower value of w(x,S)) and we rely on a
parameter-free accelerated method. As mentioned before,
even using a parameter-free projection-based acceleration
requires new results, as we need to rely on inexact pro-
jections (and inexact gradient mappings). Further, for our
argument to work, it is required that after a burn-in phase
the accelerated method contracts w(x,S) at an accelerated
rate. Although this may seem like a minor point, we note
that it is not true in general, as w(x,S) can be related to
other notions of optimality only when the algorithm iterates
are contained in F(x∗) and the primal gap is sufficiently

small. This is where the strict complementarity assumption
(Assumption 2.4) comes into play, as it allows us to show
that after a burn-in phase (independent of ε), we can upper
bound w(x,S) using f(x)− f(x∗) (Theorem 3.4).

3.2. Burn-in Phase

The variant of CG used in our work is the Away Frank-
Wolfe (AFW) method (Guélat & Marcotte, 1986; Lacoste-
Julien & Jaggi, 2015) with a stopping criterion based on
halving the Frank-Wolfe gap (Kerdreux et al., 2019), shown
in Algorithm 1. For completeness, the useful technical
results from Kerdreux et al. (2019) utilized in our analysis
are provided in Appendix A.

Algorithm 1 Away-Step Frank-Wolfe Algorithm:
AFW(x0,S0)

1: k := 0
2: while w(xk,Sk) > w(x0,S0)/2 do
3: vk := argminu∈X 〈∇f(xk),u〉, dFW

k := vk − xk
4: sk := argmaxu∈Sk 〈∇f(xk),u〉, dAway

k := xk−sk

5: if −
〈
∇f(xk),dFW

k

〉
≥ −

〈
∇f(xk),dAway

k

〉
then

6: dk := dFW
k with λmax := 1

7: else
8: dk := dAway

k with λmax :=
α

sk
k

1−αsk
k

9: end if
10: xk+1 := xk + λkdk with λk ∈ [0, λmax] via line-

search
11: Update active set Sk+1 and {αv

k+1}v∈Sk+1

12: k := k + 1
13: end while
14: return (xk,Sk, w(xk,Sk))

We now briefly outline how after a finite number of iterations
T we can guarantee that xk ∈ F(x∗) and x∗ ∈ co (Sk) for
k ≥ K0. In particular, using Assumption 2.4, if the primal
gap is made sufficiently small and the iterate xk is not con-
tained in F (x∗), then the AFW algorithm will continuously
drop those vertices in Sk that are not in F (x∗), until the
iterates reach F (x∗) (see Garber (2020, Theorem 5), or
Theorem A.5 in Appendix A.1, included for completeness).

Theorem 3.1. If the strict complementarity
assumption is satisfied (Assumption 2.4) and
the primal gap satisfies f(xk) − f(x∗) <

1/2 min
{

(τ/(2D(
√
L/m+ 1)))2/L, τ, LD2

}
then

the following holds for the AFW algorithm (Algorithm 5):

1. If xk /∈ F (x∗), AFW will perform an away step that
drops a vertex sk ∈ vert (X) \ F (x∗).

2. If xk ∈ F (x∗), AFW will either perform a Frank-
Wolfe step with a vertex vk ∈ vert (F (x∗)) or an

Parameter-free Locally Accelerated Conditional Gradients

away-step with a vertex sk ∈ vert (F (x∗)). Regard-
less of which step is chosen, the iterate will satisfy:

w(xk,Sk) ≤ LD
√

2(f (xk)− f (x∗))/m.

Assuming that x0 ∈ vert (X) in the AFW algorithm, and
using the primal gap convergence gap guarantee in Lacoste-
Julien & Jaggi (2015, Theorem 1), we can bound the number
of iterations until f(xk)− f(x∗) satisfies the requirement
in Theorem 3.1. Using this bound, and the fact that the
AFW algorithm can pick up at most one vertex per iteration,
we can bound the number of iterations until xk ∈ F(x∗).
Note that by the second claim in Theorem 3.1, this means
that when xk ∈ F(x∗), then the iterates will not leave
F(x∗). Furthermore, once the iterates are inside the optimal
face, there are two options: if x∗ = F(x∗), then the AFW
algorithm will exit once xk ∈ F(x∗), as w(xk,Sk) = 0,
otherwise if x∗ /∈ vert (X) (the case of interest in our
setting, by Assumption 2.5), then we need to prove that after
a given number of iterations the active set will satisfy x∗ ∈
co (Sk). We prove the former using Fact 3.2 (a variation of
Diakonikolas et al. (2020, Fact B.3)).

Fact 3.2 (Critical strong Wolfe gap). There exists a wc > 0
such that for any subset S ⊆ vert(F(x∗)) and point x ∈
F(x∗) with x ∈ co(S) and w(x,S) ≤ wc it follows that
x∗ ∈ co(S).

Remark 3.3. The critical strong Wolfe gap in Fact 3.2, is
a crucial parameter in the coming proofs. However, like
the strict complementarity parameter τ (Guélat & Marcotte,
1986; Garber, 2020) and the critical radius rc defined in
Diakonikolas et al. (2020), the critical strong Wolfe gap
can be arbitrarily small for some problems. Fortunately,
as we will show in the proofs to come, it only affects the
length of the burn-in phase of the accelerated algorithm, and
moreover this dependence is logarithmic. In Remark A.8
in the Appendix we show a simple example for which one
can compute wc exactly, and we give a lower bound and an
upper bound for wc for Problem (P).

With these tools at hand, we have the bound shown in Theo-
rem 3.4 (see Appendix A for the proof).

Theorem 3.4. Assume that the AFW algorithm (Algo-
rithm 5) is run starting with x0 ∈ vert(X). If the strict
complementarity assumption (Assumption 2.4) is satisfied
and x∗ /∈ vert (X), then for k ≥ K0 with

K0 =
32L

m ln 2

(
D

δ(X)

)2

· log
(2w(x0,S0)

min{ 1
L

(
τ

(2D(
√
L/m+1))

)2

, τ, LD2, 2wc}

)
,

where δ (X) is the pyramidal width from Definition 2.2 and
wc > 0 is the critical strong Wolfe gap from Fact 3.2, we

have that xk ∈ F(x∗), x∗ ∈ co (Sk). Moreover:

w(xk,Sk) ≤ LD
√

2(f (xk)− f (x∗))/m.

3.3. Parameter-free Projection-based Acceleration

The main idea for obtaining parameter-free projection-
based acceleration is to use the regularization trick of Nes-
terov (Nesterov, 2012) to obtain a near-optimal method for
minimizing ‖Gη(x)‖ for a smooth convex function. Then
a near-optimal method for smooth strongly convex mini-
mization is obtained by restarting this method every time
‖Gη(x)‖ is halved.

The restarting approach is important here, as it removes
the requirement of knowing the parameter m. However,
there are a few technical challenges in implementing the
near-optimal method for minimizing ‖Gη(x)‖ without the
knowledge of the parameterL or the distance to x∗, which is
needed for setting the value of the regularization parameter.
Some of these challenges were addressed in Ito & Fukuda
(2019); Nesterov (2013). However, as discussed before, the
approaches from Ito & Fukuda (2019) and Nesterov (2013)
are insufficient for our purposes, as they assume access
to exact projections onto the feasible set (and thus, exact
evaluations of the gradient mapping).

In the following, we first present a near-optimal method
for minimizing ‖Gη(x)‖ for a smooth convex function that
does not require knowledge of L and works with inexact
projections. We then show how to couple this method with
adaptive tuning of the regularization parameter and restarts
to obtain an overall near-optimal and parameter-free method
for smooth strongly convex minimization. This subsection
can be read independently from the rest of the paper.

3.3.1. SMALL GRADIENT MAPPING OF SMOOTH
FUNCTIONS

Let C ⊆ Rn be a closed, convex, nonempty set and assume
that f : Rn → R is L-smooth on C. The rough idea of
the regularization trick is the following: instead of working
directly with f, use a method for smooth strongly convex
minimization to minimize fσ(x) = f(x) + σ

2 ‖x − x0‖2
for some sufficiently small σ > 0 (for accuracy ε > 0,
σ = Θ

(
ε

‖x∗C−x0‖

)
suffices, where x∗C ∈ argminx∈C f(x)).

As we select σ ourselves, the method can assume knowledge
of the strong convexity parameter σ of fσ(x).

The method that we employ here is a variant of µAGD+
from Cohen et al. (2018), which is similar to Diakonikolas
et al. (2020). However, unlike Cohen et al. (2018); Di-
akonikolas et al. (2020), this method is adapted to work
with an unknown smoothness parameter and to provide
convergence guarantees on ‖Gη(x)‖. One iteration of the
algorithm is provided in AGD-Iter (Algorithm 2). In the

Parameter-free Locally Accelerated Conditional Gradients

algorithm statement, we use ε∼ argmin to indicate that the
function that follows the argmin is minimized to additive er-
ror ε. The main result is summarized in the following lemma,
while the complete analysis is deferred to Appendix B.

Algorithm 2 AGD-Iter(yk−1,vk−1, zk−1, Ak−1, ηk, σ, ε0, η0)

1: ηk = ηk/2
2: repeat
3: ηk = 2ηk
4: θk =

√
σ

2(ηk+σ) , ak = θk
1−θkAk−1

5: ε`k = θkε0/4, ε
M
k = akε0/4

6: xk = 1
1+θk

yk−1 + θk
1+θk

vk−1

7: zk = zk−1 − ak∇fσ(xk) + σakxk

8: vk
εMk∼ argminu∈CMk(u), where Mk(u) =

−〈zk,u〉+ σAk+η0
2 ‖u‖2

9: ŷk = (1− θk)yk−1 + θkvk

10: yk
ε`k∼ argminu∈C `k(u), where `k(u) =

〈∇fσ(ŷk),u− ŷk〉+ ηk+σ
2 ‖u− ŷk‖2

11: until f(ŷk) ≤ f(xk)+〈∇f(xk), ŷk − xk〉+ ηk
2 ‖ŷk−

xk‖2 and f(yk) ≤ f(ŷk) + 〈∇f(ŷk),yk − ŷk〉 +
ηk
2 ‖yk − ŷk‖2

12: Ak = Ak−1 + ak, G̃σηk+σ(ŷk) = (ηk + σ)(ŷk − yk)

13: return ηk, Ak, zk,vk, ŷk,yk, G̃σηk+σ(ŷk)

Lemma 3.5. Let C ⊆ Rn be a closed convex set and let
f : Rn → R be an L-smooth function on C. Let x0 ∈ C
be an arbitrary initial point, and, given σ > 0, define
fσ(x) = f(x) + σ

2 ‖x − x0‖2, x∗σ = argminx∈C fσ(x).

Let z0 = (η0 + σ)x0 − ∇f(x0), y0 = v0 = ŷ0
εM0∼

argminu∈CM0(u), where εM0 > 0, M0(u) is defined
as in Algorithm 2, and the estimate η0 is doubled until
f(y0) ≤ f(x0)+〈∇f(x0),y0 − x0〉+ η0

2 ‖y0−x0‖2, same
as in Algorithm 2. Given η0 > 0, sequence {ak}k≥0, Ak =∑k
i=0 ai, θk = ak

Ak
, and the sequences of errors {εMk }k≥0,

{ε`k}k≥0, let the sequences of points {ŷk,yk}k≥0 evolve
according to Algorithm 2 for k ≥ 1.

If a0 = A0 = 1 and θk = ak
Ak
≤
√

σ
2(ηk+σ) for k ≥ 1, then

for all k ≥ 1

‖Gσηk+σ(ŷk)‖2

ηk + σ
≤ η0

Ak
‖x∗σ − x0‖2 +

2

Ak

k∑
i=0

(2εMi + ε`i),

where Gσηk+σ(ŷk) is the gradient mapping w.r.t. fσ , at ŷk.

In particular, if a0 = A0 = 1, θk = ak
Ak

=
√

σ
2(ηk+σ)

for k ≥ 1, εMk = akε
2

8 , and ε`k ≤ ak
Ak

ε2

8 , then
1

ηk+σ‖G
σ
ηk

(ŷk)‖2 ≤ ε2 after at most

k = O

(√
L

σ
log

(
L‖x∗σ − x0‖

ε

))

iterations. Further, the total number of first-order queries
to f and oracle queries to inexact projections is at most

k′ = k + 2 log

(
2L

η0

)
.

3.3.2. ADAPTIVE REGULARIZATION AND RESTARTS

We now provide the full details for the updates of the accel-
erated sequence. There are two main questions that need to
be addressed: (1) how to adaptively adjust the regularization
parameter σ and (2) how to perform adaptive restarts based
on inexact evaluations of the gradient mapping. For the for-
mer, note that, to obtain a near-optimal algorithm, σ should
not be allowed to decrease too much (and in fact, needs to
satisfy σ = Ω(m); see the proof of Theorem 3.6). For the
latter, we can rely on the strong convexity of the function
`k(u) = 〈∇fσ(ŷk),u− yk〉 + ηk+σ

2 ‖u − ŷk‖2 to relate
the exact and the inexact gradient mapping at ŷk.

We state the main convergence bound of the ACC algorithm
(Algorithm 3) here, while the detailed description of the
algorithm and its analysis are deferred to Appendix B, for
space considerations. Note that the algorithm name stems
from ACCeleration.

Algorithm 3 ACC(x0, η0, σ)
1: σ = 2σ
2: repeat
3: σ = σ/2
4: Run a minimization procedure for `0(u) =

〈∇f(x0),u− x0〉+ η0+σ
2 ‖u−x0‖2. Halt when the

current iterate y of the procedure satisfies `0(y) −
minu∈C `0(u) ≤ ε0,where ε0 = η0+σ

32 ‖y0−x0‖2 =
1

32(η0+σ)‖G̃η0+σ(x0)‖2.
5: Set ŷ0 = v0 = y0; z0 = (η0 + σ)x0 −∇f(x0)
6: a0 = A0 = 1
7: repeat
8: k = k + 1
9: ηk, Ak, zk,vk, ŷk,yk, G̃

σ
ηk+σ(ŷk) =

AGD-Iter(yk−1,vk−1, zk−1, Ak−1, ηk−1, σ, ε0, η0)
10: until 1

ηk+σ‖G̃
σ
ηk+σ(ŷk)‖2 ≤ 9ε0

4

11: until σ√
ηk+σ

‖ŷk − x0‖ ≤
√
ε0

12: return ŷk, ηkσ

Theorem 3.6. Let C ⊆ Rn be a closed convex set, and let
f : Rn → R be a function that is L-smooth and m-strongly
convex on C. Let x0 ∈ C be an arbitrary initial point, and
let σ0, η0 be such that m ≤ σ0 ≤ η0 ≤ L. Let xout

0 = x0,
and for k ≥ 0, consider the following updates:

xout
k+1, ηk+1, σk+1 = ACC(xout

k , ηk, σk),

where ACC is provided in Algorithm 3. Let Gη+σ de-
note the gradient mapping of f on C with parameter

Parameter-free Locally Accelerated Conditional Gradients

η + σ. Then, for any ε > 0, ‖Gηk+σk(xout
k)‖ ≤ ε for

k = O
(

log
(
L‖Gη0+σ0

(x0)‖
mε

))
. The algorithm for comput-

ing xout
k utilizes a total number of

K =

(√
L

m
log

(
L

m

)
log

(
L

m

‖Gη0+σ0
(x0)‖

ε

))

queries to the FOO for f and an inexact and efficiently
computable projection oracle for C, without knowledge of
any of the problem parameters.

Observe that, up to the log(L/m) factor, the bound in The-
orem 3.6 is optimal for the class of smooth strongly convex
functions, under the local oracle model (which includes the
FOO model as a special case).

3.4. Coupling of Methods and Local Acceleration

We now show how to couple the AFW algorithm (Algo-
rithm 5 in Appendix A) with the algorithm described in the
previous subsection to achieve local acceleration. The key
observation is that after a burn-in phase whose length is
independent of ε, every active set that AFW constructs con-
tains x∗ = argminx∈C f(x). Thus, minimizing f(x) over
X becomes equivalent to minimizing f(x) over the con-
vex hull of the active set of AFW. Of course, the algorithm
needs to adapt to this setting without knowledge of when the
burn-in phase has ended. The pseudocode for the resulting
algorithm Parameter-Free Locally Accelerated Conditional
Gradients (PF-LaCG) is provided in Algorithm 4. The cou-
pling between AFW and ACC in PF-LaCG is illustrated on
a simple example in Fig. 1.

For simplicity, Algorithm 4 is stated with the accelerated
sequence started with x0 ∈ vert (X) and with the active
set S0 = {x0}. As S0 contains only one vertex, there is
no need to run the accelerated algorithm until a later restart
(triggered by the condition in Line 6) where the active set
contains more than one vertex occurs. Additionally, for the
bound on the number of oracle queries in Theorem 3.7 to
hold, we need the iterations of ACC (Algorithm 6) and AFW
(Algorithm 5) to be aligned, in the sense that one iteration
of ACC (Algorithm 2) occurs in parallel to one iteration
of AFW. This is only needed for the theoretical bound on
oracle complexity. In practice, the two algorithms can be
run in parallel without aligning the iterations, so that the
overall execution time (modulo coordination at restarts) is
never higher than for running AFW alone.

We are now ready to state our main result. The complete
proof is deferred to Appendix C.

Theorem 3.7. Let X ⊆ Rn be a closed convex poly-
tope of diameter D, and let f : Rn → R be a func-
tion that is L-smooth and m-strongly convex on X . Let
Assumptions 2.2 and 2.4 be satisfied for f,X . Denote

Figure 1. An example of coupling between AFW and ACC in PF-
LaCG on a tetrahedron as the feasible set, starting from initial
point x0 with the base of the tetrahedron as its support S0. The
two algorithms are run in parallel from x0: AFW optimizes over
the entire tetrahedron, allowing it to add and remove vertices,
while ACC optimizes over the base of the tetrahedron only and it
cannot converge to the optimal point x∗, as x∗ /∈ co(S0). After
several iterations, once the restart criterion for AFW is triggered,
PF-LaCG chooses the output point of AFW over that of ACC,
as wAFW ≤ min{wACC, wACC

prev /2}, hence a PF-LaCG restart
occurs at xR. For ease of exposition we assume that the point
outputted by AFW is contained in F(x∗) after a single halving of
w(x,S), although in practice several restarts may be needed for
AFW to reach F(x∗). Since xR is on the optimal face F(x∗), PF-
LaCG has completed the burn-in phrase. The two algorithms again
run in parallel from xR after the restart. However, ACC converges
to the optimal x∗ at an accelerated rate, much faster than AFW.
Hence, local acceleration is achieved by PF-LaCG while being at
least as fast as vanilla AFW.

x∗ = argminx∈X f(x). Given ε > 0, let xout be the output
point of PF-LaCG (Algorithm 4), initialized at an arbitrary
vertex x0 of X . Then w(xout,Sout) ≤ ε and PF-LaCG
uses a total of at most

K =O

(
min

{
log

(
w(x0,S0)

LD2

)
+
LD2

mδ2
log

(
w(x0,S0)

ε

)
,

K0 +K1 +

√
L

m
log

(
L

m

)
log

(
LD

mδ

)
log

(
LD

ε

)})
queries to the FOO for f and the LMO for X , where

K0 =
32L

m ln 2

(
D

δ(X)

)2

· log
(2w(x0,S0)

min{ 1
L

(
τ

(2D(
√
L/m+1))

)2

, τ, LD2, 2wc}

)
,

and K1 = 128LD2

mδ2 .

Strong Wolfe Gap as an Upper Bound For Primal Gap.
Note that while in Theorem 3.7 we show a convergence rate
for w(x,S), this translates to the same convergence rate
in primal gap, as the aforementioned quantity is an upper
bound on the strong Wolfe gap and hence an upper bound
on the primal gap (Kerdreux et al., 2019). Furthermore, we

Parameter-free Locally Accelerated Conditional Gradients

Algorithm 4 PF-LaCG(x0 ∈ vert(X), ε > 0)

1: Sout = SAFW = SACC = {x0}
2: xout = xAFW = xACC = x0

3: wout = wAFW
prev = w(x0,S0)

4: while wout > ε do
5: Run AFW and restarted ACC (Theorem 3.6) in par-

allel, and let (xAFW,SAFW) and (xACC,SACC) de-
note their respective most recent output points and
active sets; note that ACC is run on C = co(SACC)

6: if wAFW = w(xAFW,SAFW) ≤ 1
2w

AFW
prev then

7: wAFW
prev = wAFW, wACC

prev = wACC,

8: Compute wACC = w(xACC,SACC)
9: if wAFW ≤ min{wACC, wACC

prev /2} then
10: xACC = xAFW, SACC = SAFW

11: xout = xAFW, Sout = SAFW

12: wout = wAFW

13: else
14: if |SACC| ≤ |SAFW| then
15: xAFW = xACC, SAFW = SACC

16: wAFW = wACC

17: end if
18: xout = xACC, Sout = SACC, wout = wACC

19: end if
20: end if
21: end while
22: return xout

remark that w(x,S) = 0 if and only if x = x∗ when S ⊆
vert(X) is a proper support of x with respect to the polytope
X . In the next section we illustrate our computational results
with respect to the primal gap f(x)−f(x∗), as this quantity
is more common in the optimization literature.

4. Computational Experiments
We numerically demonstrate that PF-LaCG (Algorithm 4)
when implemented in Python 3 outperforms other parameter-
free CG methods in both iteration count and in wall-clock
time. Most notably, we compare against the AFW, PFW,
Decomposition-Invariant CG (DICG) (in the case of the
probability simplex, as this algorithm only applies to 0− 1
polytopes (Garber & Meshi, 2016)) and the Lazy AFW
(AFW (Lazy)) (Braun et al., 2017) algorithms. As pre-
dicted by our theoretical results, the improvement is ob-
served locally, once the iterates of the algorithm reach the
optimal face. Further, we empirically observe on the consid-
ered examples that the active sets do not become too large,
which is important for the accelerated algorithm to have
an edge over standard CG updates in the overall wall-clock
time. Our code can be found at https://github.com/
ericlincc/Parameter-free-LaCG.

Similar to Diakonikolas et al. (2020), we solve the min-

imization subproblems (projections onto the convex hull
of the active sets) within ACC (Algorithm 6) using Nes-
terov’s accelerated gradient descent (Nesterov, 2018) with
O (n log n) projections onto the simplex described in Duchi
et al. (2008, Algorithm 1). Even though in our analysis
we consider coupling accelerated sequence with AFW, we
note that PF-LaCG can be coupled with any CG variant that
maintains an active set, such as standard AFW or PFW.

Since the execution of local acceleration within PF-LaCG
is completely independent of the execution of the coupled
CG variant, it is possible to run the locally accelerated algo-
rithm in parallel on a separate core within one machine or
even on a secondary machine, allowing us to utilize more
computational power with the goal of solving large-scale
problems to high accuracy in less computing time. In our
experiments, we implemented the former approach where
we run each process using one CPU core, and we run the
accelerated algorithm of PF-LaCG on a separate process.
This approach enables us to guarantee that PF-LaCG is not
slower than the CG variant such as AFW and PFW barring
negligible process creation overhead and inter-process com-
munication while achieving much faster convergence once
we have reached the optimal face.

Probability Simplex. The unit probability simplex, al-
though a toy example, can give us insight into the behaviour
of PF-LaCG. We know that after a restart in which the
AFW active set satisfies x∗ ∈ co (Sk), we should expect
to see accelerated convergence from the iterates computed
by the ACC algorithm. Given the structure of the prob-
ability simplex, this is easy to check in the experiments
once we have a high-accuracy solution to the minimiza-
tion problem. The function being minimized in this ex-
ample is f(x) = xT

(
MTM + α1n

)
x/2 + bTx, where

M ∈ Rn×n and b ∈ Rn have entries sampled uniformly
at random between 0 and 1 and n = 10000. The pa-
rameter α = 500 is set so that the objective function
satisfies m ≈ 500. The resulting condition number is
L/m = 50000, and the number of nonzero elements in x∗

is around 320. The AFW algorithm in PF-LaCG (AFW) sat-
isfies that x∗ ∈ co (Sk) around iteration 400, consequently
we achieve the accelerated convergence rate from then on-
wards. The same can be said regarding PF-LaCG (PFW)
around iteration 350.

Structured LASSO Regression. The LASSO is an ex-
tremely popular sparse regression analysis method in statis-
tics, and has become an important tool in ML. In many
applications, we can impose additional structure on the solu-
tion being learnt through the addition of linear constraints;
this is useful, for example, when learning sparse physics
dynamics from data (see Carderera et al. (2021)), in which
we can impose additional linear equality constraints on the

https://github.com/ericlincc/Parameter-free-LaCG
https://github.com/ericlincc/Parameter-free-LaCG

Parameter-free Locally Accelerated Conditional Gradients

Probability Simplex Structured LASSO Constrained Birkhoff

Figure 2. Numerical performance of PF-LaCG: Top row depicts primal gap convergence in terms of iteration count, while bottom row
depicts primal gap convergence in terms of time. Left-most column shows the results over the probability simplex, center column shows
the results for the structured Lasso problem, and right-most column shows the results for the constrained Birkhoff polytope.

problem to reflect the symmetries present in the physical
problem. This allows us to learn dynamics that are con-
sistent with the underlying physics, and which potentially
generalize better when predicting on unseen data. The objec-
tive function is the same as in the last section, except we now
have n = 1000, α = 100, and we choose the elements of b
uniformly from 0 to 100. This results in a condition number
of L/m = 250000. The feasible region is the intersection
of the `1 unit ball and a series of equality constraints. To
generate the additional equality constraints, we sample 125
pairs of distinct integers (i, j) from 1 ≤ i, j ≤ n without
replacement, and we set xi = xj for each pair, adding 125
linear constraints.

Constrained Birkhoff Polytope. We also solve a match-
ing with the same quadratic function as in the previous
section with α = 1, and where we have scaled the matrix
MTM to have a maximum eigenvalue of 100000. This re-
sults in an objective function that has a condition number of
L/m = 100000. The matching problem is solved over the
Birkhoff polytope with n = 400 where we have imposed
additional linear constraints. We sample 80 integers i from
1 ≤ i ≤ n without replacement, and we set xi = 0 for the
first 40 integers (to represent that certain matchings are not
possible), and xi ≤ 0.5 for the remaining 40 integers to
represent a maximum fractional matching. As in the LaCG
algorithm (Diakonikolas et al., 2020), our approach is com-
patible with the lazification technique for AFW (Braun et al.,
2017). In this last example we couple our algorithm with the
AFW (Lazy) algorithm, resulting in the PF-LaCG (Lazy)
algorithm. Moreover, we also benchmark against the AFW
(Lazy) algorithm for reference.

5. Discussion
We have introduced a novel projection-free PF-LaCG algo-
rithm for minimizing smooth and strongly convex functions
over polytopes. This algorithm is parameter-free and locally
accelerated. In particular, we have shown that after a finite
burn-in phase (independent of the target error ε) PF-LaCG
achieves a near-optimal accelerated convergence rate with-
out knowledge of any of the problem parameters (such as the
smoothness or strong convexity of the function). As men-
tioned in the introduction, global acceleration is generally
not possible for CG-type methods. We have also demon-
strated the improved locally accelerated convergence rate of
PF-LaCG using numerical experiments. Some interesting
questions for future research remain. For example, it is an
interesting and practically relevant question whether local
acceleration is possible for CG methods that are not active
set-based, such as, e.g., DICG (Garber & Meshi, 2016),
which would possibly lead to even faster algorithms.

Acknowledgments
This research was partially funded by NSF grant CCF-
2007757, by the Office of the Vice Chancellor for Re-
search and Graduate Education at the University of Wis-
consin–Madison with funding from the Wisconsin Alumni
Research Foundation, and by the Deutsche Forschungsge-
meinschaft (DFG) through the DFG Cluster of Excellence
MATH+ and the Research Campus Modal funded by the
German Federal Ministry of Education and Research (fund
numbers 05M14ZAM, 05M20ZBM).

Parameter-free Locally Accelerated Conditional Gradients

References
Bashiri, M. A. and Zhang, X. Decomposition-invariant con-

ditional gradient for general polytopes with line search.
In NIPS, pp. 2690–2700, 2017.

Beck, A. First-order methods in optimization. MOS-SIAM,
2017.

Beck, A. and Shtern, S. Linearly convergent away-step
conditional gradient for non-strongly convex functions.
Mathematical Programming, 164(1-2):1–27, 2017.

Braun, G., Pokutta, S., and Zink, D. Lazifying conditional
gradient algorithms. In Proc. ICML’2017, 2017.

Braun, G., Pokutta, S., Tu, D., and Wright, S. Blended
conditional gradients: The unconditioning of conditional
gradients. In Proc. ICML’19, 2019.

Carderera, A. and Pokutta, S. Second-order conditional
gradient sliding. arXiv preprint arXiv:2002.08907, 2020.

Carderera, A., Pokutta, S., Schütte, C., and Weiser, M.
CINDy: Conditional gradient-based identification of non-
linear dynamics–noise-robust recovery. arXiv preprint
arXiv:2101.02630, 2021.

Chen, S. S., Donoho, D. L., and Saunders, M. A. Atomic de-
composition by basis pursuit. SIAM Journal on Scientific
Computing, 20(1):33–61, 1998.

Cohen, M. B., Diakonikolas, J., and Orecchia, L. On accel-
eration with noise-corrupted gradients. In Proc. ICML’18,
2018.

Combettes, C. W. and Pokutta, S. Complexity of linear
minimization and projection on some sets. arXiv preprint
arXiv:2101.10040, 2021.

Combettes, C. W., Spiegel, C., and Pokutta, S. Projection-
free adaptive gradients for large-scale optimization. arXiv
preprint arXiv:2009.14114, 2020.

Condat, L. Fast projection onto the simplex and the `1 ball.
Mathematical Programming, 158(1):575–585, 2016.

Diakonikolas, J. and Orecchia, L. The approximate duality
gap technique: A unified theory of first-order methods.
SIAM Journal on Optimization, 29(1):660–689, 2019.

Diakonikolas, J., Carderera, A., and Pokutta, S. Locally
accelerated conditional gradients. In Proc. AISTATS’20,
2020.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T.
Efficient projections onto the `1-ball for learning in high
dimensions. In Proc. NIPS’08, 2008.

Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., and
Staudigl, M. Self-concordant analysis of Frank-Wolfe
algorithms. In Proc. ICML’20, 2020.

Frank, M. and Wolfe, P. An algorithm for quadratic pro-
gramming. Naval research logistics quarterly, 3(1-2):
95–110, 1956.

Garber, D. Faster projection-free convex optimization over
the spectrahedron. In Proc. NIPS’16, 2016.

Garber, D. Revisiting Frank-Wolfe for polytopes: Strict
complementarity and sparsity. In Proc. NeurIPS’20,
2020.

Garber, D. and Meshi, O. Linear-memory and
decomposition-invariant linearly convergent conditional
gradient algorithm for structured polytopes. In
Proc. NIPS’16, 2016.

Guélat, J. and Marcotte, P. Some comments on Wolfe’s
‘away step’. Mathematical Programming, 35(1):110–119,
1986.

Gutman, D. H. and Peña, J. F. The condition of a function
relative to a polytope. arXiv preprint arXiv:1802.00271,
2018.

Hazan, E. and Luo, H. Variance-reduced and projection-free
stochastic optimization. In Proc. ICML’16, 2016.

Held, M., Wolfe, P., and Crowder, H. P. Validation of
subgradient optimization. Mathematical programming, 6
(1):62–88, 1974.

Ito, M. and Fukuda, M. Nearly optimal first-order meth-
ods for convex optimization under gradient norm mea-
sure: An adaptive regularization approach. arXiv preprint
arXiv:1912.12004, 2019.

Jaggi, M. Revisiting Frank-Wolfe: Projection-free sparse
convex optimization. In Proc. ICML’13, 2013.

Kerdreux, T., d’Aspremont, A., and Pokutta, S. Restarting
Frank-Wolfe: Faster rates under Hölderian error bounds.
In Proc. AISTATS’19, 2019.

Kerdreux, T., d’Aspremont, A., and Pokutta, S. Projection-
free optimization on uniformly convex sets. In Proc. AIS-
TATS’21, 2021.

Lacoste-Julien, S. and Jaggi, M. On the global linear
convergence of Frank-Wolfe optimization variants. In
Proc. NIPS’15, 2015.

Lam, S. K., Pitrou, A., and Seibert, S. Numba: A LLVM-
based Python JIT compiler. In Proceedings of the Second
Workshop on the LLVM Compiler Infrastructure in HPC,
pp. 1–6, 2015.

Parameter-free Locally Accelerated Conditional Gradients

Lan, G. The complexity of large-scale convex program-
ming under a linear optimization oracle. arXiv preprint
arXiv:1309.5550, 2013.

Lei, Q., Zhuo, J., Caramanis, C., Dhillon, I. S., and Di-
makis, A. G. Primal-dual block generalized Frank-Wolfe.
Proc. NeurIPS’19, 2019.

Levitin, E. S. and Polyak, B. T. Constrained minimiza-
tion methods. USSR Computational mathematics and
mathematical physics, 6(5):1–50, 1966.

Négiar, G., Dresdner, G., Tsai, A., El Ghaoui, L., Lo-
catello, F., Freund, R., and Pedregosa, F. Stochastic
Frank-Wolfe for constrained finite-sum minimization. In
Proc. ICML’20, 2020.

Nesterov, Y. How to make the gradients small. Optima.
Mathematical Optimization Society Newsletter, (88):10–
11, 2012.

Nesterov, Y. Gradient methods for minimizing composite
functions. Mathematical Programming, (140(1)):125–
161, 2013.

Nesterov, Y. Lectures on Convex Optimization. Springer,
2018.

Peña, J. and Rodrı́guez, D. Polytope conditioning and linear
convergence of the Frank–Wolfe algorithm. Mathematics
of Operations Research, 44(1):1–18, 2019.

Pedregosa, F., Negiar, G., Askari, A., and Jaggi, M. Linearly
convergent Frank–Wolfe with backtracking line-search.
In Proc. AISTATS’20, 2020.

Roulet, V. and d’Aspremont, A. Sharpness, restart, and
acceleration. SIAM Journal on Optimization, 30(1):262–
289, 2020.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 58(1):267–288, 1996.

Tsiligkaridis, T. and Roberts, J. On Frank-Wolfe optimiza-
tion for adversarial robustness and interpretability. arXiv
preprint arXiv:2012.12368, 2020.

Zhang, M., Shen, Z., Mokhtari, A., Hassani, H., and Karbasi,
A. One sample stochastic Frank-Wolfe. In Proc. AIS-
TATS’20, 2020.

Zhou, S., Gupta, S., and Udell, M. Limited memory Kelley’s
method converges for composite convex and submodular
objectives. arXiv preprint arXiv:1807.07531, 2018.

Parameter-free Locally Accelerated Conditional Gradients

Parameter-free Locally Accelerated Conditional Gradients

Supplementary material

Outline. The appendix of the paper is organized as follows:

• Section A presents the proofs related to the AFW algorithm used in the main body of the paper.

• Section B presents the proofs related to the accelerated algorithm with inexact gradient mappings that is used in this work,
as well as come useful properties of the gradient mapping.

• Section C shows how we can couple the AFW algorithm and the accelerated algorithm presented in Section B to achieve
a parameter-free accelerated CG variant, dubbed Parameter-free Locally Accelerated Conditional Gradients (PF-LaCG).

• Section D presents the full details of the computational experiments performed in the paper.

A. Away-Step Frank-Wolfe (AFW)
We use a modified version of the Away-Step Frank-Wolfe (AFW) algorithm (Guélat & Marcotte, 1986; Lacoste-Julien
& Jaggi, 2015) that is run until the Frank-Wolfe gap is halved, in a similar manner as in (Kerdreux et al., 2019). The
only difference between the AFW algorithm presented in Algorithm 5 and the one from (Kerdreux et al., 2019) is that
we substitute the condition that chooses between Frank-Wolfe steps (Line 6) and away-steps (Line 8) for the condition
used in the classical Away-Step Frank Wolfe (AFW) algorithm, shown in Line 5. In the following, we will say that a
step is a full-progress step if it is either a Frank-Wolfe Step (Line 6) or an away-step (Line 8) that is not a drop step, i.e.,
when λk < αsk

k /(1− α
sk
k), where αsk

k is the barycentric coordinate of sk with respect to the current active set. Here we
summarize the results that are utilized in our analysis.

The following definition is introduced for completeness, to state the results from (Kerdreux et al., 2019).

Definition A.1 (Away curvature). Given a problem (P), the away curvature CAf is defined as

CAf := sup
x,s,v∈X
ρ∈[0,1]

y=x+ρ(s−v)

2

ρ2
(f(y)− f(x)− ρ 〈∇f(x), s− v〉).

As f is L-smooth, we have CAf ≤ LD2, where D = maxx,y∈X ‖y − x‖ denotes the diameter of X .

Fact A.2 ((Kerdreux et al., 2019, Lemma 3.6)). When f is m-strongly convex over X and X is a polytope satisfying
δ-scaling inequality with δ > 0, then we have for all x ∈ X :

f(x)−min
y∈X

f(y) ≤ 2w(x)2

mδ2
.

Proposition A.3 (Iterations needed to halve w(x,S) (Kerdreux et al., 2019, Proposition 4.1)). Let f be an L-smooth,
m-strongly convex function with away curvature CAf and let X be a polytope satisfying the δ-scaling inequality with δ > 0.
Assume that x0 ∈ X is such that w(x0)/4 ≤ CAf . Then AFW (Algorithm 5) outputs an iterate xK ∈ X such that

w(xK ,SK) ≤ w(x0,S0)/2

after at most

K ≤ |S0| − |SK |+
128CAf
mδ2

iterations, where S0 and SK are the initial active set and the active set at iteration K respectively.

Parameter-free Locally Accelerated Conditional Gradients

Algorithm 5 Away-Step Frank-Wolfe Algorithm: AFW(x0,S0)

1: k := 0
2: while w(xk,Sk) > w(x0,S0)/2 do
3: vk := argminu∈X 〈∇f(xk),u〉 and dFW

k := vk − xk
4: sk := argminu∈Sk 〈−∇f(xk),u〉 with Sk current active set and dAway

k := xk − sk

5: if −
〈
∇f(xk),dFW

k

〉
≥ −

〈
∇f(xk),dAway

k

〉
then

6: dk := dFW
k with λmax := 1

7: else
8: dk := dAway

k with λmax :=
α

sk
k

1−αsk
k

9: end if
10: xk+1 := xk + λkdk with λk ∈ [0, λmax] via line-search
11: Update active set Sk+1 and coefficients {αv

k+1}v∈Sk+1

12: k := k + 1
13: end while
14: return (xk,Sk, w(xk,Sk)) where xk ∈ X and w(xk,Sk) ≤ w(x0,S0)/2

Proof. Note that by Fact A.2 we have that the 2-strong Wolfe primal bound holds. We only explain the part of the proof that
differs from the proof in (Kerdreux et al., 2019), due to the modified condition in Line 5. This condition only affects how we
bound w(x0,S0), depending on whether we take a Frank-Wolfe step or an away-step, as follows:

w(x0,S0)/2 < w(xk,Sk) = −
〈
∇f(xk),dFW

k

〉
−
〈
∇f(xk),dAway

k

〉
≤ −2 〈∇f(xk),dk〉 ,

where the first inequality simply states that we have not yet halved w(x,S) (see Line 2), and the second inequality stems
from the condition with which we choose the steps in Line 5. This allows us to claim that in case a Frank-Wolfe step is
chosen we have that w(x0,S0)/4 < 〈∇f(xk),dk〉. Using this fact, we can proceed with the same arguments as in the proof
of Kerdreux et al. (2019, Proposition 4.1), which is omitted.

Notice that Proposition A.3 requires an assumption that w(x0)/4 ≤ CAf . This assumption is satisfied after a small number
of iterations, as summarized in the following proposition.

Proposition A.4 ((Kerdreux et al., 2019, Proposition 4.2)). Assume the AFW algorithm (Algorithm 5) is run repeatedly
until it outputs a point x ∈ X such that w(x,S)/4 ≤ CAf where S is a proper support for x. This will happen after at most

T0 =
16

log 2
log

w(x0,S0)

2CAf
+ |S0|

FOO and LMO calls.

Since w(x) ≤ w(x,S) for all x ∈ X and any support S for x, Proposition A.4 implies that Proposition A.3 applies after at
most T0 initial iterations. The proof is omitted and can instead be found in Kerdreux et al. (2019).

A.1. Implications of Strict Complementarity

We reproduce here for completeness the relevant results from Garber (2020, Theorem 1), where it is shown that if the
iterates are not in F (x∗) and the primal gap is below a given tolerance, then all subsequent steps will be drop steps that
drop vertices in the current active set that are not in F (x∗).

Theorem A.5. If the strict complementarity assumption is satisfied (Assumption 2.4) and the primal gap satisfies f(xk)−
f(x∗) < 1/2 min

{
(τ/(2D(

√
L/m+ 1)))2/L, τ, LD2

}
then the following holds for the AFW algorithm (Algorithm 5):

1. If xk /∈ F (x∗), AFW will perform an away step that drops a vertex sk ∈ vert (X) \ F (x∗).

Parameter-free Locally Accelerated Conditional Gradients

2. If xk ∈ F (x∗), AFW will either perform a Frank-Wolfe step with a vertex vk ∈ vert (F (x∗)) or an away-step with a
vertex sk ∈ vert (F (x∗)). Regardless of which step is chosen, the iterate will satisfy:

w(xk,Sk) ≤ LD
√

2√
m

√
f (xk)− f (x∗).

Proof. We first prove the first claim. Consider two vertices v ∈ vert (X) ∩ F (x∗) and s ∈ vert (X) \ F (x∗), then we
have that:

〈s− v,∇f(xk)〉 = 〈s− x∗,∇f(x∗)〉+ 〈x∗ − v,∇f(x∗)〉+ 〈s− v,∇f(xk)−∇f(x∗)〉
≥ τ − ‖s− v‖ ‖∇f(xk)−∇f(x∗)‖
≥ τ − LD ‖xk − x∗‖

≥ τ − LD
√

2 (f(xk)− f(x∗)) /m

≥ τ/2, (A.1)

where the first inequality comes from the strict complementarity assumption, as v ∈ vert (X) ∩ F (x∗) and s ∈ vert (X) \
F (x∗), and the Cauchy-Schwarz inequality, the second from L-smoothness and the fact that ‖s− v‖ ≤ D, and the
third inequality from m-strong convexity. Note that the last inequality comes from the fact that we assume that the
primal gap satisfies f(xk) − f(x∗) < (τ/(2D(

√
L/m + 1)))2/(2L) ≤ (τ/(2LD))

2
m/2. This allows us to claim that

〈s,∇f(xk)〉 > 〈v,∇f(xk)〉 for any v ∈ vert (X)∩F (x∗) and s ∈ vert (X) \ F (x∗), which means that the Frank-Wolfe
vertex in Line 3 satisfies that vk ∈ vert (X) ∩ F (x∗). Alternatively, if we have that xk /∈ F (x∗) then Sk \ F (x∗) is
nonempty, which also means that the away-vertex chosen in Line 4 will be such that sk ∈ Sk \F (x∗). The proof proceeds by
showing that the AFW algorithm will chose to perform an away-step in Line 5 of Algorithm 5, as opposed to a Frank-Wolfe
step. Let s ∈ Sk \ F (x∗), using arguments that are similar to the ones in the previous chain of inequalities, then:

〈s− xk,∇f(xk)〉 = 〈s− x∗,∇f(x∗)〉+ 〈s− x∗,∇f(xk)−∇f(x∗)〉+ 〈x∗ − xk,∇f(xk)〉
≥ τ − ‖s− x∗‖ ‖∇f(xk)−∇f(x∗)‖ −max

v∈X
〈xk − v,∇f(xk)〉

≥ τ − LD ‖xk − x∗‖ −max
v∈X
〈xk − v,∇f(xk)〉

≥ τ − LD
√

2 (f(xk)− f(x∗)) /m−D
√

2L(f(xk)− f(x∗))

= τ −D
√

2L (f(xk)− f(x∗))
(√

L/m+ 1
)

≥ τ/2, (A.2)

where the first inequality stems from the strict complementarity assumption, which applies to s ∈ vert (X) \ F (x∗), the
Cauchy-Schwarz inequality, and the fact that 〈xk − x∗,∇f(xk)〉 ≤ maxv∈X 〈xk − v,∇f(xk)〉. The second inequality
uses the fact that ‖s− x∗‖ ≤ D and L-smoothness. Note that from Theorem 2 in Lacoste-Julien & Jaggi (2015),
we know that since the function is L-smooth then if we have that f(xk) − f(x∗) < LD2/2, then we also have that
maxv∈X 〈xk − v,∇f(xk)〉 ≤ D

√
2L(f(xk)− f(x∗)). The third inequality uses the aforementioned bound, along with

m-strong convexity for the term that contains ‖xk − x∗‖. The last inequality again uses the assumption that the primal gap
satisfies f(xk)− f(x∗) < (τ/(D(

√
L/m+ 1)))2/(8L). Moving on to the bound on the Frank-Wolfe gap, using the bound

on Theorem 2 in Lacoste-Julien & Jaggi (2015) and our assumption on the primal gap allows us to conclude that:

max
v∈X
〈xk − v,∇f(xk)〉 ≤ D

√
2L(f(xk)− f(x∗)) ≤ τ

2(
√
L/m+ 1)

≤ τ

2
, (A.3)

where the last inequality simply stems from L/m ≥ 1. Putting together Eqs. (A.2) and (A.3) we can conclude that
for any s ∈ Sk \ F (x∗) we have that 〈s− xk,∇f(xk)〉 ≥ maxv∈X 〈xk − v,∇f(xk)〉. Consequently, we have that
maxs∈Sk\F(x∗) 〈s− xk,∇f(xk)〉 ≥ maxv∈X 〈xk − v,∇f(xk)〉. This means that the AFW algorithm will perform an
away step, moving away from a vertex sk ∈ Sk \ F (x∗). The last step of the proof proceeds to show that the step size
chosen in the away-step corresponds to the largest possible step size λmax. To do this, assume for contradiction that this is
not the case, and assume that λk = argminλ∈[0,λmax] f(x + λ(xk − sk)) < λmax, by the optimality of the line search we

Parameter-free Locally Accelerated Conditional Gradients

must have that 〈sk − xk,∇f(xk+1)〉 = 0. On the other hand, we can write:

〈sk − xk,∇f(xk+1)〉 = 〈sk − x∗,∇f(x∗)〉+ 〈x∗ − xk,∇f(x∗)〉+ 〈sk − xk,∇f(xk+1)−∇f(x∗)〉 ,
≥ τ − (f(xk)− f(x∗)) + 〈sk − xk,∇f(xk+1)−∇f(x∗)〉 (A.4)
> τ/2− ‖sk − xk‖ ‖∇f(xk+1)−∇f(x∗)‖ (A.5)
≥ τ/2− LD ‖xk+1 − x∗‖

≥ τ/2− LD
√

2(f(xk)− f(x∗))/m

> 0,

where the inequality in Eq. (A.4) follows from the strict complementarity assumption, which means that
〈sk − x∗,∇f(x∗)〉 ≥ τ , and from convexity, which implies that 〈x∗ − xk,∇f(x∗)〉 ≥ − (f(xk)− f(x∗)). The fol-
lowing inequality, shown in Eq. (A.5), follows from the Cauchy-Schwarz inequality and from the bound on the primal gap
f(xk)−f(x∗) < τ/2. The following inequalities follow from the application of theL-smoothness andm-strong convexity of
the objective function and the bound on the primal gap f(xk)−f(x∗) < (τ/(2D(

√
L/m+1)))2/(2L) ≤ (τ/(2LD))

2
m/2.

This proves the desired contradiction, and so we must have that λk = λmax. This means that at iteration k we have performed
an away step that has dropped a vertex sk ∈ Sk \ F (x∗). This proves the first claim.

The first part of the second claim follows by noting that if xk ∈ F(x∗), then the away-vertex chosen in Line 4 will satisfy
sk ∈ F(x∗), as Sk ⊆ F(x∗). Moreover by Eq. (A.1) we know that the Frank-Wolfe vertex chosen in Line 3 will satisfy
vk ∈ F(x∗). This proves the first part of the second claim. Moving on to the second part of the second claim. If we denote
the active set of xk at iteration k by Sk it follows that Sk ⊆ F (x∗) from the fact that xk ∈ F (x∗) (as otherwise we would
have xk /∈ F (x∗)). Moreover from the first part of the second claim we have that vk = argminu∈X 〈∇f(xk),u〉 ∈ F (x∗)
and sk = argminu∈Sk 〈−∇f(xk),u〉 ∈ F (x∗). From the definition of w(xk,Sk) we have that:

w(xk,Sk) = 〈sk − vk,∇f(xk)〉
= 〈sk − x∗,∇f(x∗)〉+ 〈x∗ − vk,∇f(x∗)〉+ 〈sk − vk,∇f(xk)−∇f(x∗)〉
= 〈sk − vk,∇f(xk)−∇f(x∗)〉
≤ ‖sk − vk‖ ‖∇f(xk)−∇f(x∗)‖
≤ LD ‖xk − x∗‖

≤ LD
√

2√
m

√
f (xk)− f (x∗).

Where the third equality follows from the strict complementarity assumption (Assumption 2.4), and the fact that as
sk,vk ∈ F (x∗) we have that 〈x∗ − vk,∇f(x∗)〉 = 0 and 〈sk − x∗,∇f(x∗)〉 = 0. The first inequality follows from the
Cauchy-Schwartz inequality, the second from the L-smoothness of f(x) and ‖sk − vk‖ ≤ D, and the last one from the
m-strong convexity of the f(x). This completes the proof.

Corollary A.6. If the strict complementarity assumption is satisfied (Assumption 2.4) and the primal gap satisfies f(xk)−
f(x∗) < 1/2 min

{
(τ/(2D(

√
L/m+ 1)))2/L, τ, LD2

}
then the claims in Theorem A.5 hold for the Pairwise-Step

Frank-Wolfe (PFW) algorithm, the natural extension of the AFW algorithm to the use of pairswise-steps.

Proof. The proof uses many of the same techniques and concepts as Theorem A.5, so we only give a brief proof-sketch here.
Note that chain of inequalities in Eq. (A.1) is independent of the algorithm being used. Therefore if the primal gap satisfies
f(xk)−f(x∗) < (τ/(2D(

√
L/m+1)))2/(2L) ≤ (τ/(2LD))

2
m/2, then we can claim that 〈s,∇f(xk)〉 > 〈v,∇f(xk)〉

for any v ∈ vert (X) ∩ F (x∗) and s ∈ Sk \ F (x∗), which means that the Frank-Wolfe vertex in the PFW algorithm
satisfies that vk ∈ vert (X) ∩ F (x∗). Alternatively, this also means that the away-vertex chosen in the PFW algorithm
will be such that sk ∈ Sk \ F (x∗). Note that the directions towards which the iterates move in the PFW algorithm are
given by sk − xk, with a maximum step size of λmax = αsk

k . If the maximum step size is chosen this means that the vertex
sk ∈ Sk \ F (x∗) has been dropped, and so to proceed we will show that this maximum step size is chosen. To do this,
assume for contradiction that this is not the case, and assume that λk = argminλ∈[0,λmax] f(x + λ(xk − sk)) < λmax, by

Parameter-free Locally Accelerated Conditional Gradients

the optimality of the line search we must have that 〈sk − xk,∇f(xk+1)〉 = 0. On the other hand, we can write:

〈sk − vk,∇f(xk+1)〉 = 〈sk − x∗,∇f(x∗)〉+ 〈x∗ − vk,∇f(x∗)〉+ 〈sk − vk,∇f(xk+1)−∇f(x∗)〉 ,
> τ − ‖sk − vk‖ ‖∇f(xk+1)−∇f(x∗)‖ (A.6)
≥ τ − LD ‖xk+1 − x∗‖

≥ τ − LD
√

2(f(xk)− f(x∗))/m

> 0,

where the inequality in Eq. (A.6) follows from the Cauchy-Schwarz inequality and the strict complementarity assumption
for sk and vk, which means that 〈sk − x∗,∇f(x∗)〉 ≥ τ and 〈vk − x∗,∇f(x∗)〉 = 0. The following inequalities follow
from the application of the L-smoothness and m-strong convexity of the objective function and the bound on the primal gap
f(xk)− f(x∗) < (τ/(2D(

√
L/m+ 1)))2/(2L) ≤ (τ/(2LD))

2
m/2. This proves the desired contradiction, and so we

must have that λk = λmax. This means that at iteration k we have dropped a vertex sk ∈ Sk \ F (x∗) from the active set Sk.
This proves the first claim. The proof of the second claim and the bound on w(xk,Sk) can be repeated word for word from
Theorem A.5.

Using Theorem A.5 (or Corollary A.6 for the Pairwise-Step Frank-Wolfe (PFW)), and assuming that x0 ∈ vert (X), and
using the primal gap convergence gap guarantee in Lacoste-Julien & Jaggi (2015, Theorem 1), we can bound the number
of iterations until f(xk)− f(x∗) satisfies the requirement in Theorem A.5. Using this bound, and the fact that the AFW
algorithm can pick up at most one vertex per iteration, we can bound the number of iterations until xk ∈ F(x∗) (there exist
other bounds for the PFW algorithm). Note that by the second claim in Theorem 3.1, this means that when xk ∈ F(x∗),
then the iterates will not leave F(x∗). Furthermore, once the iterates are inside the optimal face, there are two options: if
x∗ = F(x∗), then the AFW algorithm will exit once xk ∈ F(x∗), as w(xk,Sk) = 0, otherwise if x∗ /∈ vert (X) (the case
of interest in our setting, by Assumption 2.5), then we need to prove that after a given number of iterations the active set will
satisfy x∗ ∈ co (Sk). We prove the former using Fact A.7 (a variation of Diakonikolas et al. (2020, Fact B.3)).

Fact A.7 (Critical strong Wolfe gap). There exists an wc > 0 such that for any subset S ⊆ vert(F(x∗)) and point
x ∈ F(x∗) with x ∈ co(S) and w(x,S) ≤ wc it follows that x∗ ∈ co(S).

Remark A.8. The critical strong Wolfe gap in Fact A.7, is a crucial parameter in the coming proofs. However, like the strict
complementarity parameter τ (Guélat & Marcotte, 1986; Garber, 2020) and the critical radius defined in (Diakonikolas
et al., 2020), the critical strong Wolfe gap can be arbitrarily small. Fortunately, as we will show in the proofs to come, it
only affects the length of the burn-in phase of the accelerated algorithm, and moreover this dependence is logarithmically.
Below, we sketch a simple example for which one can compute an exact expression for wc. We then give an upper and a
lower bound on wc for any general problem of the form shown in Problem (P).

Consider minimizing f(x) = 1
2 ‖x‖

2 over the unit probability simplex, which we denote by ∆n. The function is smooth
and strongly convex, and the minimizer of this function over the feasible region is given by x∗ = 1/n, where n is the
dimensionality of the problem and F(x∗) = ∆n. We can compute the exact expression for wc as:

wc = inf
S⊂vert(∆n)
x∈co(S)
x∗ /∈co(S)

max
u∈S
v∈∆n

〈∇f(x),u− v〉 (A.7)

= inf
S⊂vert(∆n)
x∈co(S)
x∗ /∈co(S)

(
max
u∈S
〈x,u〉 − min

v∈∆n
〈x,v〉

)
(A.8)

= inf
S⊂vert(∆n)
x∈co(S)
x∗ /∈co(S)

max
u∈S
〈x,u〉 (A.9)

= inf
S⊂vert(∆n)
x∈co(S)
x∗ /∈co(S)

‖x‖∞ (A.10)

=
1

n− 1
. (A.11)

Parameter-free Locally Accelerated Conditional Gradients

Where the equality in Equation (A.8) follows from ∇f(x) = x and Equation (A.9) from the fact that as S ⊂ vert (∆n),
x∗ /∈ co(S) and x ∈ co(S), then one or more of the components of x are zero, and as the rest are positive, it follows that
minv∈∆n 〈x,v〉 = 0. The equality in Equation (A.10) follows from the fact that the components of x are non-negative
and the elements of S are the standard orthogonal basis vectors, and so maxu∈S 〈x,u〉 = ‖x‖∞. The last equality simply
follows from the fact that the infinum is achieved for the set S of largest cardinality that does not contain x∗, and for a point
x∗ ∈ co(S) that minimizes the infinity norm. We can now prove a lower bound on wc for the general case as follows:

wc = inf
S⊂vert(F(x∗))

x∈co(S)
x∗ /∈co(S)

w(x,S) ≥ inf
S⊂vert(F(x∗))

x∈co(S)
x∗ /∈co(S)

m

2
‖x∗ − x‖2 ≥ inf

S⊂vert(X)
x∈co(S)
x∗ /∈co(S)

m

2
‖x∗ − x‖2 =

µ

2
r2
c .

The first inequality stems from the fact as the function is m-strongly convex then w(x,S) ≥ f(x)− f(x∗) ≥ m
2 ‖x− x∗‖.

The second inequality stems from the fact that vert (F(x∗)) ⊂ vert(X). The last equality comes from the definition of rc
in (Diakonikolas et al., 2020). Regarding the upper bound, for convenience we denote away-vertex and the Frank-Wolfe
vertex as u = argmaxy∈S 〈∇f(x),y〉 and v = argminy∈X 〈∇f(x),y〉, respectively. This allows us to write:

wc = inf
S⊂vert(F(x∗))

x∈co(S)
x∗ /∈co(S)

〈∇f(x∗),u− x∗〉+ 〈∇f(x∗),x∗ − v〉+ 〈∇f(x)−∇f(x∗),u− v〉

= inf
S⊂vert(F(x∗))

x∈co(S)
x∗ /∈co(S)

〈∇f(x)−∇f(x∗),u− v〉

≤ inf
S⊂vert(F(x∗))

x∈co(S)
x∗ /∈co(S)

‖∇f(x)−∇f(x∗)‖ ‖u− v‖

≤ LD inf
S⊂vert(F(x∗))

x∈co(S)
x∗ /∈co(S)

‖x− x∗‖ .

Where the first equality is simply obtained from rewriting 〈∇f(x),u− v〉, and the second inequality comes from the fact
that 〈∇f(x∗),u− x∗〉 = 0 from the strict complementarity assumption and 〈∇f(x∗),v − x∗〉 ≥ 0 from the optimality
conditions for x∗. The first inequality in the previous chain comes from the application of the Cauchy-Schwarz inequality,
and the second inequality from the L-smoothness of f . To see why this upper bound means that wc can be arbitrarily small
for certain problems, consider the setup in Figure 3.

x∗

v1

v2

v4

v3

S inf
S⊂vert(F(x∗))

x∈co(S)
x∗ /∈co(S)

‖x− x∗‖

Figure 3. Example problem setup.

The figure shows a two dimensional example where F(x∗) = X = co (v1,v2,v3,v4). Moreover, the set S =
co (v2,v3,v4) shown in light gray is contained in the optimal face, and does not contain x∗ (which is on the diag-
onal defined by v1 and v3 and just off the diagonal defined by v2 and v4). The distance from S to x∗ is precisely
infS⊂vert(F(x∗)),x∈co(S),x∗ /∈co(S) ‖x− x∗‖, and it can be made arbitrarily small as x∗ approaches the diagonal defined by
v2 and v4 along the diagonal defined by v1 and v3, which means that wc can become arbitrarily small.

Parameter-free Locally Accelerated Conditional Gradients

With these tools, we are ready to prove the desired convergence bound.

Theorem A.9. Assume the AFW algorithm (Algorithm 5) is run starting with x0 ∈ vert(X). If the strict complementarity
assumption (Assumption 2.4) is satisfied and x∗ /∈ vert (X), then for k ≥ K0 with

K0 =
32LD2

mδ(X)2 ln 2
log

(
2w(x0,S0)

min{(τ/(2D(
√
L/m+ 1)))2/L, τ, LD2, 2wc}

)
,

we have that xk ∈ F(x∗), x∗ ∈ co (Sk) and moreover:

w(xk,Sk) ≤ LD
√

2(f (xk)− f (x∗))/m.

Where δ (X) is the pyramidal width in Definition 2.2, and wc > 0 is the critical strong Wolfe gap in Fact 3.2.

Proof. Using the primal gap bound in Lacoste-Julien & Jaggi (2015, Theorem 1), and assuming that x0 ∈ vert(X), then for
iterations

k ≥ 8LD2

mδ(X)2
log

(
2w(xo,S0)

min{(τ/(2D(
√
L/m+ 1)))2/L, τ, LD2}

)
,

we know that
f(xk)− f(x∗) <

1

2
min

{
(τ/(2D(

√
L/m+ 1)))2/L, τ, LD2

}
.

Using the first claim in Theorem 3.1, as the algorithm will at most have picked up one vertex of the polytope X per iteration,
then the AFW algorithm will at most need to drop a number of vertices from its active set equal to the number of iterations
that have elapsed before xk ∈ F(x∗). This means that for

k ≥ 16LD2

mδ(X)2
log

(
2w(x0,S0)

min{(τ/(2D(
√
L/m+ 1)))2/L, τ, LD2}

)

we know that xk ∈ F(x∗), and, moreover, we have that w(xk,Sk) ≤ LD
√

2/m
√
f (xk)− f (x∗) by the second claim in

Theorem 3.1. It remains to bound the number of iterations until x∗ ∈ co (Sk) in the AFW algorithm. Using Fact 3.2, and the
convergence guarantees in Kerdreux et al. (2019), we know that it suffices to run 32LD2/(mδ(X)2 ln 2) log (w(x0,S0)/wc)
iterations of the AFW algorithm for w(xk,Sk) ≤ wc. Consequently, we have that for k ≥ K0 it holds x∗ ∈ co (Sk).

B. Acceleration Analysis
Before delving into the analysis of the accelerated algorithm used in our work, we review some useful properties of gradient
mapping and define its inexact variant.

B.1. Gradient Mapping

One of the properties that will be useful for our analysis is summarized in the following two propositions.

Proposition B.1. Let C ⊆ Rn and let f : Rn → R be differentiable and m-strongly convex on C, for some m > 0. Then,
∀x ∈ C, ∀m′ ≥ m :

f(x)−min
u∈C

f(u) ≤ 1

2m
‖Gm(x)‖2 ≤ 1

2m
‖Gm′(x)‖2.

Proof. Fix any x ∈ C. The first inequality in the proposition follows by using strong convexity of f, which states that for all
u ∈ C we have that f(u)− f(x) ≥ 〈∇f(x),u− x〉+ m

2 ‖u− x‖2, and minimizing both sides over u ∈ C. The second
inequality is a consequence of the monotonicity of gradient mapping (see Beck (2017, Theorem 10.9)).

Proposition B.2. Let C ⊆ Rn and let f : Rn → R be L-smooth on C, for some L <∞. Then, ∀x ∈ C, ∀η ≥ L :

f(x)−min
u∈C

f(u) ≥ 1

2η
‖Gη(x)‖2.

Parameter-free Locally Accelerated Conditional Gradients

The proof is omitted and can instead be found in, e.g., Beck (2017, Chapter 10).

To construct an implementable version of our algorithm, we rely on inexact projections, which in turn lead to inexact
evaluations of the gradient mapping, defined below. This is the primary reason why we cannot rely on black box applications
of any of the existing results, and instead require a variant of a parameter-free accelerated method that can work with inexact
evaluations of the gradient mapping.

Definition B.3 (Inexact gradient mapping). Let C be a closed convex set and let f : Rn → R be smooth and convex on C.
For any x ∈ C and η > 0, we say that G̃η(x) = η(x− y) is an ε`-approximate gradient mapping at x for some x ∈ C, if
y ∈ C and `(y) ≤ minu∈C `(u) + ε`, where we define `(u) = 〈∇f(x),u− x〉+ η

2 ‖u− x‖22.

B.2. Proof of Lemma 3.5

In this section, we prove Lemma 3.5. To make it easier to follow the argument, we restate the lemma below. Much of the
proof closely follows the proof of Lemma 3.2 in (Diakonikolas et al., 2020). However, there are differences in both the
algorithm and the proof itself required to obtain the bound for the gradient mapping, and we fill in the additional arguments
that are needed to prove the lemma below.

Lemma 3.5. Let C ⊆ Rn be a closed convex set and let f : Rn → R be an L-smooth function on C. Let x0 ∈ C
be an arbitrary initial point, and, given σ > 0, define fσ(x) = f(x) + σ

2 ‖x − x0‖2, x∗σ = argminx∈C fσ(x). Let

z0 = (η0 + σ)x0 −∇f(x0), y0 = v0 = ŷ0
εM0∼ argminu∈CM0(u), where εM0 > 0, M0(u) is defined as in Algorithm 2,

and the estimate η0 is doubled until f(y0) ≤ f(x0) + 〈∇f(x0),y0 − x0〉+ η0
2 ‖y0 − x0‖2, same as in Algorithm 2. Given

η0 > 0, sequence {ak}k≥0, Ak =
∑k
i=0 ai, θk = ak

Ak
, and the sequences of errors {εMk }k≥0, {ε`k}k≥0, let the sequences of

points {ŷk,yk}k≥0 evolve according to Algorithm 2 for k ≥ 1.

If a0 = A0 = 1 and θk = ak
Ak
≤
√

σ
2(ηk+σ) for k ≥ 1, then for all k ≥ 1

‖Gσηk+σ(ŷk)‖2

ηk + σ
≤ η0

Ak
‖x∗σ − x0‖2 +

2

Ak

k∑
i=0

(2εMi + ε`i),

where Gσηk+σ(ŷk) is the gradient mapping w.r.t. fσ , at ŷk.

In particular, if a0 = A0 = 1, θk = ak
Ak

=
√

σ
2(ηk+σ) for k ≥ 1, εMk = akε

2

8 , and ε`k ≤
ak
Ak

ε2

8 , then 1
ηk+σ‖G

σ
ηk

(ŷk)‖2 ≤ ε2

after at most

k = O

(√
L

σ
log

(
L‖x∗σ − x0‖

ε

))
iterations. Further, the total number of first-order queries to f and oracle queries to inexact projections is at most

k′ = k + 2 log

(
2L

η0

)
.

Proof. The proof follows the Approximate Duality Gap Technique (Diakonikolas & Orecchia, 2019), similar to (Diakoniko-
las et al., 2020). The main idea is to construct an approximation of the true optimality gap fσ(yk) − fσ(x∗σ), where
x∗σ = argminx∈C fσ(x) and show that it contracts at rate 1/Ak, where Ak is made as fast growing as possible.

The approximate gap Γk is constructed as Γk = Υk − Λk, where Υk = fσ(yk) and Λk is defined by (Diakonikolas et al.,
2020)

Λk =

∑k
i=0 aifσ(xi) + minu∈Cmk(u)− η0‖x∗σ−x0‖2

2

Ak
, (B.1)

mk(u)
def
=

k∑
i=0

ai 〈∇fσ(xi),u− xi〉+

k∑
i=0

ai
σ

2
‖u− xi‖2 +

η0

2
‖u− x0‖2.

By construction, Λk ≤ fσ(x∗σ) (Diakonikolas et al., 2020), and, thus, fσ(xk)−fσ(x∗σ) ≤ Γk. Further, argminu∈Cmk(u) =
argminu∈CMk(u).

Parameter-free Locally Accelerated Conditional Gradients

Let v∗k = argminu∈Cmk(u), and observe that, by construction, mk(vk)−mk(v∗k) ≤ εMk . Following the same argument
as in (Diakonikolas et al., 2020), we have that

A0Γ0 ≤
η0‖x∗σ − x0‖2

2
+ εM0 (B.2)

and
mk(v∗k)−mk−1(v∗k−1)

≥ ak 〈∇fσ(xk),vk − xk〉+
σAk

4
‖vk − (1− θk)vk−1 − θkxk‖2 − εMk − εMk−1.

(B.3)

From Algorithm 2, ŷk − xk = θk(vk − (1− θk)vk−1 − θkxk), and, thus, combining with Eq. (B.3) and the definition of
the lower bound in Eq. (B.1), it follows that:

AkΛk −Ak−1Λk−1 ≥ akfσ(xk) + ak 〈∇fσ(xk),vk − xk〉+
σAk

4θk
2 ‖ŷk − xk‖2 − εMk − εMk−1. (B.4)

On the other hand, from Υk = f(yk), we have

AkΥk −Ak−1Υk−1 = Akfσ(yk)−Ak−1fσ(yk−1)

= Ak(fσ(yk)− fσ(ŷk)) + akfσ(xk)

+Ak(fσ(ŷk)− fσ(xk)) +Ak−1(fσ(xk)− fσ(yk−1)). (B.5)

By the exit criterion of the repeat-until loop in Algorithm 2, we have fσ(ŷk)−fσ(xk) ≤ 〈∇fσ(xk), ŷk − xk〉+ ηk+σ
2 ‖ŷk−

xk‖2, while by convexity of fσ, fσ(xk)− fσ(yk−1) ≤ 〈∇fσ(xk),xk − yk−1〉 . Plugging into Eq. (B.5), we have

AkΥk −Ak−1Υk−1 ≤ Ak(fσ(yk)− fσ(ŷk)) + akfσ(xk)

+ 〈∇fσ(xk), Akŷk −Ak−1yk−1 − akxk〉+
Ak(ηk + σ)

2
‖ŷk − xk‖2.

By definition of ŷk, Akŷk −Ak−1yk−1 − akxk = ak(vk − xk). Thus, combining the last inequality with Eq. (B.4)

AkΓk −Ak−1Γk−1 ≤ Ak(fσ(yk)− fσ(ŷk)) +
Ak
4

(
2(ηk + σ)− σ

θk
2

)
‖ŷk − xk‖2 + εMk + εMk−1

≤ Ak(fσ(yk)− fσ(ŷk)) + εMk + εMk−1,

as θk = ak
Ak
≤
√

σ
2(ηk+σ) .

To bound fσ(yk)− fσ(ŷk), observe that, by the exit condition in the repeat-until loop in Algorithm 2, we have

fσ(yk)− fσ(ŷk) ≤ 〈∇fσ(ŷk),yk − ŷk〉+
ηk + σ

2
‖yk − ŷk‖2 = `k(yk). (B.6)

Let ȳk = argminu∈C `k(u), and let us argue now that `k(ȳk) ≤ − 1
2(ηk+σ)‖G

σ
ηk+σ(ŷk)‖2. This can be proved using the

definitions of Gσηk(ŷk) and ȳk. In particular, this property follows from

`k(ȳk) = 〈∇fσ(ŷk), ȳk − ŷk〉+
ηk + σ

2
‖ȳk − ŷk‖2

=
〈
∇fσ(ŷk)−Gσηk+σ(ŷk), ȳk − ŷk

〉
− 1

2(ηk + σ)
‖Gσηk+σ(ŷk)‖2

and 〈
∇fσ(ŷk)−Gσηk+σ(ŷk), ȳk − ŷk

〉
= 〈∇fσ(ŷk) + (ηk + σ)(ȳk − ŷk), ȳk − ŷk〉 = 〈∇`k(ȳk), ȳk − ŷk〉 ≤ 0,

where the last inequality follows from the first-order optimality of ȳk = argminy∈C `k(y).

Parameter-free Locally Accelerated Conditional Gradients

Combining with Eq. (B.6), and using that `k(yk)− `k(ȳk) ≤ ε`k (by definition of yk), we have

fσ(yk)− fσ(ŷk) ≤ − 1

2(ηk + σ)
‖Gσηk(ŷk)‖2 + ε`k.

Thus, it follows that

AkΓk −Ak−1Γk−1 ≤ −
Ak

2(ηk + σ)
‖Gσηk(ŷk)‖2 +Akε

`
k + εMk + εMk−1. (B.7)

Telescoping Eq. (B.7) and using the bound on the initial gap from Eq. (B.2), we have

AkΓk ≤ A0Γ0 −
k∑
i=1

Ai
2(ηi + σ)

‖Gσηi+σ(ŷi)‖2 +

k∑
i=0

(2εMi +Aiε
`
i)

≤ − Ak
2(ηk + σ)

‖Gσηk+σ(ŷk)‖2 +
η0‖x∗σ − x0‖2

2
+

k∑
i=0

(2εMi +Aiε
`
i).

As Γk ≥ fσ(yk)− fσ(x∗C) ≥ 0, we finally have

1

ηk + σ
‖Gσηk+σ(ŷk)‖2 ≤ 2

Ak

(η0‖x∗σ − x0‖2

2
+

k∑
i=0

(2εMi +Aiε
`
i)
)
, (B.8)

which gives the first part of the lemma.

For the remaining part, as f is L-smooth, it follows that the condition from the repeat-until loop is satisfied for any ηk ≥ L.
As ηk gets doubled each time the condition is not satisfied, we have ηk ≤ 2L, ∀k. Thus the total number of times the
repeat-until loop is entered is at most k (the total number of iterations) plus log(2L

η0
). As each pass through the loop requires

two gradient evaluations and two calls to a projection oracle, what remains to be shown is the stated bound on k.

Choosing Aiε`i ≤ εMi = aiε
2

8 and the already argued bound on ηk, we have, from Eq. (B.8):

1

ηk + σ
‖Gσηk+σ(ŷk)‖2 ≤ 2L‖x∗σ − x0‖2

Ak
+

3ε2

4
, (B.9)

and it remains to bound the number of iterations k until 2L‖x∗σ−x0‖2
Ak

≤ ε2

4 . To do so, notice that, as a0 = A0 = 1 and
ak
Ak

=
√

σ
2(ηk+σ) ≤

√
σ

2(2L+σ) for k ≥ 1, we have that Ak−1

Ak
≤ 1−

√
σ

2(2L+σ) , and thus,

1

Ak
=
A0

A1

A1

A2
. . .

Ak−1

Ak
≤
(

1−
√

σ

2(2L+ σ)

)k
≤ exp

(
− k
√

σ

2(2L+ σ)

)
.

Thus, k is bounded by

k ≤
√

2(2L+ σ)

σ
log
(16L‖x∗σ − x0‖2

ε2

)
= O

(√
L

σ
log
(√L‖x∗σ − x0‖

ε

))
,

as claimed.

B.3. Proof of Theorem 3.6

We now proceed with proving Theorem 3.6. Before providing the full proof, we first state and prove some supporting claims.

Proposition B.4. Given ŷ ∈ C, let `(u) = 〈∇fσ(ŷ),u− ŷ〉 + η+σ
2 ‖u − ŷ‖2, ȳ = argminu∈C `(u), and let y be such

that `(y)− `(ȳ) ≤ ε`. Then:
1

η + σ
‖G̃ση+σ(ŷ)−Gση+σ(ŷ)‖2 ≤ 2ε`,

where G̃ση+σ(ŷ) = (η + σ)(ŷ − y), Gση+σ(ŷ) = (η + σ)(ŷ − ȳ).

Parameter-free Locally Accelerated Conditional Gradients

Proof. By definition of G̃ση+σ(ŷ), Gση+σ(ŷ),

‖G̃ση+σ(ŷ)−Gση+σ(ŷ)‖ = (η + σ)‖y − ȳ‖.

As ` is strongly convex and by definition of y,

η + σ

2
‖y − ȳ‖2 ≤ `(y)− `(ȳ) ≤ ε`.

Thus, ‖G̃ση+σ(ŷ)−Gση+σ(ŷ)‖ ≤ (η + σ)
√

2ε`

η+σ , as claimed.

It is always possible to obtain an upper estimate of the strong convexity parameter m of f. To do so, we can pick two
arbitrary points x,y, y 6= x, from the feasible set C. By strong convexity,

f(y) ≥ 〈∇f(x),y − x〉+
m

2
‖y − x‖2.

Thus, we can use the estimate:

σ0 =
2(f(y)− f(x)− 〈∇f(x),y − x〉)

‖y − x‖2
≥ m. (B.10)

Note that by smoothness of f, we also have σ0 ≤ L. We will assume throughout this section that the algorithm is started
with such an estimate.

Further, we assume that the algorithm can be started with points x0,y0 such that

`0(y0)−min
u∈C

`0(u) ≤ 1

8(η0 + σ0)
‖G̃σ0

η0+σ0
(x0)‖2 =

η0 + σ0

8
‖y0 − x0‖2.

This can be achieved by running a minimization procedure for `0 and halting it when the estimated optimality gap at its current
iterate y0,k is lower than η0+σ0

8 ‖yk0 − x0‖2, and outputting y0 = y0,k. For implementing a minimization procedure for `0
in our context, see (Diakonikolas et al., 2020). Note also that, as fσ0(x0) = f(x0), we have Gσ0

η0+σ0
(x0) = Gη0+σ0(x0).

We now present the pseudocode for one call to the accelerated algorithm, between restarts.

Algorithm 6 ACC(x0, η0, σ)
1: σ = 2σ
2: repeat
3: σ = σ/2
4: Run a minimization procedure for `0(u) = 〈∇f(x0),u− x0〉+ η0+σ

2 ‖u− x0‖2. Halt when the current iterate y of
the procedure satisfies `0(y)−minu∈C `0(u) ≤ ε0, where ε0 = η0+σ

32 ‖y0 − x0‖2 = 1
32(η0+σ)‖G̃η0+σ(x0)‖2.

5: Set ŷ0 = v0 = y0; z0 = (η0 + σ)x0 −∇f(x0)
6: a0 = A0 = 1
7: repeat
8: k = k + 1
9: ηk, Ak, zk,vk, ŷk,yk, G̃

σ
ηk+σ(ŷk) = AGD− Iter(yk−1,vk−1, zk−1, Ak−1, ηk−1, σ, ε0, η0)

10: until 1
ηk+σ‖G̃

σ
ηk+σ(ŷk)‖2 ≤ 9ε0

4

11: until σ√
ηk+σ

‖ŷk − x0‖ ≤
√
ε0

12: return ŷk, ηkσ

Theorem 3.6. Let C ⊆ Rn be a closed convex set, and let f : Rn → R be a function that is L-smooth and m-strongly
convex on C. Let x0 ∈ C be an arbitrary initial point, and let σ0, η0 be such that m ≤ σ0 ≤ η0 ≤ L. Let xout

0 = x0, and for
k ≥ 0, consider the following updates:

xout
k+1, ηk+1, σk+1 = ACC(xout

k , ηk, σk),

Parameter-free Locally Accelerated Conditional Gradients

where ACC is provided in Algorithm 3. Let Gη+σ denote the gradient mapping of f on C with parameter η + σ. Then, for

any ε > 0, ‖Gηk+σk(xout
k)‖ ≤ ε for k = O

(
log
(
L‖Gη0+σ0

(x0)‖
mε

))
. The algorithm for computing xout

k utilizes a total
number of

K =

(√
L

m
log

(
L

m

)
log

(
L

m

‖Gη0+σ0
(x0)‖

ε

))
queries to the FOO for f and an inexact and efficiently computable projection oracle for C, without knowledge of any of the
problem parameters.

Proof. The proof outline is as follows. We focus on one call to Algorithm 6 to prove that it halves the value of
1

η+σ‖G(xout)‖2 within k = O
(√

L
σ log

(
L
m

))
iterations. The stated bound then follows by showing that σ cannot

be halved by more than O(log(Lm)) times (cumulatively over the entire restarted algorithm run). Note that we have already
argued in Lemma 3.5 that the total number of times that ηk can get doubled is O(log(ηkη0)) = O(log(Lm)), this bound holds
cumulatively over the entire (restarted) algorithm run, and is absorbed in the bound on K from the statement of the theorem.

Let us start by bounding the total number of iterations in the inner repeat-until loop of Algorithm 6. To keep the notation
simple, we will use the same notation as in the pseudocode for Algorithm 6. As the algorithm is started with σ ≤ η0 and in
any iteration ηk can be only increased while σ can only be decreased, we have that θk =

√
σ

2(ηk+σ) ≤
1
2 . Thus, ε`k ≤

ε0
8 .

From Proposition B.4,
1√

ηk + σ
‖G̃σηk+σ(ŷk)−Gσηk+σ(ŷk)‖ ≤

√
2εk0 ≤

√
ε0
2
. (B.11)

Suppose that 1
ηk+σ‖G

σ
ηk+σ(ŷk)‖2 ≤ ε0. Then, Eq. (B.11) implies that it must be

1

ηk + σ
‖G̃σηk+σ(ŷk)‖ ≤ 9ε0

4
,

and the inner repeat-until loop reaches its exit condition. Applying Lemma 3.5, this happens within

k = O

(√
L

σ
log
(√L‖x∗σ − x0‖√

ε0

))
(B.12)

iterations. To further bound k, we have by Proposition B.1 and (σ +m) strong convexity of fσ that

σ +m

2
‖x∗σ − x0‖2 ≤ fσ(x0)− fσ(x∗σ) ≤ 1

2(σ +m)
‖Gσm+σ(x0)‖2 ≤ 1

2(σ +m)
‖Gη0+σ(x0)‖2,

where the last inequality follows by η0 ≥ m and Gση0+σ(x0) = Gη0+σ(x0). Thus,

‖x∗σ − x0‖ ≤
1

σ +m
‖Gη0+σ(x0)‖. (B.13)

By the definition of ε0 is Algorithm 6 and Proposition B.4,

1√
η0 + σ

‖Gη+σ(x0)− G̃η+σ(x0)‖ ≤
√

2ε0, (B.14)

and, thus,
1√

η0 + σ
‖Gη+σ(x0)‖ ≤ 1√

η0 + σ
‖G̃η+σ(x0)‖+

√
2ε0 = 3

√
2ε0.

Thus, Eq. (B.13) implies

‖x∗σ − x0‖ ≤
√
η0 + σ

σ +m
3
√

2ε0 = O
(√L
m

√
ε0

)
, (B.15)

which leads to

k = O

(√
L

σ
log
(L
m

))
.

To complete the proof, it remains to:

Parameter-free Locally Accelerated Conditional Gradients

• Argue that σ ≥ cm throughout the algorithm run, for some absolute constant c > 0; note that as initially σ ∈ [m,L]
and σ only gets halved (but never increased), the total number of times that the outer repeat-until loop is accessed
beyond the first pass isO(log(Lm)), which, combined with the bound on the number of iterations k above, gets absorbed
by the stated bound on the total iteration count;

• Argue that each call to Algorithm 6 reduces the value of 1
ηk+σ‖Gηk+σ(ŷk)‖2 by a constant factor. Then, the total

number of calls to Algorithm 6 until ‖Gηk+σ(ŷk)‖ ≤ ε is O(log(
‖Gη0+σ0 (x0)‖

ε)).

To argue about the lower bound on σ, let us bound the value of ‖ŷk − x0‖. Applying triangle inequality,

‖ŷk − x0‖ ≤ ‖ŷk − x∗σ‖+ ‖x∗σ − x0‖ ≤ ‖ŷk − x∗σ‖+

√
η0 + σ

σ +m
3
√

2ε0. (B.16)

Using strong convexity of fσ and applying Proposition B.1, similar to what we did for bounding ‖x∗σ − x0‖, we have

‖ŷk − x∗σ‖ ≤
1

σ +m
‖Gηk+σ‖ ≤

2‖G̃ηk+σ(ŷk)‖+
√

(ηk +m)ε0
2(σ +m)

≤
2
√

(ηk +m)ε0
σ +m

,

where the last two inequalities are by Eq. (B.11) and the exit condition of the inner repeat-until loop in Algorithm 6.
Combining with Eq. (B.16), we have

‖ŷk − x0‖ ≤
(2
√
ηk +m+ 3

√
2
√
η0 + σ)

σ +m

√
ε0. (B.17)

It follows that, as ηk ≥ η0,

σ√
ηk + σ

‖ŷk − x0‖ ≤
5
√

2σ

σ +m

√
ε0,

which is bounded above by
√
ε0 for σ ≤ m

5
√

2−1
, and, thus, satisfies the exit condition in the outer repeat-until loop in

Algorithm 6. As σ can never decrease by more than a factor of 2, we have that it always holds that σ ≥ m
2(5
√

2−1)
, completing

the proof that σ is bounded below by a constant factor times m.

For the remaining part of the proof, using the definition of a gradient mapping and fσ(x) = f(x) + σ
2 ‖x− x0‖2, we have

‖Gηk+σ(ŷk)−Gσηk+σ(ŷk)‖ = (ηk + σ)
∥∥∥PC(ŷk − 1

ηk + σ
∇f(ŷk)

)
− PC

(
ŷk −

1

ηk + σ
∇fσ(ŷk)

)∥∥∥
≤ ‖∇f(ŷk)−∇fσ(ŷk)‖
= σ‖ŷk − x0‖,

where we have used the fact that the projection operator is non-expansive. Now, using Eq. (B.11) and the exit condition in
the inner repeat-until loop in Algorithm 6, we have

1√
ηk + σ

‖Gηk+σ(ŷk)‖ ≤ 1√
ηk + σ

‖Gσηk+σ(ŷk)‖+
σ√

ηk + σ
‖ŷk − x0‖

≤ 1√
ηk + σ

‖G̃σηk+σ(ŷk)‖+

√
ε0
2

+
σ√

ηk + σ
‖ŷk − x0‖

≤ 3
√
ε0,

where the last inequality uses σ√
ηk+σ

‖ŷk − x0‖ ≤
√
ε0, which holds by the exit criterion of the repeat-until loop. Using the

definition of ε0, we further have

1√
ηk + σ

‖Gηk+σ(ŷk)‖ ≤ 3√
32
√
η0 + σ

‖G̃η0+σ(x0)‖.

Parameter-free Locally Accelerated Conditional Gradients

Applying Eq. (B.14) and the definition of ε0, a simple calculation leads to ‖G̃η0+σ(x0)‖ ≤ 1
1−1/

√
32
‖Gη0+σ(x0)‖, and we

can finally conclude

1√
ηk + σ

‖Gηk+σ(ŷk)‖ ≤ 3√
32− 1

√
η0 + σ

‖Gη0+σ(x0)‖ ≤ 1√
2
‖Gη0+σ(x0)‖.

Thus, each call to Algorithm 6 halves 1
ηk+σ‖Gηk+σ(xout

k)‖, and the total number of calls until ‖Gηk+σ(xout
k)‖ ≤ ε is

bounded by O(log(Lm
‖Gη0+σ0

‖
ε)), leading to the bound from the statement of the theorem.

C. Coupling AFW with Acceleration
In this section, we prove how the AFW algorithm (Algorithm 5) can be coupled with the ACC algorithm (Algorithm 6) to
achieve an algorithm, dubbed the Parameter-Free Locally accelerated Conditional Gradients (PF-LaCG), that achieves an
optimal convergence rate in primal gap (up to poly-logarithmic factors), this is formalized in Theorem C.1.

Theorem C.1. Let X ∈ Rn be a closed convex polytope of diameter D, and let f : Rn → R be a function that is
L-smooth and m-strongly convex on X . Let Assumptions 2.2 and 2.4 be satisfied for f,X . Denote x∗ = argminx∈X f(x).
Given ε > 0, let xout be the output point of PF-LaCG (Algorithm 4), initialized at an arbitrary vertex x0 of X . Then
w(xout,Sout) ≤ ε and PF-LaCG uses a total of at most

K = O

(
min

{
log

(
w(x0,S0)

LD2

)
+
LD2

mδ2
log

(
w(x0,S0)

ε

)
,K0 +K1 +

√
L

m
log

(
L

m

)
log
(LD
mδ

)
log

(
LD

ε

)})
queries to the FOO for f and the LMO for X , where

K0 =
32LD2

mδ(X)2 ln 2
log

(
2w(x0,S0)

min{(τ/(2D(
√
L/m+ 1)))2/L, τ, LD2, 2wc}

)
,

and K1 = 128LD2

mδ2 .

Proof. As the algorithm is specified so that we always have wout = w(xout,Sout) and it terminates when wout ≤ ε, it must
be w(xout,Sout) ≤ ε when the algorithm terminates.

Observe that the algorithm monotonically decreases w(xout,Sout) between restarts (by a factor of 2) and wout is never
larger than wAFW at the end of a restart, as the algorithm sets wout = min{wAFW, wACC}. Further, AFW is run almost
completely independently of ACC: its running iterate and the active set are updated to those of ACC only if wACC < wAFW

and |SACC| ≤ |SAFW|. Thus wAFW decreases at least as fast as guaranteed by AFW, and the same holds for wout, as
wout ≤ wAFW. This gives the first term in the bound on K from the theorem statement.

By Theorem 3.4 we know that w(xk, S) ≤ wc for k ≥ K0, which means that every active set of AFW contains x∗ in
its convex hull. As, due to Proposition A.3, wAFW is halved after at most K1 = 128LD2

mδ2 additional iterations, between
iterationsK0 andK0 +K1, PF-LaCG enters the if branch from Line 6. Then if wACC ≤ wc, we know that x∗ ∈ co

(
SACC

)
.

Otherwise, if wACC > wc, then the AFW algorithm will obtain a point such that wAFW < wACC and the ACC algorithm
will get updated with xACC = xAFW and SACC = SAFW. From this point on, it must be the case that x∗ ∈ co

(
SACC

)
,

as PF-LaCG can only update SACC to SAFW, and for t ≥ K0, we have x∗ ∈ co
(
SAFW

)
. It remains to argue that in the

remaining iterations wout is reduced at an accelerated rate.

Let us consider what happens between two successive restarts of PF-LaCG. Suppose first that there are r calls to ACC
(Algorithm 6) in this time frame, and, to keep the notation simple, let x and x+ denote the output points of ACC at
the beginning and at the end of the considered restart period of LaCG, and (η, σ) and (η+, σ+) denote their respective
smoothness and strong convexity parameter estimates from ACC. For simplicity, we let x+ coincide with the output point
of the rth call to ACC; if this were not the case, we could choose to output the point with the lower value of the gradient
mapping between x+ and the output point of the rth call to ACC, and the same bound would hold. Theorem 3.6 guarantees
that

‖Gη++σ+(x+)‖2

η+ + σ+
≤
(

1

2

)r ‖Gη+σ(x)‖2

η + σ
. (C.1)

Parameter-free Locally Accelerated Conditional Gradients

By Proposition B.2, if η + σ ≥ L, then 1
2(η+σ)‖Gη+σ(x)‖2 ≤ f(x)− f(x∗). Otherwise, using monotonicity of gradient

mapping (see Proposition B.1), 1
2(η+σ)‖Gη+σ(x)‖2 ≤ 1

2(η+σ)‖GL(x)‖2 ≤ L
η+σ (f(x)− f(x∗)). Either way, as η ≥ m:

‖Gη+σ(x)‖2

2(η + σ)
≤ max {1, L/(η + σ)} (f(x)− f(x∗))

≤ L(f(x)− f(x∗))/m

≤ 2L(wACC
prev /(mδ))

2, (C.2)

where the last inequality is by w(x) ≤ w(x, s) = wACC
prev . On the other hand, as η+ + σ+ > m, Proposition B.1 gives

f(x+)− f(x∗) ≤ 1
2m‖Gη++σ+(x+)‖2. Using the strong Wolfe gap bound in Theorem 3.4 it follows that

1

η+ + σ+

(
mwACC

LD

)2

≤ 2m

η+ + σ+
(f(x+)− f(x∗))

≤ 1

η+ + σ+
‖Gη++σ+(x+)‖2.

(C.3)

Combining Eqs. (C.1)–(C.3), we have

(wACC)2 ≤
(

1

2

)r
4L3D2(η+ + σ+)

m4δ2
(wACC

prev)2.

Thus, if r ≥ r∗ = log2

(
16L3D2(η++σ+)

m4δ2

)
= O

(
log
(
LD
mδ

))
, we have that wACC ≤ 1

2w
ACC
prev . The total number of iterations

in this case is r ·O
(√

L
m log(Lm)

)
, due to Lemma 3.5.

Observe that if r ≥ r∗ + p for some p ≥ 1, then

(wACC)2 ≤
(

1

2

)p
(wACC

prev)2,

and past the first r calls to ACC, wACC halves on every other call to ACC, i.e., it contracts much faster than every r∗

iterations.

We now argue that wACC halves at least as often as every

r∗ ·O

(√
L

m
log

(
L

m

))
= O

(√
L

m
log

(
L

m

)
log

(
LD

mδ

))

iterations. To do so, we need to argue that a restart that updates xACC to xAFW does not slow down the overall convergence.
Suppose that there is such a restart. Then, by the condition from Line 9 of PF-LaCG, one of the following two situations must
occur. If the restart period (number of calls to ACC) was longer than r∗, then wACC was contracting between restarts at least
as fast as if ACC was run independently, and, as wAFW ≤ wACC on restart and wACC is updated to wAFW, wACC must
halve at least as frequently as every r∗ calls to ACC. If the restart period was shorter than r∗, then, as wAFW ≤ wACC

prev /2

and wACC is updated to wAFW, we get that in this case wACC is halved in fewer than r∗ calls to ACC.

Finally, as wout ≤ wACC and each iteration requires a constant number of calls to the FOO for f and an LMO for X , the
claimed bound on K follows.

D. Computational Results
In this section we provide a complete overview of the implementation of PF-LaCG and a detailed comparison of the
performance of PF-LaCG relative to other state of the art parameter-free algorithms. All the experiments in this paper were
run on a Linux machine with an Intel Xeon Processor (Skylake, IBRS) and 64 GB of RAM.

Parameter-free Locally Accelerated Conditional Gradients

D.1. Running ACC in Parallel with AFW

One of the key computational advantages of PF-LaCG is that it allows local acceleration speedups through parallelism,
guaranteeing nearly as least as much progress as state-of-the-art CG algorithms such as AFW and PFW in terms of wall-clock
time. This is possible due to the way PF-LaCG is structured: between restarts where we use w(x,S) as the measure of
optimality, the ACC and the AFW algorithms are executed completely independently of each other while AFW checks
whether ACC has made sufficient progress whenever AFW has halved w(x,S) without interrupting ACC’s execution. As
such, PF-LaCG has the potential to utilize twice the computational power when compared to AFW by running the locally
accelerated algorithm ACC on a secondary connected machine or on a separate process within a single machine. As a
proof of concept in our experiments, we implement the parallelism of PF-LaCG using Python’s multiprocessing
library. We utilize its recently developed functionality shared memory to provide efficient inter-process communications
whenever a restart happens and to orchestrate iteration synchronization through semaphores and locks. Moreover, in order
to simulate the performance comparisons between PF-LaCG and other CG algorithms in the setting where PFLaCG has
access to twice the computational power, we limit each process (note that PF-LaCG runs on two processes) to run on one
virtualized CPU core through restricting the number of threads used by Intel’s high-performance computing library MKL to
one. In Section D.6, we also show how PF-LaCG outperforms other CG algorithms even when given equal amount of total
computational power.

D.2. Solving Minimization Subproblems in ACC and AGD-Iter

Two of the key steps in the AGD-Iter algorithm are the approximate projections that need to be carried out in Algorithm 2.
We give a brief description of how these subproblems can be solved, in a very similar way as how they were solved in
Diakonikolas et al. (2020, Section C.3). Both of these subproblems can be written without loss of generality as:

v =
ε∼ argmin

u∈C
〈z,u〉+ ‖u‖2 , (D.1)

where C is the convex hull of a known set of vertives, i.e., C = co (S), and ε∼ argmin is used to indicate that the objective
function that follows the argmin is minimized to additive error ε, as we described in the main body of the paper. We can
write the subproblem shown in Eq. (D.1) as an equivalent problem over the unit probability simplex of dimension |S|, which
we denote by ∆|S|, where |S| is the cardinality of the set S . This allows us to write u = Vλ, where V is the matrix whose
columns are the elements of the set S and λ ∈ ∆|S|. This leads to v = Vλv, where:

λv =
ε∼ argmin

λ∈∆|S|

〈z,Vλ〉+ ‖Vλ‖2 . (D.2)

As noted earlier, because Euclidean projections onto ∆|S| can be computed in closed-form with reasonable complexity, we
can use accelerated projection-based methods to compute an ε-optimal solution to Problem (D.2) efficiently. In the code,
we use the projections onto the probability simplex based on the quicksort algorithm with a worst-case complexity of
O (|S| log (|S|)) (Held et al., 1974; Duchi et al., 2008). Note that there exist projections onto the simplex with worst-case
complexity of O (|S|) using a variation of the quicksort algorithm that uses median-pivot partitionining (Condat, 2016).
However, we have used the projections onto the simplex using the standard quicksort algorithm due to its simplicity and
the fact that there are fast and reliable implementations of the aforementioned sorting algorithm in Python.

In order to ensure that we reach an ε-optimal solution to Problem (D.2) we use one of the following two criteria:

Frank-Wolfe gap stopping criterion. In order to compute the approximate solutions to Problem (D.2) one could use
the Frank-Wolfe gap as a stopping criterion, that is, we stop running the accelerated projection-based algorithm when λv

satisfies:

max
λ∈∆|S|

〈
VT z + 2VTVλv,λv − λ

〉
≤ ε (D.3)

Note that Problem (D.2) is convex, and so the Frank-Wolfe gap provides a useful upper bound on the primal gap. Ensuring
that the Frank-Wolfe gap is below the tolerance ε ensures that the primal gap is below the tolerance ε too. Moreover, note
that the quantity VT z + 2VTVλv is readily computed at each iteration, as it constitutes the gradient of the objective function
at λv, and is used in the projection-based accelerated algorithm. Furthermore, solving a linear optimization problem like
the one shown in Eq. (D.3) over the probability simplex has complexity |S|, and so using the Frank-Wolfe as a stopping
criterion does not add a noticeable overhead to the resolution of the subproblems.

Parameter-free Locally Accelerated Conditional Gradients

Gradient mapping stopping criterion. Alternatively, one could use the norm of the gradient mapping for Problem (D.2)
to bound above the primal gap in the case where the objective function in the subproblem is strongly-convex. That is, if we
denote the objective function being minimized in Eq. (D.2) as g(λ), and we have that the smallest eigenvalue of the Hessian
of g(λ), which we denote by m for simplicity, is greater than zero, this means that if:

m

2

∥∥∥∥λv − P∆|S|

(
λv −

1

m
∇g(λv)

)∥∥∥∥2

≤ ε,

then the primal gap at λv for Problem (D.2) is also smaller than ε. To compute this stopping criterion we require knowledge
of the smallest eigenvalue of ∇2g(λ) = 2VTV , which is a quantity that is already computed in the projection-based
accelerated gradient descent algorithms, as it is used to set the step size of the accelerated algorithms. Lastly, note that as we
have mentioned above, there are efficient ways to compute closed-form projections onto the probability simplex ∆|S|, so
computing P∆|S|

(
λv − 1

m∇g(λv)
)

does not pose a high cost.

Remark D.1 (LLVM-enhanced subproblem solver). We also use Numba (Lam et al., 2015), a Just-In-Time Python compiler
that uses the LLVM compiler library that transforms the accelerated projection-based optimization algorithm to machine
code, in order to more efficiently solve the subproblems from Eq. (D.2).

Remark D.2 (Computing LMO). For the problems without closed form solutions for LMO (such as structured LASSO and
constrained matching), we use Scipy’s linprog function to compute the LMO.

D.3. PF-LaCG over the Probability Simplex

The structure of the unit probability simplex can give us deep insight into how the PF-LaCG algorithm works. Although it
can be considered as a toy example, as projections onto this feasible region can be computed with a complexity equal to that
of solving a linear program, it allows us to know exactly when the acceleration should kick in. Assume we are minimizing a
smooth and strongly convex function f(x) over the unit probability simplex ∆n in Rn. As it is immediate to compute a
proper support for any point x ∈ ∆n (it suffices to find the non-zero elements in the vector x) we can easily find F (x∗)
if we know x∗, or a high accuracy solution to the optimization problem. This enables us to pinpoint when the active set
of the AFW algorithm is equal to the vertices of the optimal face, that is Sk = vert (F (x∗)). We know from the proof of
Theorem C.1 that immediately following the restart after the iteration where we have that Sk = vert (F (x∗)) we should
observe that the ACC algorithm converges at an accelerated rate.

We present in Figure 4 a comparison of several CG algorithms minimizing a quadratic function over the unit probability
simplex. The function being minimized in this example is f(x) = xT

(
MTM + α1n

)
x/2 + bTx, where M ∈ Rn×n and

b ∈ Rn have entries sampled uniformly at random between 0 and 1 and n = 10000. The parameter α = 500 is set so that
the objective function satisfies m ≈ 500. The resulting condition number is L/m = 50000, and the number of nonzero
elements in x∗ is around 320. The AFW algorithm in PF-LaCG (AFW) satisfies that x∗ ∈ co (Sk) around iteration 400,
consequently we achieve the accelerated convergence rate from then onwards. The same can be said regarding PF-LaCG
(PFW) around iteration 350.

Remark D.3 (Using the structure of ∆n). The structure of the unit probability simplex allows us to simplify the CG-variants
employed in the comparison, as well as the PF-LaCG algorithm. Note that at each iteration the AFW and PFW algorithms
(as well as the AFW algorithm) require maintaining an active set Sk ⊆ vert (X) that contains the vertices that give rise to
the iterate xk as a convex combination. This active set is used to compute the away vertices in the algorithms, denoted by
sk. In order to compute an away vertex one has to solve the linear optimization problem sk = argmaxv∈Sk 〈∇f(xk),v〉,
which typically requires looping through all the elements in Sk. This can become computationally expensive as |Sk| grows.
However, computing sk is extremely easy when xk ∈ ∆n, as one need only look at the non-zero elements in xk to solve
the linear program. Therefore no CG algorithm needs to explicitly maintain an active set when solving a problem over the
probability simplex. This significantly reduces the running time of all the CG algorithms in our implementation. Note that
the absence of an active set is one of the main advantages of the DICG algorithm (Garber & Meshi, 2016) (aside from the
notable fact that it is able to achieve a primal gap linear convergence guarantee that depends on the dimensionality of F (x∗),
as opposed to n), which often allows it to outperform other CG variants when the feasible region X is a 0− 1 polytope. In
this example over the probability simplex, the PFW and DICG algorithms are equivalent, and we do not observe a significant
advantage from using the DICG algorithm.

Parameter-free Locally Accelerated Conditional Gradients

(a) f(xk)− f(x∗) vs iteration count (b) f(xk)− f(x∗) vs time (seconds)

(c) w(xk,Sk) vs iteration count (d) w(xk,Sk) vs time (seconds)

Figure 4. Strongly convex and smooth problem over the probability simplex: Algorithm convergence in terms of f(xk) − f(x∗)
and w(xk,Sk) versus iteration count k and versus wall-clock time in seconds.

Moreover, if we focus on the problem shown in Eq. (D.1) we can make use of the fact that:

argmin
λ∈∆|S|

〈z,Vλ〉+ ‖Vλ‖2 = argmin
λ∈∆|S|

〈
VT z,λ

〉
+ ‖λ‖2

= argmin
λ∈∆|S|

−2

〈
−V

T z

2
,λ

〉
+ ‖λ‖2 +

∥∥∥∥VT z

2

∥∥∥∥2

= argmin
λ∈∆|S|

∥∥∥∥−VT z

2
− λ

∥∥∥∥2

.

The last expression in the chain of equalities is nothing but the Euclidean projection of −V
T z
2 onto ∆|S|, which as we have

Parameter-free Locally Accelerated Conditional Gradients

stated before, can be computed in closed-form efficiently. Moreover, we can recover the active set of any iterate by simply
looking at the non-zero elements of the vector, allowing us to easily recover S given x. We make use of this fact in our
implementation of PF-LaCG over the probability simplex. This means that as the subproblems are solved to optimality in
Algorithm 2 we do not require an accelerated algorithm, or a stopping criterion to solve the problems in Eq. D.2

D.4. PF-LaCG over Structured LASSO Regression Problems

We give a brief motivation for the structured LASSO regression problem solved in Section 4. The Least Absolute Shrinkage
and Selection Operator (LASSO) (Tibshirani, 1996) is an immensely popular regression analysis that simultaneously
performs variable selection and regularization to solve a linear regression problem. The formulation is intimately related to
the Basis Pursuit Denoising (BPD) (Chen et al., 1998) problem in the signal processing community. One of the attractive
properties of the LASSO is its ability to return sparse solutions that capture the variables that contribute the most towards
producing an output. One of the domains in which CG-type algorithms have received attention is in sparse regression
problems in physics (Carderera & Pokutta, 2020).

In many situations we can describe a physical system by the differential equations that govern the phenomenon. These
equations allow us to compactly describe the current state of a physical system, or to predict its future state. However,
in many situations we do not have any physics-informed differential equation models to describe a natural phenomenon,
and we only have access to the state of the system at various times. Our goal then is to find this system of differential
equations given some training data. That is, if we denote the state of the system at time t by x(t), we want to find
dx(t)/dt = F (x(t))), where we assume that F (x(t))) can be expressed as a linear combination of simple ansatz functions
(like polynomials) that belong to a dictionary D = {ψi | i ∈ [1,m]}, with ψi : Rn → R. This allows us to write
F (x(t)) = ΞTψ(x(t)) where Ξ ∈ Rm×n is a sparse matrix Ξ = [ξ1, · · · , ξn] formed by column vectors ξi ∈ Rm for
i ∈ [1, n] and ψ(x(t)) = [ψ1(x(t)), · · · , ψm(x(t))]

T ∈ Rm. Therefore the sparse matrix Ξ allows us to reconstruct the
differential equations that govern the system. If we are given a series of data points {x(ti), dx(t1)/dt}ri=1, in the absence of
noise we will have:dx(t1)/dt · · · dx(tr)/dt

 =

 ξ1
...
ξn

ψ (x(t1)) · · · ψ (x(tr))

 .
However, we are typically only given access to noise-corrupted measurements of {x(ti)}ri=1, which means that we have
access to some noisy {y(ti)}ri=1, from which we have to estimate the derivatives {dy(ti)/dt}ri=1. In the presence of this
noise, and in pursuit of a sparse matrix Ξ, we can attempt to use the LASSO regression analysis for some α > 0, resulting
in:

argmin
‖Ω‖1,1≤τ
Ω∈Rm×n

∥∥∥Ẏ − ΩTΨ(Y)
∥∥∥2

F
. (D.4)

Where ‖·‖1,1 and ‖·‖F represent the `1,1 and Frobenius norm of a matrix, and we have collected the data into matrices
Ẏ = [dy(t1)/dt, · · · , dy(tr)/dt] ∈ Rn×r and Ψ (Y) = [ψ(x(t1)), · · · ,ψ(x(tr))] ∈ Rm×r. Moreover, we can also try
to impose physics-informed linear constraints on the problem shown in Eq. (D.4) to reflect symmetries or conservation
properties in the system, in the hope that the learnt dynamics will generalize better to unseen data. This transforms the
problem to:

argmin
Ω∈X

∥∥∥Ẏ − ΩTΨ(Y)
∥∥∥2

F
. (D.5)

with X =
{

Ω ∈ Rm×n | ‖Ω‖1,1 ≤ τ, trace(ATl Ξ) ≤ bl, l ∈ [1, L]
}

, Al ∈ Rm×n and bl ∈ R for all l ∈ [1, L], and where
we have added L additional linear constraints to the problem in Eq. (D.4) to reflect the underlying structure of the dynamical
system that we want to impose.

We solve a stylized version of the problem in Eq. (D.5), where the objective function is a quadratic f(x) =
xT
(
MTM + α1n

)
x/2 + bTx, where M ∈ Rn×n has entries sampled uniformly at random between 0 and 1, b ∈ Rn has

entries sampled uniformly at random from 0 to 100, n = 1000 and α = 100. The resulting condition number of the function

Parameter-free Locally Accelerated Conditional Gradients

(a) f(xk)− f(x∗) vs iteration count (b) f(xk)− f(x∗) vs time (seconds)

(c) w(xk,Sk) vs iteration count (d) w(xk,Sk) vs time (seconds)

Figure 5. Strongly convex and smooth problem over a structured LASSO domain: Algorithm convergence in terms of f(xk)−f(x∗)
and w(xk,Sk) versus iteration count k and versus wall-clock time in seconds.

is L/m = 250000. The additional linear constraints we impose on the system are very similar to those used in Carderera
et al. (2021), with the exception here that we generate them at random. To generate the additional equality constraints,
we sample 125 pairs of distinct integers (i, j) from 1 ≤ i, j ≤ n without replacement, and we set xi = xj for each pair,
adding 125 linear constraints. Lastly, the radius of the `1 ball is set to τ = 1. In this example, as the polytope is not a 0− 1
polytope, we cannot use the DICG algorithm of Garber & Meshi (2016). Despite the fact that we could resort to the more
general decomposition invariant CG algorithm in Bashiri & Zhang (2017), we did not find it to be numerically comparable
to the remaining CG algorithms tested in this section, and so have not included it in the comparison. The results obtained
can be found in Figure 5

Parameter-free Locally Accelerated Conditional Gradients

D.5. PF-LaCG over Constrained Matching Problems

We also solve a matching-type problem over the intersection of the Birkhoff polytope and a set of additional linear constraints.
The Birkhoff polytope in Rn×n, also called the polytope of doubly-stochastic matrices, is the set of all square matrices
whose columns and rows all sum up to 1. This polytope, with close ties to graph theory, is often used in matching problems.
For example, if we interpret the rows of the matrix as workers, and the columns of the matrix as tasks that need to be
completed, we can view the matrix element Ai,j on the ith row and the jth column as being either 0 or 1, depending on if
the jth task has been assigned to the ith worker (if Ai,j = 1), or if the jth task has not been assigned to the ith worker (if
Ai,j = 0).

(a) f(xk)− f(x∗) vs iteration count (b) f(xk)− f(x∗) vs time (seconds)

(c) w(xk,Sk) vs iteration count (d) w(xk,Sk) vs time (seconds)

Figure 6. Strongly convex and smooth matching problem over a structured Birkhoff polytope: Algorithm convergence in terms of
f(xk)− f(x∗) and w(xk,Sk) versus iteration count k and versus wall-clock time in seconds.

We minimize a quadratic cost function over a Birkhoff polytope of dimension 400, that is with n = 20, where the objective
function has the form f(x) = xT

(
MTM + α1n

)
x/2 + bTx with α = 1, and where M ∈ Rn×n and b ∈ Rn have

Parameter-free Locally Accelerated Conditional Gradients

entries sampled uniformly at random between 0 and 1. This results in an objective function with a condition number of
L/m = 100000. In order to make the problem more challenging to solve, we impose an additional set of linear constraints
on the learning problem. Otherwise if we were solving the problem over the Birkhoff polytope in Rn×n we could efficiently
solve linear minimization problems over the aforementioned polytope using the Hungarian algorithm, with complexity
O(n3). The additional constraints that we impose represent either worker-task assignments that are not permitted, or
capacity constraints that represent the maximum fractional matching that we can have between a given task and a worker. In
order to generate these extra constraints we sample 80 integers i from 1 ≤ i ≤ n2 without replacement, and we set xi = 0
for the first 40 integers (to represent that certain matchings are not possible), and xi ≤ 0.5 for the remaining 40 integers to
represent a maximum fractional matching. As in the previous example, we did not find the algorithm in Bashiri & Zhang
(2017) to have numerical performance comparable to the other algorithms tested, and so have not included the algorithm in
the comparison. The results from the comparison can be seen in Figure 6.

D.6. Performance Comparison with 2 Cores

In Figure 7 we show a performance comparison for the different algorithms where we use 2 CPU cores for the CG-variants,
and 2 cores for the PFLaCG algorithms (1 core for the AGD algorithm, and 1 core for the AFW algorithm). For the sparse
regression problem over the structured LASSO feasible region and the matching problem over the structured Birkhoff
polytope we did not observe a large increase in performance for the CG-variants by using 2 cores instead of 1. For example,
for the sparse regression problem the PFW algorithm went from reaching a value of w(x,S) below 10−5 in 188 seconds
with 1 core, to reaching it in 166 seconds with 2 cores, which constitutes a 10% increase in performance with respect to
wall-clock time. Similarly, the matching problem went from reaching a value of w(x,S) below 10−4 in 4.75 seconds with 1
core, to reaching it in 4.63 seconds with 2 cores, which is a meager 2% increase in performance with respect to wall-clock
time. On the other hand, for the probability simplex example we can see that the algorithm reaches a value of w(x,S) below
10−5 in 190 seconds with 1 core, and it reaches that value in 96 seconds using 2 cores, which constitutes a 50% increase in
performance with respect to wall-clock time.

(a) Probability Simplex (b) Structured LASSO (c) Structured Matching

Figure 7. Performance comparison using 2-cores for CG-variants: Comparison of w(xk,Sk) vs time (seconds) for the unit probability
simplex experiment in Figure (a), for the structured LASSO problem in Figure (b) and for the structured matching problem in Figure (c).

Regardless of if we use 1 core or 2 cores for the CG variants in the comparison, we still obtain faster convergence in
wall-clock time when using the PFLaCG algorithm. Finally, note that the convergence in terms of iteration count is
independent on the number of cores used in the experiment.

