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Proof of Proposition 3.2
Proposition. Given a simplicial complex K, the map
Pers : FiltK ⊆ R|K| → R|K| is semi-algebraic, and thus
definable in any o-minimal structure. Moreover, there exists
a semi-algebraic partition of FiltK such that the restriction
of Pers to each element of this partition is a Lipschitz map.

Proof. As K is finite, the number of preorders on the sim-
plices of K is finite. Let � be a preorder on simplices of
K induced by some equalities and inequalities between the
coordinates of R|K|. Then, the set of filtrations F ∈ FiltK
such that F gives rise to a preorder equal to � is a semi-
algebraic set. Thus, FiltK is a semi-algebraic set that ad-
mits a semi-algebraic partition such that the restriction of
the persistence map Pers to each component is a constant
permutation. As a consequence, on each open element of
this partition, the partial derivatives of Pers are equal to
constant 0 or 1.

Now, from the stability theorem for persistence (Chazal
et al., 2016), the persistence modules induced by two fil-
trations F1, F2 ∈ FiltK are ε-interleaved where ε is the
sup norm of the vector F2 − F1. As a consequence, the
restriction of Pers to each component of the above semi-
algebraic partition of FiltK is 1-Lipschitz with respect to
the sup norm in R|K|.

Other examples of definable families of
filtrations
The Čech and alpha-complex filtrations The Čech com-
plex filtration built on top of sets of n points x1, . . . , xn ∈
Rd is the semi-algebraic parametrized family of filtrations

Φ: A = (Rd)n → R|∆n| = R2n−1,

where ∆n is the simplicial complex made of all the faces
of the (n − 1)-dimensional simplex, defined, for any
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(x1, . . . , xn) ∈ A and any simplex σ ⊆ {1, . . . , n}, by

Φσ(x) = min

r ≥ 0 :
⋂
j∈σ

B(xj , r) 6= ∅


where B(xj , r) = {x ∈ Rd : ‖x − xj‖ ≤ r} is the ball
with center xj and radius r. The filtrations naturally satisfy
the Lipschitz property.

Note that the Čech complex filtration is closely related to
the so-called alpha-complex filtration which is a filtration of
the Delaunay triangulation of the set of points x1, . . . , xn—
see, for example, Chapter 6 in (Boissonnat et al., 2018) for
a definition. The simplicial complex on which the alpha-
complex filtration is built depends on the points x1, . . . , xn.
However, if A is a connected component of the open semi-
algebraic subset of (Rd)n of the points x1, . . . , xn that are
in general position1, then all the points in A have the same
Delaunay triangulation. In that case the alpha-complex
defines a semi-algebraic parametrized family of filtrations.

Moreover, the persistence diagram of the alpha-complex
filtration built on top of x1, . . . , xn ∈ Rd is the same as
the persistence diagram of the Čech complex filtration built
on the same set of points (Edelsbrunner, 1993; Bauer &
Edelsbrunner, 2017) if we ignore points on the diagonal.

Cubical complexes While this presentation was restricted
to simplicial complexes for simplicity, the same properties
apply for more general complexes. Indeed, as long as the
boundary maps are well-defined and associate to each cell of
dimension d a chain of dimension d−1, the same persistence
algorithm can be run, and its output is still a permutation
of its input. The most common non-simplicial complexes
are the so-called cubical complexes, where cells are cubes.
They are particularly well suited to represent images, or
(discretized) functions on Rd.

1The points x1, . . . , xn ∈ Rd are in general position if any
subset of size at most d+ 1 is a set of affinely independent points,
and if no subset of d+2 points lies on the same (d−1)-dimensional
sphere
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Other examples of locally Lipschitz functions
of persistence
Persistence images (Adams et al., 2017) Given a weight
function w : R2 → R+ and a real number σ > 0, the persis-
tence image (also called the persistence surface) associated
with a persistence diagram D is the function ρD : R2 → R
defined by

ρD(q) =
∑
p∈D

w(p) exp

(
−‖q − p‖

2

2σ2

)
.

The definition of ρD only involves algebraic operations,
the weight function w, and exponential functions. Thus, it
follows from (Wilkie, 1996) that if w is a semi-algebraic
function, K is a simplicial complex, and {q1, . . . , qn} is a
finite set of points in R2, then the map that associates the
vector (ρD(q1), . . . , ρD(qn)) to each persistence diagram
D of a filtration of K is definable in some o-minimal struc-
ture. In (Adams et al., 2017), the authors provide explicit
conditions under which the map from persistence diagrams
to persistence surfaces is Lipschitz.

A remark about the locally Lipschitz
condition in Theorem 4.2
The convergence Theorem 4.2 provides explicit conditions
ensuring the convergence of stochastic gradient descent for
functions of persistence. The main criterion to be checked
is the locally Lipschitz condition for L. From the remark
following Definition 4.1, it is sufficient to check that Φ and
E are Lipschitz. Regarding Φ, it is obvious for Vietoris-
Rips, Čech, DTM, etc. filtrations on finite point clouds, but
wrong for the alpha-complex filtration, which is not a lo-
cally Lipschitz function of the coordinates of the points.
Indeed, one can take 3 points within a bounded region of
the plane that are almost aligned and whose circumradius is
arbitrarily large, and this circumradius is the filtration value
of the triangle. However, by comparing with the Čech com-
plex, we know that such large values always correspond to
diagonal points of the persistence diagram. In our example
of 3 points, the longest edge has the same filtration as the
triangle and they are paired by the persistence algorithm.
To handle alpha-complex filtrations, we need to restrict to
functions of persistence that are defined for various num-
bers of points, ignore points on the diagonal (the image of
a diagram is the same if we add or remove points on the
diagonal), and are still locally Lipschitz. This is the case for
all the functions of persistence presented in this paper. Com-
posed with such a function, the difference between Čech and
alpha-complex filtrations disappears, it becomes an imple-
mentation detail and all the differentiation and optimization
properties proved for the first apply to the second.

More numerical experiments
3D shape processing. In (Poulenard et al., 2018), persis-
tence optimization is used for modifying functions defined
on 3D shapes. More specifically, given a 3D shape S, one is
interested in optimizing a function F : V (S)→ R defined
on the vertices V (S) of S, so that the Wasserstein distance
between the persistence diagram associated with F and D∗

is minimized, where D∗ is a target persistence diagram
(which either comes from another function G : S → R, or
is defined by the user). In this experiment, we minimize the
loss L(F ) = T (F ), where T (F ) := W2(D,D∗)2, that is,
the Wasserstein distance between the 0-dimensional persis-
tence diagram D associated with the sublevel set of a func-
tion F—initialized with the height function, see Figure 5
(1st row)—of a human 3D shape, and a target persistence
diagram D∗ which only contains a single point, with the
same coordinates than the point (in the persistence diagram
of the height function of the shape S) corresponding to the
right leg. This makes the function values to force the two
points in D corresponding to the hands of S to go to the
diagonal, by creating paths between the hands and the hips
(2nd row). It is worth noting that these path creations come
from the fact that we only used a topological penalty in the
loss: in (Poulenard et al., 2018), the authors ensure smooth-
ness of the resulting function by forcing it to be a linear
combination of a first few eigenfunctions of the Laplace-
Beltrami operator on the 3D shape. We also display the
sequence of optimized persistence diagrams in Figure 5 (4th
row), from which it can be observed that the optimization
is piecewise-linear, which reflects the fact that the persis-
tence map has an associated semi-algebraic partition, as per
Proposition 3.2.

Image processing. Another task presented in (Brüel-
Gabrielsson et al., 2020) is related to image processing.
In this experiment, we optimize the 0-dimensional homol-
ogy associated with the pixel values of a binary image
I of a digit with noise (see Figure 6, upper left). Since
noise can be detected as unwanted small connected com-
ponents, we use the loss L(I) = P (I) + T (I), where
T (I) :=

∑p
i=1 |di − bi| is the total persistence penalty,

Dreg = {(b1, d1), . . . , (bp, dp)} is the finite 0-dimensional
persistence diagram of the cubical complex associated with
I , and P (I) :=

∑
p∈I min{|p|, |1−p|} is a penalty forcing

the pixel values to be either 0 or 1. As can be seen from
Figure 6, using both penalties is essential: if only P (I) is
used, the noise is amplified (upper right), and if only T (I)
is used, the noise does not quite disappear, and paths are
created between the noise and the central digit to ensure the
corresponding connected components are merged right after
they appear (middle left). Note that this funny behavior that
appears when penalizing topology alone is similar to what
was observed in experiments where persistence was used to
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Figure 5. 3D shape before (1st row) and after (2nd row) optimiza-
tion, and corresponding loss function (3rd row). Note how paths
of low function values were created between the hips and the
hands. We also show the sequence of persistence diagrams (4th
row) with blue points being the initial persistence diagram, and
red ones being the fully optimized persistence diagram. Note how
optimization trajectories look piecewise-linear.

simplify functions (Attali et al., 2009). Using both penalties
completely removes the noise (middle right) in two steps:
firstly topology is optimized, and then the paths created by
optimizing T (I) are removed by optimizing P (I). This two
step process can also be observed on the loss function (lower
left) and the sequence of optimized persistence diagrams of
the image (lower right), where a bifurcation point can be

observed in the optimization process.

Figure 6. Image before (upper left) and after optimization for var-
ious penalties. For the case when both T (I) and P (I) are used
(middle right), we also show the corresponding loss function (lower
left) and the sequence of persistence diagrams (lower right). The
blue points are the initial persistence diagram, and the red ones are
the fully optimized persistence diagram.

Linear regression. This experiment comes from (Brüel-
Gabrielsson et al., 2020), in which the authors use persis-
tence optimization in a linear regression setting. Given
some dataset X ∈ Rn×p and ground-truth associated values
Y ∈ Rn computed as Y = X · β∗ + ε, where β∗ ∈ Rp
is the vector of ground-truth coefficients and ε is some
high-dimensional Gaussian noise, one can leverage some
prior knowledge on the shape of β to penalize the coeffi-
cients with bad topology. In particular, when using β∗ with
three peaks, as in Figure 7 (left), we use the loss L(β) =
P (β) + TV (β) + T (β), where T (β) :=

∑p
i=1 |di − bi|,

D̃ = {(b1, d1), . . . , (bp, dp)} is the 0-dimensional persis-
tence diagram of the sublevel sets of β, minus the three
most prominent points, TV (β) =

∑
i |βi+1 − βi| is the

usual total variation penalty (which can also be interpreted
as a topological penalty as it corresponds to the total persis-
tence of the so-called extended persistence (Cohen-Steiner
et al., 2009) of the signal), and P (β) :=

∑
i |xi · β − yi|2
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is the usual mean-square error (MSE). We optimized β with
the MSE alone, then MSE plus total variation, then MSE
plus total variation plus topological penalty, and we gener-
ated new MSE values from new randomly generated test
data, see Figure 7 (top). It is interesting to note that us-
ing all penalties lead to the best result: using MSE alone
leads to overfitting, and adding total variation smooths the
coefficients a lot since β is initialized with random values.
Using all penalties ends up being a right combination of
minimizing the error, smoothing the signal, and getting to
the right shape of β.

Figure 7. Regression coefficients after optimization for various
penalties (1st row), and corresponding loss function when all penal-
ties are used (2nd row). Generalization performance is increased by
using all penalties, since the MSE on various randomly generated
test sets is largely decreased (3rd row).

Noisy point cloud. We perform another point cloud opti-
mization (as in the article), but now we start with a noisy
sample X of the circle with three outliers and use the
loss L(X) = W2(D,D∗)2, where W2 stands for the 2-
Wasserstein distance, D is the 0-dimensional persistence
diagram associated with the Vietoris-Rips filtration of X ,

and D∗ is the 0-dimensional persistence diagram associated
with the Vietoris-Rips filtration of a clean (i.e., with neither
noise nor outliers) sample of the circle. See Figure 8. Note
that when one does not use extra penalties, optimizing only
topological penalties can lead to funny effects: as one can
see on the middle of Figure 8, the circle got disconnected,
and one of the outliers created a small path out of the circle
during optimization.

Figure 8. Noisy circle initialization with outliers, before (top) and
after (middle) optimization, and corresponding loss function (bot-
tom).

Filter optimization. In addition to classifying digits (as
presented in the article), we also classify various graph
data sets from TU Dortmund (Morris et al., 2020). More
specifically, following (Hofer et al., 2020), we compute,
for each graph, two sublevel set filtrations in homological
dimension 0, using two filter functions defined on the graph
vertices, and parametrized by a Graph Isomorphism Net-
work (GIN) (Xu et al., 2019) with three MLP layers of sizes
32, 32 and 2 (initialized randomly) and ε parameter set to
0. We then optimize the parameters of these GINs (there is
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one for each graph data set) using loss (3) in the article, and
use the optimized parameters to produce two corresponding
0-dimensional persistence diagrams for each graph.

As with MNIST images, we then train random forests on
these data sets of (pair of) persistence diagrams, by comput-
ing and concatenating their five first persistence landscapes
with resolution 100, before and after optimization. A base-
line is added by directly classifying the graphs with the
eigenvalues of their graph Laplacians with a random forest
classifier. The scores obtained for 10-fold cross-validation
are displayed in Table 2. Note that, contrary to MNIST
images, classifying graphs is not necessarily a binary clas-
sification task as some graph data sets have more than two
associated classes. Similarly to MNIST images, optimizing
the graph filters using loss (3) can drastically improve classi-
fication accuracy afterwards, and can be run without making
any assumption on the structure of the graphs themselves,
such as their number of nodes, edges, cycles, etc. On the
other hand, any decrease in performance is always mild and
reasonable.

The accuracy scores for all binary and multi-class tasks for
MNIST images and graphs are provided in Table 2, and
all pairwise scores for MNIST images are also shown in
Figure 9.

Figure 9. Pairwise differences between the accuracy scores (%) of
optimized and non optimized filtrations for classifying digit x vs.
digit y. One can see that the difference is almost always positive.

Details on experiments
All the experiments were run on a computer that has Intel
dual-Xeon SP with 10 cores and 9.6GB/core (RAM). The
classification results for the experiments on graphs were
generated with 10-fold cross-validation: each data set was
divided into ten 90-10 train-test splits, and results were
averaged over these splits. Random forest parameters are
the default ones of Scikit-Learn. The classification
results for the experiments on images were generated us-

ing train-test splits provided in TensorFlow. We also
added a multi-class classification task, called all, which
consists of jointly classifying all images. All the optimiza-
tion processes (including those presented in the article)
were done with stochastic gradient descent as implemented
in TensorFlow 2.4.1. More specifically, we used the
SGD optimizer class with InverseTimeDecay learning
rate (in order to satisfy Assumptions 1, 2 and 3 of Sec-
tion 4.1 in the article). We also used Adam optimizer with
ExponentialDecay learning rate for some experiments
since we noticed empirically that, even though Assump-
tion 1 was not satisfied, the results were not very different,
and convergence was slightly smoother. Parameter initial-
ization was done randomly, and the batch sizes and the
numbers of epochs were taken sufficiently large so that con-
vergence was reached in each illustration—see the code
(illustrations.ipynb and optim filters.py)
for exact values. For instance, filter selection was done with
initial learning rate equal to 0.001 and batch size equal to
150.
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Dataset Baseline Before After Difference
all 96.9 65.1 80.6 +15.5
vs01 100.0 61.3 99.0 +37.6
vs02 99.4 98.8 97.2 -1.6
vs03 99.8 99.1 99.2 +0.1
vs04 99.9 96.0 98.8 +2.8
vs05 99.6 95.7 96.3 +0.6
vs06 99.4 87.3 98.2 +10.9
vs07 99.8 97.4 98.0 +0.6
vs08 99.4 90.4 87.0 -3.4
vs09 99.4 86.8 98.3 +11.5
vs12 99.6 98.3 98.5 +0.2
vs13 99.7 98.9 99.1 +0.2
vs14 100.0 97.1 98.3 +1.2
vs15 99.8 96.7 98.0 +1.3
vs16 99.7 89.0 97.3 +8.3
vs17 99.7 96.8 98.6 +1.8
vs18 99.8 91.7 96.0 +4.3
vs19 99.6 84.8 98.0 +13.2
vs23 99.1 95.2 98.0 +2.9
vs24 99.4 98.7 98.7 0.0
vs25 99.4 80.6 97.2 +16.6
vs26 99.7 98.8 98.2 -0.6
vs27 98.6 80.1 91.9 +11.8
vs28 99.1 96.8 96.8 0.0
vs29 99.1 91.6 98.6 +7.0
vs34 99.8 99.4 99.1 -0.3
vs35 99.2 93.5 94.3 +0.8
vs36 99.7 99.3 99.3 -0.1
vs37 98.9 94.9 97.5 +2.6
vs38 99.0 98.3 98.8 +0.6
vs39 98.8 96.8 97.8 +1.0
vs45 99.9 96.5 98.4 +1.9
vs46 99.6 94.1 96.0 +1.9
vs47 99.7 97.2 99.3 +2.1
vs48 99.2 90.4 93.4 +3.0
vs49 98.4 93.7 94.2 +0.5
vs56 99.0 96.9 97.1 +0.2
vs57 99.7 90.5 97.2 +6.7
vs58 98.9 92.7 92.3 -0.4
vs59 99.4 90.0 95.4 +5.5
vs67 99.7 98.4 91.0 -7.4
vs68 98.7 92.2 89.5 -2.7
vs69 99.7 87.0 86.7 -0.3
vs78 98.9 95.7 97.6 +1.9
vs79 99.1 85.3 96.9 +11.5
vs89 98.7 84.2 89.1 +4.9

PROTEINS 73.6 ± 3.2 67.6 ± 4.13 69.7 ± 4.63 +2.1
MUTAG 85.1 ± 7.1 82.9 ± 9.34 87.3 ± 8.23 +4.4
COX2 78.6 ± 1.7 74.1 ± 4.39 74.3 ± 3.60 +0.2
DHFR 78.8 ± 4.1 60.2 ± 12.33 62.5 ± 10.02 +2.3
BZR 84.9 ± 2.1 78.2 ± 6.83 76.0 ± 9.33 -2.3

FRANKENSTEIN 69.7 ± 1.4 59.7 ± 2.49 60.4 ± 1.14 +0.7
IMDB-MULTI 49.3 ± 3.3 36.9 ± 1.74 36.7 ± 1.87 -0.2
IMDB-BINARY 72.8 ± 4.5 61.7 ± 3.52 62.7 ± 4.75 +1.0

NCI1 74.3 ± 1.8 74.0 ± 3.30 72.3 ± 3.21 -1.8
NCI109 72.5 ± 1.7 73.6 ± 2.42 72.8 ± 1.62 -0.8

Table 2. All accuracy scores for graphs and MNIST data sets.
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