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Abstract
We consider the task of learning to control a lin-
ear dynamical system under fixed quadratic costs,
known as the Linear Quadratic Regulator (LQR)
problem. While model-free approaches are often
favorable in practice, thus far only model-based
methods, which rely on costly system identifi-
cation, have been shown to achieve regret that
scales with the optimal dependence on the time
horizon T . We present the first model-free al-
gorithm that achieves similar regret guarantees.
Our method relies on an efficient policy gradient
scheme, and a novel and tighter analysis of the
cost of exploration in policy space in this setting.

1. Introduction
Model-free, policy gradient algorithms have become a sta-
ple of Reinforcement Learning (RL) with both practical
successes (Lillicrap et al., 2015; Haarnoja et al., 2018),
and strong theoretical guarantees in several settings (Sutton
et al., 1999; Silver et al., 2014). In this work we study the
design and analysis of such algorithms for the adaptive con-
trol of Linear Quadratic Regulator (LQR) systems, as seen
through the lens of regret minimization (Abbasi-Yadkori &
Szepesvári, 2011; Cohen et al., 2019; Mania et al., 2019).
In this continuous state and action reinforcement learning
setting, an agent chooses control actions ut and the system
state xt evolves according to the noisy linear dynamics

xt+1 = A?xt +B?ut + wt,

where A? and B? are transition matrices and wt are i.i.d
zero-mean noise terms. The cost is a quadratic function of
the current state and action, and the regret is measured with
respect to the class of linear policies, which are known to
be optimal for this setting.
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Model-based methods, which perform planning based on a
system identification procedure that estimates the transition
matrices, have been studied extensively in recent years. This
started with Abbasi-Yadkori & Szepesvári (2011), which
established an O(

√
T ) regret guarantee albeit with a com-

putationally intractable method. More recently, Cohen et al.
(2019); Mania et al. (2019) complemented this result with
computationally efficient methods, and Simchowitz & Fos-
ter (2020); Plevrakis & Hazan (2020) respectively give
model-based algorithms with similar guarantees for the set-
tings of strongly-convex adversarial costs, and general fixed
convex costs, which both encompass the quadratic setting.
Cassel et al. (2020); Simchowitz & Foster (2020) provided
lower bounds, showing that this rate is generally unavoid-
able, regardless of whether the algorithm is model free or
not, with Simchowitz & Foster (2020) also establishing a
near-optimal dependence on the dimension parameters. In
comparison, the best existing model-free algorithms are pol-
icy iteration procedures by Krauth et al. (2019) and Abbasi-
Yadkori et al. (2019) that respectively achieve Õ(T 2/3) and
Õ(T 2/3+ε) regret for ε = Θ(1/ log T ).

Our main result is an efficient (in fact, linear time per step)
policy gradient algorithm that achieves Õ(

√
T ) regret, thus

closing the (theoretical) gap between model based and free
methods for the LQR model. An interesting feature of our
approach is that while the policies output by the algorithm
are clearly state dependent, the tuning of their parameters re-
quires no such access. Instead, we only rely on observations
of the incurred cost, similar to bandit models (e.g., Cassel
& Koren, 2020). We note that our results focus strictly on
the time horizon parameter, and it remains open whether
model-free methods could also achieve dimension optimal
regret guarantees.

One of the main challenges of regret minimization in LQRs
(and more generally, in reinforcement learning) is that it
is generally infeasible to change policies as often as one
likes. Roughly, this is due to a burn-in period following a
policy change, during which the system converges to a new
steady distribution, and typically incurs an additional cost
proportional to the change in steady states, which is in turn
proportional to the distance between policies. There are
several ways to overcome this impediment. The simplest is
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to restrict the number of policy updates and explore directly
in the action space via artificial noise (see e.g., Simchowitz
& Foster, 2020). Another approach by Cohen et al. (2019)
considers a notion of slowly changing policies, however,
these can be very prohibitive for exploration in policy space.
Other works (e.g., Agarwal et al., 2019) consider a policy
parameterization that converts the problem into online opti-
mization with memory, which also relies on slowly changing
policies. This last method is also inherently model-based
and thus not adequate for our purpose.

A key technical contribution that we make is to overcome
this challenge by exploring directly in policy space. While
the idea itself is not new, we provide a novel and tighter
analysis that allows us to use larger perturbations, thus re-
ducing the variance of the resulting gradient estimates. We
achieve this by showing that the additional cost depends
only quadratically on the exploration radius, which is a
crucial ingredient for overcoming the O(T 2/3) barrier of
previous model-free methods.

The final ingredient of the analysis involves a sensitivity
analysis of the gradient descent procedure that uses the esti-
mated gradients. While similar analyses of gradient methods
exist (see, e.g., Theorem 21 in Malik et al., 2020), they do
not directly account for (small) adversarial corruptions to
the gradient, which is crucial for our application. We pro-
vide a general result that gives appropriate conditions for
which the optimization error depends only quadratically on
the error in the gradients, regardless of whether its source is
stochastic or adversarial.

Related work. Policy gradient methods in the context of
LQR have seen significant interest in recent years. Notably,
Fazel et al. (2018) establish its global convergence in the
perfect information setting, and give complexity bounds for
sample based methods. Subsequently, Malik et al. (2020)
refined their analysis to obtain the correct 1/ε2 scaling of the
sample complexity, however, they do not address the cost of
exploration. Hambly et al. (2020) also improve the sample
efficiency, but in a finite horizon setting. Mohammadi et al.
(2020) give sample complexity bounds for the continuous-
time variant of LQR. Finally, Tu & Recht (2019) show that a
model based method can potentially outperform the sample
complexity of policy gradient by factors of the input and
output dimensions. While we observe similar performance
gaps in our regret bounds, these were not our main focus
and may potentially be improved by a more refined analysis.
Moving away from policy gradients, Yang et al. (2019); Jin
et al. (2020); Yaghmaie & Gustafsson (2019) analyze the
convergence and sample complexity of other model free
methods such as policy iteration and temporal difference
(TD) learning, but they do not include any regret guarantees.

2. Preliminaries
2.1. Setup: Learning in LQR

We consider the problem of regret minimization in the LQR
model. At each time step t, a state xt ∈ Rdx is observed and
action ut ∈ Rdu is chosen. The system evolves according
to

xt+1 = A?xt +B?ut + wt, (x0 = 0 w.l.o.g.),

where the state-state A? ∈ Rdx×dx and state-action B? ∈
Rdx×du matrices form the transition model and the wt are
bounded, zero mean, i.i.d. noise terms with a positive def-
inite covariance matrix Σw � 0. Formally, there exist
σ,W > 0 such that

Ewt = 0 , ‖wt‖ ≤W ,Σw = EwtwT
t � σ2I.

The bounded noise assumption is made for simplicity of
the analysis, and in the full version of the paper (Cassel
& Koren, 2021) we show how to accommodate Gaussian
noise via a simple reduction to this setting. At time t, the
instantaneous cost is

ct = xTtQxt + uTtRut,

where 0 ≺ Q,R � I are positive definite. We note that the
upper bound is without loss of generality since multiplying
Q and R by a constant factor only re-scales the regret.

A policy of the learner is a potentially time dependent map-
ping from past history to an action u ∈ Rdu to be taken
at the current time step. Classic results in linear control
establish that, given the system parameters A?, B?, Q and
R, a linear transformation of the current state is an optimal
policy for the infinite horizon setting. We thus consider poli-
cies of the form ut = Kxt and define their infinite horizon
expected cost,

J(K) = lim
T→∞

1

T
E

[
T∑
t=1

xTt
(
Q+KTRK

)
xt

]
,

where the expectation is taken with respect to the random
noise variableswt. LetK? = arg minK J(K) be a (unique)
optimal policy and J? = J(K?) denote the optimal infinite
horizon expected cost, which are both well defined under
mild assumptions.1 We are interested in minimizing the
regret over T decision rounds, defined as

RT =

T∑
t=1

(
xTtQxt + uTtRut − J?

)
.

1These are valid under standard, very mild stabilizability as-
sumptions (see Bertsekas, 1995) that hold in our setting (see strong-
stability).
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We focus on the setting where the learner does not have
a full a-priori description of the transition parameters A?
and B?, and has to learn the optimal control strategy while
minimizing the regret.

Throughout, we assume that the learner has knowledge of
constants α0 > 0 and ψ ≥ 1 such that

‖Q−1‖, ‖R−1‖ ≤ 1/α0, and ‖B?‖ ≤ ψ.

We also assume that there is a known stable (not necessarily
optimal) policy K0 and ν > 0 such that J(K0) ≤ 1

4ν. We
note that all of the aforementioned parameters could be
easily estimated at the cost of an additive constant regret
term by means of a warm-up period. However, recovering
the initial controlK0 gives an additive constant that depends
exponentially on the problem parameters as shown by Chen
& Hazan (2020); Mania et al. (2019); Cohen et al. (2019).

Finally, denote the set of all “admissable” controllers

K = {K | J(K) ≤ ν}.

By definition, K0 ∈ K. As discussed below, over the set K
the LQR cost function J has certain regularity properties
that we will use throughout.

2.2. Smooth Optimization

Fazel et al. (2018) show that while the objective J(·) is non-
convex, it has properties that make it amenable to standard
gradient based optimization schemes. We summarize these
here as they are used in our analysis.

Definition 1 (PL-condition). A function f : X → R with
global minimum f∗ is said to be µ-PL if it satisfies the
Polyak-Lojasiewicz (PL) inequality with constant µ > 0,
given by

µ(f(x)− f∗) ≤ ‖∇f(x)‖2 ,∀x ∈ X .

Definition 2 (Smoothness). A function f : Rd → R is
locally β,D0-smooth over X ⊆ Rd if for any x ∈ X and
y ∈ Rd with ‖y − x‖ ≤ D0

‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖.

Definition 3 (Lipschitz). A function f : Rd → R is locally
G,D0-Lipschitz over X ⊆ Rd if for any x ∈ X and y ∈ Rd
with ‖y − x‖ ≤ D0

|f(x)− f(y)| ≤ G‖x− y‖.

It is well-known that for functions satisfying the above
conditions and for sufficiently small step size η, the gradient
descent update rule

xt+1 = xt − η∇f(xt)

converges exponentially fast, i.e., there exists 0 ≤ ρ < 1
such that f(xt)− f∗ ≤ ρt(f(x0) − f∗) (e.g., Nesterov,
2003). This setting has also been investigated in the absence
of a perfect gradient oracle. Here we provide a clean result
that shows that the exponential convergence continue until
reaching a noise-floor that depends only on the squared
error of any gradient estimate.

Finally, we require the notion of a one point gradient esti-
mate (Flaxman et al., 2005). Let f : X → R and define its
smoothed version with parameter r > 0 as

fr(x) = EBf(x+ rB), (1)

where B ∈ Bd is a uniform random vector over the Eu-
clidean unit ball. The following lemma is standard (we
include a proof in the full version of the paper (Cassel &
Koren, 2021) for completeness).

Lemma 1. If f is (D0, β)-locally smooth and r ≤ D0, then:

(i) ∇fr(x) = d
rEU [f(x+ rU)U], where U ∈ Sd is a

uniform random vector of the unit sphere;
(ii) ‖∇fr(x)−∇f(x)‖ ≤ βr, ∀x ∈ X .

2.3. Background on LQR

It is well-known for the LQR problem that

J(K) = Tr(PKΣw) = Tr
(
(Q+KTRK)ΣK

)
,

where PK ,ΣK are the positive definite solutions to

PK = Q+KTRK + (A? +B?K)TPK(A? +B?K),
(2)

ΣK = Σw + (A? +B?K)ΣK(A? +B?K)T. (3)

Another important notion is that of strong stability (Cohen
et al., 2018). This is essentially a quantitative version of
classic stability notions in linear control.

Definition 4 (strong stability). A matrix M is (κ, γ)-
strongly stable (for κ ≥ 1 and 0 < γ ≤ 1) if there ex-
ist matrices H � 0 and L such that M = HLH−1 with
‖L‖ ≤ 1 − γ and ‖H‖‖H−1‖ ≤ κ. A controller K
for is (κ, γ)−strongly stable if ‖K‖ ≤ κ and the matrix
A? +B?K is (κ, γ)-strongly stable.

The following lemma, due to Cohen et al. (2019), relates
the infinite horizon cost of a controller to its strong stability
parameters.

Lemma 2 (Cohen et al., 2019, Lemma 18). Suppose that
K ∈ K then K is (κ, γ)−strongly stable with κ =√
ν/α0σ2 and γ = 1/2κ2.
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The following two lemmas, due to Cohen et al. (2018);
Cassel et al. (2020), show that the state covariance converges
exponentially fast, and that the state is bounded as long as
controllers are allowed to mix.

Lemma 3 (Cohen et al., 2018, Lemma 3.2). Suppose we
play some fixed K ∈ K starting from some x0 ∈ Rdx , then

‖E[xtx
T
t ]− ΣK‖ ≤ κ2e−2γt‖x0xT0 − ΣK‖,

|E[ct]− J(K)| ≤ νκ2

σ2
e−2γt‖x0xT0 − ΣK‖.

Lemma 4 (Cassel et al., 2020, Lemma 39). Suppose we
have K1,K2, . . . ∈ K. If we play each controller Ki for
at least τ ≥ 2κ2 log 2κ rounds before switching to Ki+1

then for all t ≥ 1 we have that ‖xt‖ ≤ 6κ4W and ct ≤
36νκ8W 2/σ2.

The following is a summary of results from Fazel et al.
(2018) that describe the main properties of ΣK , PK , J(K).
See the full version of the paper (Cassel & Koren, 2021) for
the complete details.

Lemma 5 (Fazel et al., 2018, Lemmas 11, 13, 16, 27 and
28). Let K ∈ K and K ′ ∈ Rdu×dx with

‖K −K ′‖ ≤ 1

8ψκ3
= D0,

then we have that

(i) Tr(PK) ≤ J(K)/σ2; Tr(ΣK) ≤ J(K)/α0;

(ii) ‖ΣK − ΣK′‖ ≤ (8ψνκ3/α0)‖K −K ′‖;
(iii) ‖PK − PK′‖ ≤ 16ψκ7‖K −K ′‖;
(iv) J satisfies the local Lipschitz condition (Definition 3)

over K with D0 and G = 4ψνκ7/α0;

(v) J satisfies the local smoothness condition (Defini-
tion 2) over K with D0 and β = 112

√
dxνψ

2κ8/α0;

(vi) J satisfies the PL condition (Definition 1) with µ =
4ν/κ4.

3. Algorithm and Overview of Analysis
We are now ready to present our main algorithm for model
free regret minimization in LQR. The algorithm, given in
Algorithm 1, optimizes an underlying controller Kj over
epochs of exponentially increasing duration. Each epoch
consists of sub-epochs, during which a perturbed controller
Kj,i centered at Kj is drawn and played for τ rounds. At
the end of each epoch, the algorithm uses cj,i,τ , which is the
cost incurred during the final round of playing the controller
Kj,i, to construct a gradient estimate which in turn is used to
calculate the next underlying controller Kj+1. Interestingly,
we do not make any explicit use of the state observation xt
which is only used implicitly to calculate the control signal,

Algorithm 1 LQR Online Policy Gradient
1: input: initial controller K0 ∈ K, step size η, mixing

length τ , parameters µ, r0,m0

2: for epoch j = 0, 1, 2, . . . do
3: set rj = r0(1−µη/3)j/2,mj = m0(1−µη/3)−2j

4: for i = 1, . . . ,mj do
5: draw Ũj,i ∈ Rdu×dx with i.i.d. N (0, 1) entries
6: set Uj,i = Ũj,i/‖Ũj,i‖F
7: play Kj,i = Kj + rjUj,i for τ rounds
8: observe the cost of the final round cj,i,τ
9: calculate ĝj = dxdu

mjrj

∑mj

i=1 cj,i,τUj,i
10: update Kj+1 = Kj − ηĝj

via ut = Ktxt. Furthermore, the algorithm makes only
O(dudx) computations per time step.

Our main result regarding Algorithm 1 is stated in the fol-
lowing theorem: a high-probabilityO(

√
T ) regret guarantee

with a polynomial dependence on the problem parameters.

Theorem 1. Let κ =
√
ν/α0σ2 and suppose we run Algo-

rithm 1 with parameters

η =
α0

128νψ2κ10
, τ = 2κ2 log(7κT ),

µ =
4ν

κ4
, r0 =

α0

448
√
dxψ2κ10

,

√
m0 =

217dud
3/2
x ψ2κ20W 2

α0σ2

√
log

240T 4

δ
,

then with probability at least 1− δ,

RT = O

(
dud

3/2
x ψ4κ36W 2

α0

√
Tτ log

T

δ

)
.

Here we give an overview of the main steps in proving
Theorem 1, deferring the details of each step to later sections.
Our first step is analyzing the utility of the policies Kj

computed at the end of each epoch. We show that the regret
of each Kj (over epoch j) in terms of its long-term (steady
state) cost compared to that of the optimal K?, is controlled
by the inverse square-root of the epoch length mj . While, a
similar result was proven in Malik et al., 2020, it pertains to
the setting where we have access to unbiased estimates of
the infinite horizon cost, making it non-applicable for our
single trajectory setting.

Lemma 6 (exploitation). Under the parameter choices of
Theorem 1, for any j ≥ 0 we have that with probability at
least 1− δ/8T 2,

J(Kj)− J? = O

(
ν

√
m0

mj

)
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= O

(
dud

3/2
x ψ2κ22W 2

√
1

mj
log

T

δ

)
,

and further that J(Kj) ≤ ν/2.

The proof of the lemma is based on a careful analysis of gra-
dient descent with inexact gradients and crucially exploits
the PL and local-smoothness properties of the loss J(·).
More details can be found in Section 4.

The more interesting (and challenging) part of our analysis
pertains to controlling the costs associated with exploration,
namely, the penalties introduced by the perturbations of
the controllers Kj . The direct cost of exploration is clear:
instead of playing the Kj intended for exploitation, the
algorithm actually follows the perturbed controllers Kj,i

and thus incurs the differences in long-term costs J(Kj,i)−
J(Kj). Our following lemma bounds the accumulation of
these penalties over an epoch j; importantly, it shows that
while the bound scales linearly with the length of the epoch
mj , it has a quadratic dependence on the exploration radius
rj .

Lemma 7 (direct exploration cost). Under the parameter
choices of Theorem 1, for any j ≥ 0 we have that with
probability at least 1− δ/4T ,

mj∑
i=1

J(Kj,i)− J(Kj)

= O

(√
dxνψ

2κ8

α0
r2jmj + ν

√
mj log

T

δ

)
.

There are additional, indirect costs associated with explo-
ration however: within each epoch the algorithm switches
frequently between different policies, thereby suffering the
indirect costs that stem from their “burn-in” period. This
is precisely what gives rise to the differences between the
realized cost cj,i,s and the long-term cost J(Kj,i) of the pol-
icy Kj,i. The cumulative effect of these is bounded in the
next lemma, which is the technical crux of our results. Here
again, note the quadratic dependence on the exploration
radius rj which is essential for obtaining our

√
T -regret

result.

Lemma 8 (indirect exploration cost). Under the parameter
choices of Theorem 1, for any j ≥ 0 we have that with
probability at least 1− δ/4T ,

mj∑
i=1

τ∑
s=1

(
cj,i,s − J(Kj,i)

)
= O

(
νκ8W 2

σ2
τ

√
mj log

T

δ
+
dxνψ

2κ10

α0
mjr

2
j

)
.

The technical details for Lemmas 7 and 8 are discussed in
Section 5. We now have all the main pieces required for
proving our main result.

Proof of Theorem 1. Taking a union bound, we conclude
that Lemmas 6 to 8 hold for all j ≥ 0 with probability at
least 1 − δ. Now, notice that our choice of parameters is
such that

r2jmj = r20
√
m0mj = O

(√
dxduα0W

2

ψ2σ2

√
mj log

T

δ

)
.

Plugging this back into Lemmas 7 and 8 we get that for all
j,

mj∑
i=1

τ∑
s=1

(
cj,i,s−J(Kj,i)

)
= O

(
dud

3
2
x νκ10W 2

σ2
τ

√
mj log

T

δ

)
,

τ

mj∑
i=1

J(Kj,i)−J(Kj)

= O

(
dudxνκ

8W 2

σ2
τ

√
mj log

T

δ

)
.

We conclude that the regret during epoch j is bounded as
mj∑
i=1

τ∑
s=1

(
cj,i,s − J?

)
=

[
mj∑
i=1

τ∑
s=1

(
cj,i,s − J(Kj,i)

)]

+

[
τ

mj∑
i=1

J(Kj,i)− J(Kj)

]
+ [τmj(J(Kj)− J?)]

= O

(
dud

3/2
x ψ2κ22W 2τ

√
mj log

T

δ

)
,

where the second step also used the fact that ν/σ2 ≤ κ2.
Finally, a simple calculation (see Lemma 12) shows that

n−1∑
j=0

√
mj = O

(
1

µη

√
T/τ

)
= O

(
ψ2κ14

α0

√
T/τ

)
,

and thus summing over the regret accumulated in each epoch
concludes the proof. �

4. Optimization Analysis
At its core, Algorithm 1 is a policy gradient method withKj

being the prediction after j gradient steps. In this section we
analyze the sub-optimality gap of the underlying controllers
Kj culminating in the proof of Lemma 6. To achieve this,
we first consider a general optimization problem with a cor-
rupted gradient oracle, and show that the optimization rate is
limited only by the square of the corruption magnitude. We
follow this with an analysis of the LQR gradient estimation
from which the overall optimization cost follows readily.
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4.1. Inexact First-Order Optimization

Let f : Rd → R be a function with global minimum f∗ >
−∞. Suppose there exists f̄ ∈ R such that f is µ-PL,
(D0, β)-locally smooth, and (D0, G)-locally Lipschitz over
the sub-level set X = {x | f(x) ≤ f̄}. We consider the
update rule

xt+1 = xt − ηĝt, (4)

where f(x0) ≤ f̄ , and ĝt ∈ Rd is a corrupted gradient
oracle that satisfies

‖ĝt −∇f(xt)‖ ≤ εt, (5)

where εt ≤ min{G,
√

(f̄ − f∗)µ/2} is the magnitude of
the corruption at step t. Define the effective corruption up
to round t as

ε̄2t = max
s≤t

{
ε2s[1− (µη/3)]

t−s
}
,

and notice that if εs[1− (µη/3)] ≤ εs+1 then ε̄t = εt.

The following result shows that this update rule achieves
a linear convergence rate up to an accuracy that depends
quadratically on the corruptions. The proof follows simi-
lar ideas to those in Theorem 21 of Malik et al., 2020, but
crucially, distills the dependence on the gradient errors re-
gardless of their estimation method. See proof in the full
version of the paper (Cassel & Koren, 2021).

Theorem 2 (corrupted gradient descent). Suppose that η ≤
min{1/β, 4/µ,D0/2G.} Then for all t ≥ 0,

f(xt)− f∗ ≤ max

{
4ε̄2t−1
µ

,
[
1− µη

3

]t
(f(x0)− f∗)

}
,

and consequently xt ∈ X .

4.2. Gradient Estimation

The gradient estimate ĝj is a batched version of the typical
one-point gradient estimator. We bound it in the next lemma
using the following inductive idea: if J(Kj) ≤ ν/2, then
Kj,i ∈ K and standard concentration arguments imply that
the estimation error is small with high probability and thus
Theorem 2 implies that J(Kj+1) ≤ ν/2.

Lemma 9 (Gradient estimation error). Under the parameter
choices of Theorem 1, for any j ≥ 0 we have that with
probability at least 1− (δ/8T 3),

‖ĝj −∇J(Kj)‖F ≤
√
µν

4

(
1− µη

3

)j/2
.

Proof of Lemma 9. Assume that conditioned on the event
J
(
K ′j
)
≤ ν/2 for all j′ ≤ j, the claim holds with proba-

bility at least 1 − δ/8T 4. We show by induction that we

can peel-off the conditioning by summing the failure prob-
ability of each epoch. Concretely, we show by induction
that the claim holds for all j′ ≤ j with probability at least
1− jδ/8T 4. Since the number of epochs is less than T (in
fact logarithmic in T ), this will conclude the proof.

The induction base follows immediately by our conditional
assumption and the fact that J(K0) ≤ ν/4. Now, assume
the hypothesis holds up to j−1. We show that the conditions
of Theorem 2 are satisfied with f̄ = ν/2 up to round j, and
thus J(Kj′) ≤ ν/2 for all j′ ≤ j. We can then invoke our
conditional assumption and a union bound to conclude the
induction step.

We verify the conditions of Theorem 2. First, the Lipschitz,
smoothness, and PL conditions hold by Lemma 5. Next,
notice that by definition J? ≤ J(K0) ≤ ν/4, and so by
the induction hypothesis ‖ĝj′ −∇J(Kj′)‖F ≤

√
νµ/4 ≤√

(f̄ − f∗)µ/2 ≤ G, for all j′ < j. Finally, noticing that
κ2 > dx it is easy to verify the condition on η.

It remains to show the conditional claim holds. The event
J(Kj′) ≤ ν/2 for all j′ ≤ j essentially implies that the pol-
icy gradient scheme did not diverge up to the start of epoch j.
Importantly, this event is independent of any randomization
during epoch j and thus will not break any i.i.d. assump-
tions within the epoch. Moreover, by Lemma 5 and since
r0 ≤ ν/2G, this implies that J(Kj′,i) ≤ J(Kj)+Grj ≤ ν,
i.e., Kj′,i ∈ K for all i and j′ ≤ j. For the remainder of
the proof, we implicitly assume that this holds, allowing us
to invoke Lemmas 3 to 5. For ease of notation, we will not
specify this explicitly.

Now, let Jr be the smoothed version of J as in Eq. (1).
Since rj ≤ D0 we can use Lemma 1 to get that

‖ĝj −∇J(Kj)‖F
≤ ‖ĝj −∇Jrj (Kj)‖F + ‖∇Jrj (Kj)−∇J(Kj)‖F
≤ βrj + ‖ĝj −∇Jrj (Kj)‖F ,

Next, we decompose the remaining term using the triangle
inequality to get that

‖ĝj −∇Jrj (Kj)‖F

=

∥∥∥∥∥ 1

mj

mj∑
i=1

(
dxdu
rj

cj,i,τUj,i −∇Jrj (Kj))

∥∥∥∥∥
F

≤

∥∥∥∥∥ 1

mj

mj∑
i=1

(
dxdu
rj

J(Kj,i)Uj,i −∇Jrj (Kj))

∥∥∥∥∥
F

+

∥∥∥∥∥ 1

mj

mj∑
i=1

(
dxdu
rj

(cj,i,τ − J(Kj,i))Uj,i)

∥∥∥∥∥
F

.

By Lemma 1, we notice that, conditioned on Kj , the first
term is a sum of zero-mean i.i.d random vectors with norm
bounded by 2dudxν/rj . We thus invoke Lemma 13 (Vector
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Azuma) to get that with probability at least 1− δ/16T 4∥∥∥∥∥ 1

mj

mj∑
i=1

dxdu
rj

J(Kj,i)Uj,i −∇Jrj (Kj)

∥∥∥∥∥
F

≤ dudxν

rj

√
8

mj
log

240T 4

δ
.

Next, denote Zi = dxdu
rj

(cj,i,τ − J(Kj,i))Uj,i, and no-
tice that the remaining term is exactly ‖ 1

mj

∑mj

i=1 Zi‖F .
Let xj,i,τ be the state during the final round of play-
ing controller Kj,i, and Fi be the filtration defined by
Kj , xj,1,τ , . . . , xj,i,τ , Uj,1, . . . , Uj,i. We use Jensen’s in-
equality and Lemma 3 to get that

‖E[Zi | Fi−1]‖F
≤ E[‖E[Zi | Fi−1,Kj,i]‖F | Fi−1]

≤ dxdu
rj

E
[
|E[cj,i,τ | Fi−1,Kj,i]− J(Kj,i)|

∣∣∣ Fi−1]
≤ dxduνκ

2

rjσ2
e−2γτE

[
‖xj,i,1xTj,i,1 − ΣKj,i‖

∣∣∣ Fi−1]
≤ 37dxduνκ

10W 2

rjσ2
e−2γτ

≤ dxduνκ
8W 2

rjσ2T 2
,

where the last step plugged in the value of τ and the one be-
fore that used Lemmas 4 and 5 to bound ‖ΣKj,i‖ ≤ ν/α0 =
κ2σ2 and ‖xj,i,1‖ ≤ 6κ4W . Further using Lemma 4 to
bound cj,i,τ , we also get that

‖Zi − E[Zi | Fi−1]‖F
≤ ‖Zi‖F + ‖E[Zi | Fi−1]‖F

≤ dxducj,i,τ
rj

+ ‖E[Zi | Fi−1]‖F

≤ 37dxduνκ
8W 2

rjσ2
.

Since Zi is Fi−measurable we can invoke Lemma 13 (Vec-
tor Azuma) to get that with probability at least 1− δ

16T 4 ,∥∥∥∥∥ 1

mj

mj∑
i=1

Zi

∥∥∥∥∥
F

≤ 1

mj

∥∥∥∥∥
mj∑
i=1

Zi − E[Zi | Fi−1]

∥∥∥∥∥
F

+
1

mj

mj∑
i=1

‖E[Zi | Fi−1]‖F

≤ dxduνκ
8W 2

rjσ2

[
37

√
2

mj
log

240T 4

δ
+

1

T 2

]

≤ 54dxduνκ
8W 2

rjσ2

√
1

mj
log

240T 4

δ
.

Using a union bound and putting everything together, we
conclude that with probability at least 1− (δ/8T 4),

‖ĝj −∇J(Kj)‖F

≤ βrj +
54dxduνκ

8W 2

rjσ2

√
1

mj
log

240T 4

δ

=

[
βr0 +

54dxduνκ
8W 2

σ2r0m
1/2
0

√
log

240T 4

δ

](
1− µη

3

)j/2
≤ 2βr0

(
1− µη

3

)j/2
≤
√
µν

4

(
1− µη

3

)j/2
,

where the last steps plugged in the values of µ, β, r0, and
m0. �

4.3. Proof of Lemma 6

Lemma 6 is a straightforward consequence of the previous
results.

Proof. For j = 0 the claim holds trivially by our assumption
that J(K0) ≤ ν/4. Now, for j ≥ 1, we use a union bound
on Lemma 9 to get that with probability at least 1− δ/8T 2

‖ĝj −∇J(Kj)‖ ≤
√
µν

4

(
1− µη

3

)j/2
, ∀j ≥ 0.

Then by Theorem 2 we have that

J(Kj) ≤ J? +
ν

4

(
1− µη

3

)j−1
≤ min

{
ν

2
, J? +

ν

2

(
1− µη

3

)j}
,

where the last step used the facts that J? ≤ J(K0) ≤ ν/4
and 1− µη/3 ≥ 1/2. �

5. Exploration Cost Analysis
In this section we demonstrate that exploring near a given
initial policy does not incur linear regret in the exploration
radius (as more straightforward arguments would give), and
use this crucial observation for proving Lemmas 7 and 8.

We begin with Lemma 8. The main difficulty in the proof
is captured by the following basic result, which roughly
shows that the expected cost for transitioning between two
i.i.d. copies of a given random policy scales with the vari-
ance of the latter. This would in turn give the quadratic
dependence on the exploration radius we need.

Lemma 10. Let K ∈ K be fixed. Suppose K1,K2

are i.i.d. random variables such that EKi = K, and
‖Ki −K‖F ≤ r ≤ D0. If xτ (K1) is the result of play-
ing K1 for τ ≥ 1 rounds starting at x0 ∈ Rdx , then

E[xτ (K1)T(PK2 − PK1)xτ (K1)]



Online Policy Gradient for Model Free Learning of Linear Quadratic Regulators

≤ 256dxνψ
2κ10

α0
r2 + 32dxψκ

9(‖x0‖2 + κ2σ2)re−2γτ .

Proof. Notice that the expectation is with respect to both
controllers and the τ noise terms, all of which are jointly
independent. We begin by using Lemmas 3 and 5 to get that

Tr
(
(PK2

− PK1
)(E[xτ (K1)xτ (K1)T | K1]− ΣK1

)
)

≤ 32dxψκ
7r‖E[xτ (K1)xτ (K1)T | K1]− ΣK1

)‖
≤ 32dxψκ

9re−2γτ‖x0xT0 − ΣK1
‖

≤ 32dxψκ
9(‖x0‖2 + κ2σ2)re−2γτ ,

where the last step also used the fact that κ2σ2 = ν/α0.
Now, since PK1

, PK2
do not depend on the noise, we can

use the law of total expectation to get that

E[xτ (K1)T(PK2 − PK1)xτ (K1)]

= E[Tr
(
(PK2

− PK1
)E[xτ (K1)xτ (K1)T | K1]

)
]

≤ ETr((PK2
− PK1

)ΣK1
)

+ 4dxα0κ
2(‖x0‖2 + κ2σ2)e−2γτ .

To bound the remaining term, notice that since K1,K2 are
i.i.d, we may change their roles without changing the expec-
tation, i.e.,

E[Tr((PK2
− PK1

)ΣK1
)] = E[Tr((PK1

− PK2
)ΣK2

)],

we conclude that

E[Tr((PK2
− PK1

)ΣK1
)]

=
1

2
E[Tr((PK2

− PK1
)(ΣK1

− ΣK2
))]

≤ dx
2
‖PK2

− PK1
‖‖ΣK2

− ΣK1
‖

≤ 256dxνψ
2κ10

α0
r2,

where the last step also used Lemma 5. �

5.1. Proof of Lemma 8

Before proving Lemma 8 we introduce a few simplifying
notations. Since the lemma pertains to a single epoch, we
omit its notation j wherever it is clear from context. For
example, Kj,i will be shortened to Ki and xj,i,s to xi,s.
In any case, we reserve the index j for epochs and i for
sub-epochs. In this context, we also denote the gap between
realized and idealized costs during sub-epoch i by

∆Ci =

τ∑
s=1

(ci,s − J(Ki)),

and the filtration Hi = σ(w1,1, . . . , wi,τ−1,K1, . . . ,Ki).
We note that Ki and ∆Ci areHi−measurable. The follow-
ing lemma uses Eq. (2) to decompose the cost gap at the
various time resolutions. See proof in the full version of the
paper (Cassel & Koren, 2021).

Lemma 11. If the epoch initial controller satisfies J(Kj) ≤
ν/2 then (recall that PK is the positive definite solution to
Eq. (2)):

(i) ci,s − J(Ki)
= xTi,sPKixi,s − Ewi,s [xTi,s+1PKixi,s+1];

(ii) E[∆Ci | Hi−1]
= E

[
xTi,1PKixi,1 − xTi+1,1PKixi+1,1 | Hi−1

]
;

(iii)
∑mj

i=1 E[∆Ci | Hi−1] ≤ E[xT1,1PK1
x1,1]

+
∑mj

i=2

(
E[xTi,1PKixi,1 | Hi−1]

− E[xTi,1PKi−1xi,1 | Hi−2]
)
.

We are now ready to prove the main lemma of this section.

Proof of Lemma 8. First, by Lemma 6, the event J(Kj′) ≤
ν/2 for all j′ ≤ j holds with probability at least 1− δ/8T .
As in the proof of Lemma 9, we will implicitly assume that
this event holds, which will not break any i.i.d assumptions
during epoch j and implies that Ki ∈ K for all 1 ≤ i ≤ mj .
We also use this to invoke Lemmas 4 and 5 to get that for
any 1 ≤ i, i′ ≤ mj and 1 ≤ s ≤ τ we have xTi,sPKi′xi,s ≤
36νκ8W 2/σ2 = ν0.

Now, recall that ∆Ci is Hi-measurable and thus ∆Ci −
E[∆Ci | Hi−1] is a martingale difference sequence. Using
the first part of Lemma 11 we also conclude that each term
bounded by τν0. Applying Azuma’s inequality we get that
with probability at least 1− (δ/16T )

mj∑
i=1

∆Ci =

mj∑
i=1

∆Ci − E[∆Ci | Hi−1] + E[∆Ci | Hi−1]

≤
√

2mjτ2ν20 log
16T

δ
+

mj∑
i=1

E[∆Ci | Hi−1].

Now, recall from Lemma 11 that
mj∑
i=1

E[∆Ci | Hi−1]

≤ E[xT1,1PK1x1,1]

+

mj∑
i=2

E[xTi,1PKi
xi,1 | Hi−1]− E[xTi,1PKi−1

xi,1 | Hi−2]

= E[xT1,1PK1x1,1]

+

mj∑
i=2

E[xTi,1PKi
xi,1 | Hi−1]− E[xTi,1PKi

xi,1 | Hi−2]

+ E[xTi,1(PKi − PKi−1)xi,1 | Hi−2].

The first two terms in the sum form a martingale difference
sequence with each term being bound by ν0. We thus have
that with probability at least 1− δ/16T ,

mj∑
i=1

E[∆Ci | Hi−1] ≤ ν0 +

√
2mjν20 log

16T

δ
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+

mj∑
i=2

E[xTi,1(PKi
− PKi−1

)xi,1 | Hi−2].

Notice that the summands in the remaining term fit the
setting of Lemma 10 and thus

mj∑
i=2

E[xTi,1(PKi
− PKi−1

)xi,1 | Hi−2]

≤ 256dxνψ
2κ10

α0
r2jmj

+

mj∑
i=1

32dxψκ
9(‖xi,1‖2 + κ2σ2)rje

−2γτ

≤ 256dxνψ
2κ10

α0
r2jmj +

25dxψκ
15W 2rjmj

T 2

≤ 257dxνψ
2κ10

α0
r2jmj ,

where the second transition plugged in τ and used Lemma 4
to bound ‖xi,1‖, and the third transition used the fact that
T−2 ≤ m−2j ≤ rj/m0. Plugging in the value of ν0 and
using a union bound, we conclude that with probability at
least 1− δ/4T ,

mj∑
i=1

∆Ci ≤
144νκ8W 2

σ2
τ

√
mj log

16T

δ

+
257dxνψ

2κ10

α0
r2jmj ,

as desired. �

5.2. Proof of Lemma 7

Proof of Lemma 7. By Lemma 6, the event J(Kj) ≤ ν/2
occurs with probability at least 1 − δ/8T 2. Similarly to
Lemmas 8 and 9, we implicitly assume that this event holds,
which does not break i.i.d assumptions inside the epoch and
implies that Kj,i ∈ K for all 1 ≤ i ≤ mj . Now, notice that
E[Kj,i | Kj ] = Kj . Since Kj ∈ K and rj ≤ D0, we can
invoke the local smoothness of J(·) (see Lemma 5) to get
that

E[J(Kj,i) | Kj ] ≤ J(Kj) +∇J(Kj)
TE[Kj,i −Kj | Kj ]

+
1

2
βE[‖Kj,i −Kj‖2 | Kj ]

= J(Kj) +
1

2
βr2j .

We thus have that
mj∑
i=1

J(Kj,i)− J(Kj)

≤ 1

2
βr2jmj +

mj∑
i=1

J(Kj,i)− E[J(Kj,i) | Kj ].

The remaining term is a sum of zero-mean i.i.d. random
variables that are bounded by ν. We use Hoeffding’s in-
equality and a union bound to get that with probability at
least 1− δ/4T

mj∑
i=1

J(Kj,i)− J(Kj) ≤
1

2
βr2jmj + ν

√
1

2
mj log

8T

δ
,

and plugging in the value of β from Lemma 5 concludes the
proof. �
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free linear quadratic control via reduction to expert predic-
tion. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 3108–3117. PMLR, 2019.

Agarwal, N., Hazan, E., and Singh, K. Logarithmic regret
for online control. In Advances in Neural Information
Processing Systems, pp. 10175–10184, 2019.

Bertsekas, D. P. Dynamic programming and optimal control,
volume 1. Athena scientific Belmont, MA, 1995.

Cassel, A. and Koren, T. Bandit linear control. Advances in
Neural Information Processing Systems, 33, 2020.

Cassel, A. and Koren, T. Online policy gradient for model
free learning of linear quadratic regulators with

√
T re-

gret. arXiv preprint arXiv:2102.12608, 2021.

Cassel, A., Cohen, A., and Koren, T. Logarithmic regret
for learning linear quadratic regulators efficiently. In
International Conference on Machine Learning, pp. 1328–
1337. PMLR, 2020.

Chen, X. and Hazan, E. Black-box control for linear dynam-
ical systems. arXiv preprint arXiv:2007.06650, 2020.

Cohen, A., Hasidim, A., Koren, T., Lazic, N., Mansour,
Y., and Talwar, K. Online linear quadratic control. In
International Conference on Machine Learning, pp. 1029–
1038, 2018.



Online Policy Gradient for Model Free Learning of Linear Quadratic Regulators

Cohen, A., Koren, T., and Mansour, Y. Learning linear-
quadratic regulators efficiently with only

√
T regret. In

International Conference on Machine Learning, pp. 1300–
1309, 2019.

Fazel, M., Ge, R., Kakade, S., and Mesbahi, M. Global
convergence of policy gradient methods for the linear
quadratic regulator. In Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80,
2018.

Flaxman, A. D., Kalai, A. T., and McMahan, H. B. Online
convex optimization in the bandit setting: gradient de-
scent without a gradient. In Proceedings of the sixteenth
annual ACM-SIAM symposium on Discrete algorithms,
pp. 385–394, 2005.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International Con-
ference on Machine Learning, pp. 1861–1870. PMLR,
2018.

Hambly, B. M., Xu, R., and Yang, H. Policy gradient
methods for the noisy linear quadratic regulator over a
finite horizon. Available at SSRN, 2020.

Hanson, D. L. and Wright, F. T. A bound on tail probabili-
ties for quadratic forms in independent random variables.
The Annals of Mathematical Statistics, 42(3):1079–1083,
1971.

Hayes, T. P. A large-deviation inequality for vector-valued
martingales. Combinatorics, Probability and Computing,
2005.

Hsu, D., Kakade, S., Zhang, T., et al. A tail inequality for
quadratic forms of subgaussian random vectors. Elec-
tronic Communications in Probability, 17, 2012.

Jin, Z., Schmitt, J. M., and Wen, Z. On the analysis of
model-free methods for the linear quadratic regulator.
arXiv preprint arXiv:2007.03861, 2020.

Krauth, K., Tu, S., and Recht, B. Finite-time analysis of
approximate policy iteration for the linear quadratic reg-
ulator. In Advances in Neural Information Processing
Systems, volume 32, 2019.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Malik, D., Pananjady, A., Bhatia, K., Khamaru, K., Bartlett,
P. L., and Wainwright, M. J. Derivative-free methods
for policy optimization: Guarantees for linear quadratic
systems. Journal of Machine Learning Research, 21(21):
1–51, 2020.

Mania, H., Tu, S., and Recht, B. Certainty equivalence
is efficient for linear quadratic control. In Advances in
Neural Information Processing Systems, volume 32, pp.
10154–10164, 2019.

Mohammadi, H., Jovanovic, M. R., and Soltanolkotabi, M.
Learning the model-free linear quadratic regulator via
random search. In Learning for Dynamics and Control,
pp. 531–539. PMLR, 2020.

Nesterov, Y. Introductory lectures on convex optimization:
A basic course, volume 87. Springer Science & Business
Media, 2003.

Plevrakis, O. and Hazan, E. Geometric exploration for
online control. In Larochelle, H., Ranzato, M., Hadsell,
R., Balcan, M. F., and Lin, H. (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 7637–
7647. Curran Associates, Inc., 2020.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International conference on machine learning, pp. 387–
395. PMLR, 2014.

Simchowitz, M. and Foster, D. Naive exploration is optimal
for online lqr. In International Conference on Machine
Learning, pp. 8937–8948. PMLR, 2020.

Sutton, R. S., McAllester, D. A., Singh, S. P., Mansour, Y.,
et al. Policy gradient methods for reinforcement learning
with function approximation. In NIPs, volume 99, pp.
1057–1063. Citeseer, 1999.

Tu, S. and Recht, B. The gap between model-based and
model-free methods on the linear quadratic regulator: An
asymptotic viewpoint. In Conference on Learning Theory,
pp. 3036–3083. PMLR, 2019.

Wright, F. T. A bound on tail probabilities for quadratic
forms in independent random variables whose distribu-
tions are not necessarily symmetric. The Annals of Prob-
ability, pp. 1068–1070, 1973.

Yaghmaie, F. A. and Gustafsson, F. Using reinforcement
learning for model-free linear quadratic control with pro-
cess and measurement noises. In 2019 IEEE 58th Con-
ference on Decision and Control (CDC), pp. 6510–6517.
IEEE, 2019.

Yang, Z., Chen, Y., Hong, M., and Wang, Z. Provably global
convergence of actor-critic: A case for linear quadratic
regulator with ergodic cost. In Advances in Neural Infor-
mation Processing Systems, volume 32, 2019.


