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A. Other related work 
Fair classification. Many works have focused on formulat-
ing fair classification problems as constrained optimization 
problems, (Zafar et al., 2017b; Zhang et al., 2018; Menon 
& Williamson, 2018b; Goel et al., 2018; Celis et al., 2019), 
(Hardt et al., 2016; Zafar et al., 2017a; Menon & Williamson, 
2018b; Celis et al., 2019), and developing algorithms for it. 
Another class of algorithms first learn an unconstrained opti-
mal classifier and then shift the decision boundary according 
to the fairness requirement, e.g., (Fish et al., 2016; Hardt 
et al., 2016; Goh et al., 2016; Pleiss et al., 2017; Woodworth 
et al., 2017; Dwork et al., 2018). In contrast to our work, the 
assumption in all of these approaches is that the algorithm 
is given perfect information about the protected class. 

Data correction. Cleaning raw data is a significant step 
in the pipeline, and efforts to correct for missing or inac-
curately coded attributes have been studied in-depth for 
protected attributes, e.g., in the context of the census (No-
bles, 2000). An alternate approach considers changing the 
composition of the dataset itself to correct for known biases 
in representation (Calders et al., 2009; Kamiran & Calders, 
2009; 2012), (Gordaliza et al., 2019; Wang et al., 2019), 
(Calmon et al., 2017; Celis et al., 2020). In either case, 
the correction process, while important, can be imperfect 
and our work can help by starting with these improved yet 
imperfect datasets in order to build fair classifiers. 

Unknown protected attributes. A related setting is when 
the information of some protected attributes is unknown. 
(Gupta et al., 2018; Chen et al., 2019; Kallus et al., 2020; 
Lahoti et al., 2020) considered this setting of unknown pro-
tected attributes and designed algorithms to improve fair-
ness or assess disparity. In contrast, our approach aims to 
derive necessary information from the observed protected 
attributes to design alternate fairness constraints using the 
noisy attribute. 

Classifiers robust to the choice of datasets. (Friedler 
et al., 2019) observed that fair classification algorithms may 
not be stable with respect to variations in the training dataset. 
(Hashimoto et al., 2018) proved that empirical risk mini-
mization amplifies representation disparity over time. To-
wards this, certain variance reduction or stability techniques 
have been introduced; see e.g., (Huang & Vishnoi, 2019). 
However, their approach cannot be used to learn a classifier 
that is provably fair over the underlying dataset. 

Noise in labels. Blum & Stangl (2020); Biswas & Mukher-
jee (2021); Roh et al. (2020); Jiang & Nachum (2020) study 
fair classification when the label in the input dataset is noisy. 
The main difference of these from our work is that they 
consider noisy labels instead of noisy protected attributes, 
which makes our denoised algorithms very different since 
the accuracy of protected attributes mainly relates to the 

fairness of the classifier but the accuracy of labels primarily 
affect the empirical loss. 

B. Missing proofs in Section 3.3 
In this section, we complete the missing proofs in Sec-h i btion 3.3. Let πij := PrD,Db Z = i | Z = j for i, j ∈ h i b{0, 1}, µi := PrD [Z = i] and µbi := Pr b Z = i forD 

i ∈ {0, 1}. 

B.1. Proof of Lemma 3.6 

Proof: We first have the following simple observation. 

Observation B.1 1) µ0 + µ1 = 1, µb0 + µb1 = 1, and π0,i + 
π1,i = 1 holds for i ∈ {0, 1}; 2) For any i, j ∈ {0, 1},h i 

πji·µiPr Z = i | Zb = j = ; 3) For any i ∈ {0, 1}, µbi = µbj 

πi,iµi + πi,1−iµ1−i. 

Similar to Equation 36, we have 

h i bPr f = 1, Z = 0 h i b h i 
= Pr Z = 0 | f = 1, Z = 0 · Pr [f = 1, Z = 0] (3) 

+ Pr Zb = 0 | f = 1, Z = 1 · Pr [f = 1, Z = 1] . 

Similar to the proof of Lemma F.5, by the Chernoff bound 
(additive form) (Hoeffding, 1994), both 

h i ε 
Pr Zb = 1 | f = 1, Z = 0 ∈ η0 ± ,

2 Pr [f = 1, Z = 0] 
(4) 

and 

h i ε 
Pr Zb = 0 | f = 1, Z = 1 ∈ η1 ± ,

2 Pr [f = 1, Z = 1] 
(5) 

hold with probability at least 

ε2 ε2 − −
12η Pr[f =1,Z=0] 12η Pr[f =1,Z=1]1 − 2e 

n 

− 2e 
n 

−ε2n/6which for η ≤ 0.5, is at least 1 − 2e . Consequently, 
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we have Now we assume Claim B.2 holds whose success probability 
ε2(1−η0−η1)2λ2 nh i − ε(1−η0 −η1)λ 

2400is at least 1 − 4e since ε0 = .b 20Pr f = 1, Z = 0 
Consequently, we haveh i b= Pr Z = 0 | f = 1, Z = 0 · Pr [f = 1, Z = 0] h i h i b bh i (1 − η1) Pr f = 1, Z = 0 − η1 Pr f = 1, Z = 1 

+ Pr Zb = 0 | f = 1, Z = 1 · Pr [f = 1, Z = 1] 
≥ (1 − η0 − η1) Pr [f = 1, Z = 0] − ε0 (Claim B.2) 

(Eq. 3) (1 − η0 − η1)λ� � ≥ − ε0 (by assumption) (8)ε (6) 2∈ 1 − η0 ± · Pr [f = 1, Z = 0]
2 Pr [f = 1, Z = 0] ≥ 0.45 · (1 − η0 − η1)λ.� � 

ε ε(1 − η0 − η1)λ 
+ η1 ± · Pr [f = 1, Z = 1] (ε0 = )

2 Pr [f = 1, Z = 1] 20 
(Ineqs. 4 and 5) Similarly, we can also argue that 

∈ (1 − η0) Pr [f = 1, Z = 0] 

+ η1 Pr [f = 1, Z = 1] ± ε, (1 − η1)µb0 − η1µb1 ≥ 0.45 · (1 − η0 − η1)λ. (9) 

and similarly, Then we have h i 
Pr f = 1, Zb = 1 Pr [f = 1 | Z = 0] 

(7) Pr [f = 1, Z = 0]∈ η0 Pr [f = 1, Z = 0] = 
+ (1 − η1) Pr [f = 1, Z = 1] ± ε. 

µ0 h i h i 
(1 − η1) Pr f = 1, Zb = 0 − η1 Pr f = 1, Zb = 1 ± ε0 

By the above two inequalities, we conclude that ∈ 
(1 − η1)µb0 − η1µb1 ± ε0 h i h i (Claim B.2)b b(1 − η1) Pr f = 1, Z = 0 − η1 Pr f = 1, Z = 1 � h i h i� � (1 − η1) Pr f = 1, Zb = 0 − η1 Pr f = 1, Zb = 1 

∈ (1 − η1) (1 − η0) Pr [f = 1, Z = 0] ∈� (1 ± ε0 ) ((1 − η1)µb0 − η1µb1)0.45·(1−η0−η1)λ + η1 Pr [f = 1, Z = 1] ± ε 
ε0 × (1 ± ) (Ineq. 8)− η1 η0 Pr [f = 1, Z = 0] 0.45 · (1 − η0 − η1)λ� 

+ (1 − η1) Pr [f = 1, Z = 1] ± ε (Ineqs. 6 and 7) ε 2 0∈ (1 ± ) · Γ0(f). (Defns. of Γ0(f) and ε )
9∈ (1 − η0 − η1) Pr [f = 1, Z = 0] ± ε. 

Similarly, we can also prove that 
Similarly, we have h i h i Pr [f = 1 | Z = 1] ∈ (1 ± 

ε 
)2 · Γ1(f).b b 9(1 − η0) Pr f = 1, Z = 1 − η0 Pr f = 1, Z = 0 

By the above two inequalities, we have that with probability∈ (1 − η0 − η1) Pr [f = 1, Z = 1] ± ε. 
ε2(1−η0−η1)2λ2 n− 2400at least 1 − 4e , 

This completes the proof of the first conclusion. 
γΔ(f, S)Next, we focus on the second conclusion. By assumption, � � 

λmin {Pr [f = 1, Z = 0] , Pr [f = 1, Z = 1]} ≥ . Let Γ0(f) Γ1(f)2 = min ,
ε(1−η0 −η1)λε0 = . By a similar argument as for the first Γ1(f) Γ0(f)

20 
conclusion, we have the following claim. ∈ (1 ± ε)× � � 

Pr [f = 1 | Z = 0] Pr [f = 1 | Z = 1]−(ε0)2n/6Claim B.2 With probability at least 1 − 4e , we min ,
Pr [f = 1 | Z = 1] Pr [f = 1 | Z = 0]

have 
∈ (1 ± ε) · γ(f, S).⎧ h i h i b b(1 − η1) Pr f = 1, Z = 0 − η1 Pr f = 1, Z = 1 

Combining with Claim B.2, we complete the proof of the∈ (1 − η0 − η1) Pr [f = 1, Z = 0] ± ε0 ,⎪ h i h i⎨ second conclusion. �b b(1 − η0) Pr f = 1, Z = 1 − η0 Pr f = 1, Z = 0 

∈ (1 − η0 − η1) Pr [f = 1, Z = 1] ± ε0 , B.2. Proof of Lemma 3.8 ⎪ (1 − η1)µb0 − η1µb1 ∈ (1 − η0 − η1)µ0 ± ε0 ,⎩ 
(1 − η0)µb1 − η0µb0 ∈ (1 − η0 − η1)µ1 ± ε0 . For preparation, we give the following definition. 
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XDefinition B.3 (ε-nets) Given a family F ⊆ {0, 1} of 
classifiers and ε ∈ (0, 1), we say F ⊆ F is an ε-net of F 
if for any f, f 0 ∈ F , PrD [f 6= f 0] ≥ ε; and for any f ∈ F , 
there exists f 0 ∈ F such that PrD [f 6= f 0] ≤ ε. We denote 
Mε(F) as the smallest size of an ε-net of F . 

It follows from basic coding theory (Lint, 1998) that 
X

Mε({0, 1} ) = Ω(2N−O(εN log N)). The size of an ε-net 
usually depends exponentially on the VC-dimension. 

Theorem B.4 (Relation between VC-dimension and ε-
nets (Haussler, 1995)) Suppose the VC-dimension of (S, F) 
is t. For any ε ∈ (0, 1), Mε(F) = O(ε−t). 

We define the capacity of bad classifiers based on ε-nets. 

Definition B.5 (Capacity of bad classifiers) Let ε0 = 
(1−η0−η1)λ−2δ 1.012

i−1 
δ . Let εi = for i ∈ [T ] where T = 5 5 

2(τ −3δ) Xd232 log log e. Given F ⊆ {0, 1} , we denote theλ 
n/6Mε0 

0capacity of bad classifiers by Φ(F) := 2e−ε2 
(G0)+ P ε2(1−η0−η1)2λ2 ni− 24004 i∈[T ] e Mεi(1−η0−η1)λ/10(Gi). 

Actually, we can prove Φ(F) is an upper bound for the 
probability that there exists a bad classifier that is feasi-
ble for Program DFair, which is a generalized version of 
Lemma 3.8. Roughly, the factor 2e−ε2n/6 is an upper bound0 

of the probability that a bad classifier f ∈ G0 violates Con-
−ε2λ2δ2 

istraint (2), and the factor 4e n is an upper bound of 
the probability that a bad classifier f ∈ Gi violates Con-
straint (2). We prove if all bad classifiers in the nets of Gi 
(0 ≤ i ≤ T ) are not feasible for Program DFair, then all 
bad classifiers should violate Constraint (2). Note that the 
scale of Φ(F) depends on the size of ε-nets of F , which can 
be upper bounded by Theorem B.4 and leads to the success 
probability of Theorem 3.3. 

Proof: We first claim that Lemma 3.8 holds with proba-
bility at least 1 − Φ(F). We discuss G0 and Gi (i ∈ [T ]) 
separately. 

Bad classifiers in G0. Let G0 be an ε0-net of G0 of size 
Mε0 (G0). Consider an arbitrary classifier g ∈ G0. By 
Lemma 3.6, with probability at least 1 − 2e−ε2n/6, we have0 h i h i b b(1 − η1) Pr g = 1, Z = 0 − η1 Pr g = 1, Z = 1 

≤ (1 − η0 − η1) Pr [g = 1, Z = 0] + ε0 (10) 
(1 − η0 − η1)λ 

< + ε0, (Defn. of G0)
2 

and h i h i b b(1 − η0) Pr g = 1, Z = 1 − η0 Pr g = 1, Z = 0 
(11)

(1 − η0 − η1)λ 
< + ε0. 

2 

By the union bound, all classifiers g ∈ G0 satisfy Inequali-
−ε2n/6Mε0 

0ties 10 and 11 with probability at least 1−2e (G0). 
Suppose this event happens. We consider an arbitry classi-

λfier f ∈ G0. W.l.o.g., we assume Pr [f = 1, Z = 0] < .2 
By Definition B.3, there must exist a classifier g ∈ G0 such 
that Pr [f 6= g] ≤ ε0. Then we have h i h i b b(1 − η1) Pr f = 1, Z = 0 − η1 Pr f = 1, Z = 1 h i b≤ (1 − η1)(Pr g = 1, Z = 0 + ε0) h i b− η1(Pr g = 1, Z = 1 − ε0) (Pr [f 6= g] ≤ ε0) 

(1 − η0 − η1)λ ≤ + 2ε0 (Ineq. 10)
2 

(1 − η0 − η1)λ (1 − η0 − η1)λ − 2δ ≤ + 
2 2 

(Defn. of ε0) 
= (1 − η0 − η1)λ − δ, 

Thus, we conclude that all classifiers f ∈ G0 violate Con-
−ε2 n/6Mε0 

0straint 2 with probability at least 1 − 2e (G0). 

Bad classifiers in Gi for i ∈ [T ]. We can assume that 
τ − 3δ ≥ λ/2. Otherwise, all Gi for i ∈ [T ] are empty, and 
hence, we complete the proof. Consider an arbitry i ∈ [T ] 
and let Gi be an εi-net of Gi of size Mεi (1−η0−η1 )λ/10(Gi). 
Consider an arbitrary classifier g ∈ Gi. By the proof of 

ε2(1−η0−η1)2λ2 n − 2400Lemma 3.6, with probability at least 1−4e 
i , 

we have ⎧ h i h i b b(1 − η1) Pr g = 1, Z = 0 − η1 Pr g = 1, Z = 1 ⎪ ∈ (1 − η0 − η1) Pr [g = 1, Z = 0] ± εi(1−η0−η1)λ ,⎨ h i h 20 i 
(1 − η0) Pr g = 1, Zb = 1 − η0 Pr g = 1, Zb = 0 (12) 

∈ (1 − η0 − η1) Pr [g = 1, Z = 1] ± εi(1−η0−η1)λ ,⎪ 20⎩ 
γΔ(f, Sb) ∈ (1 ± εi) · γ(f, S). 

Moreover, we have 

bγΔ(g, S) ≤ (1 + εi) · γ(g, S) 
τ − 3δ (13) 

< (1 + εi) · . (Defn. of Gi)
1.012i−1 

By the union bound, all classifiers g ∈ Gi satisfy Inequal-
ity 13 with probability at least 

ε2(1−η0−η1 )
2λ2 ni− 24001 − 4e Mεi(1−η0−η1)λ/10(Gi). 

Suppose this event happens. We consider an arbitry classi-
fier f ∈ Gi. By Definition B.3, there must exist a classifier 
g ∈ Gi such that Pr [f 6= g] ≤ εi(1 − η0 − η1)λ/10. By 
Inequality 12 and a similar argument as that for Inequality 8, 
we have h i h i b b(1 − η1) Pr g = 1, Z = 0 − η1 Pr g = 1, Z = 1 

(14) 
≥ 0.45 · (1 − η0 − η1)λ. 
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Γ0(f ) h i h i b b(1 − η1) Pr f = 1, Z = 0 − η1 Pr f = 1, Z = 1 
= 

(1 − η)µb0 − ηµb1� h i � b ± εi(1−η0−η1)λ(1 − η1) Pr g = 1, Z = 0 
10 

∈ 
(1 − η)µb0 − ηµb1� h i � b ± εi(1−η0 −η1)λη1 Pr g = 1, Z = 1 

10 
− 

(1 − η)µb0 − ηµb1 

(Pr [f 6= g] ≤ εi(1 − η0 − η1)λ/10) (15)h i h i b b(1 − η1) Pr g = 1, Z = 0 − η1 Pr g = 1, Z = 1 
∈ 

(1 − η)µb0 − ηµb1 

εi(1−η1−η1)λ 

± 
(1 − η)µb 

5

0 − ηµb1h i h i b b(1 − η) Pr g = 1, Z = 0 − η Pr g = 1, Z = 1 
∈ 

(1 − η)µb0 − ηµb1 
× 

(1 ± 0.45εi) (Ineq. 14) 
∈(1 ± 0.45εi) · Γ0(g). 

Similarly, we can also prove 

Γ1(f) ∈ (1 ± 0.45εi) · Γ1(g). (16) 

Thus, we conclude that � � 
Δ Γ0(f) Γ1(f)

γ (f, Sb) = min ,
Γ1(f) Γ0(f)� � 

1 + 0.45εi Γ0(g) Γ1(g)≤ · min ,
1 − 0.45εi Γ1(g) Γ0(g) 

(Ineqs. 15 and 16) 
1 + 0.45εi τ − 3δ 

< · (1 + εi) · 
1 − 0.45εi 1.012i−1 

(Ineq. 13) 
1 + 0.45ε1≤ · (1 + ε1) · (τ − 3δ) (Defn. of εi)
1 − 0.45ε1 

1.01δ ≤ τ − δ. (ε1 = )
5 

It implies that all classifiers f ∈ Gi violate Constraint 2 with 
probability at least 

ε2(1−η0−η1 )
2λ2 

i n − 24001 − 4e Mεi(1−η0−η1)λ/10(Gi). 

By the union bound, we complete the proof of Lemma 3.8 
for δ ∈ (0, 0.1λ). 

For general δ ∈ (0, 1), each bad classifier vi-
olates Constraint 2 with probability at most 

ε2 (1−η0 −η1)2λ2 n − 2400 P4e 
1 by the above argument. By Defi-

nition 3.7, |Mε0 (G0)| + |Mεi(1−η0 −η1)λ/10(Gi)| ≤i∈[T ] 

|Mε1(1−η0−η1)λ/10(F)|. Then by the definition of 
Φ(F) and Theorem B.4, the probability that there ex-
ists a bad classifier violating Constraint 2 is at most� � 

(1−η0−η1)2λ2δ2 n− +t ln( )60000 (1−η0−η1)λδΦ(F) = O e 
50 

. This 

completes the proof of Lemma 3.8. � 

B.3. Proof of Theorem 3.3 for p = 2 and statistical rate 

Proof: We first upper bound the probabil-
ity that γΔ(fΔ , Sb) ≥ τ − 3δ. Let Fb = 
{f ∈ F : γ(f, S) < τ − 3δ}. If all classifiers in Fb 

violate Constraint (2), we have that γΔ(fΔ , Sb) ≥ τ − 3δ. 
λNote that if mini∈{0,1} Pr [f = 1, Z = i] ≥ , then2 

λ λ−3δ λγ(f, S) ≥ holds by definition. Also, ≤ .2 1.012T +1−1 2 

Thus, we conclude that Fb ⊆ ∪T
i=0Gi. Then if all bad clas-

sifiers violate Constraint (2), we have γΔ(fΔ , Sb) ≥ τ − 3δ. 
By Lemma 3.8, γΔ(fΔ , Sb) ≥ τ − 3δ holds with probability� � 

(1−η0−η1)2λ2δ2 n 50− +t ln( )60000 (1−η0−η1)λδat least 1 − O e . 

Next, we upper bound the probability that f? is feasible 
1 P 

for Program DFair, which implies L(fΔ, sa) ≤N a∈[N ] 
1 P 

L(f?, sa). Letting ε = δ in Lemma 3.6,N a∈[N ] 
−δ2 n/6we have that with probability at least 1 − 2e − 

(1−η0−η1)2λ2 δ2 n 
24004e− , ⎧ h i h i 

(1 − η) Pr f? = 1, Zb = 0 − η Pr f? = 1, Zb = 1 ⎪ ≥ (1 − η0 − η1) Pr [f? = 1, Z = 0] − δ,⎨ h i h i 
(1 − η) Pr f? = 1, Zb = 1 − η Pr f? = 1, Zb = 0 

≥ (1 − η0 − η1) Pr [f? = 1, Z = 1] − δ,⎪⎩ 
γΔ(f? , Sb) ≥ (1 − δ)γ(f, S) ≥ γ(f, S) − δ. 

It implies that f? is feasible for Program DFair with prob-
(1−η0−η1)2λ2 δ2 n−δ2n/6 − 4e− 2400ability at least 1 − 2e . This 

completes the proof. � 

C. Analysis of the influences of estimation 
errors 

We discuss the influences of estimation errors by consid-
ering a simple setting as in Section 3.3, say p = 2 with 
statistical rate. Recall that we assume η0 and η1 are given 
in Theorem 3.3. However, we may only have estimations 
for η0 and η1 in practice, say η0 and η0 respectively. Define0 1 
ζ := max {|η0 − η0 

0 |, |η1 − η1 
0 |} to be the additive estima-

tion error. We want to understand the influences of ζ on the 
performance of our denoised program. 

Since η0 and η1 are unknown now, we can not directly 
compute Γ0(f) and Γ1(f) in Definition 3.1. Instead, we 
can compute 

Γ0 0(f) := h i h i 
(1 − η1 

0 ) Pr f = 1, Zb = 0 − η1 
0 Pr f = 1, Zb = 1 

,
(1 − η0 )µb0 − η0 µb11 1 

Γ1(f) := 
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Γ0 �

(1 − η0 
0 ) Pr f = 1, Zb = 1 − η0 

0 Pr f = 1, Zb = 0 h 1(if) h i 
. b b(1 − η1) Pr f = 1, Z = 0 − η1 Pr f = 1, Z = 1(1 − η0 )µb1 − η0 µb00 0 

≥ τ − δ − ζα1, (Ineqs. 21)Then we have 

0(f) 

1) Pr 1 Pr
00 

0 Pr[f=1]Γ where α1 += h i h i 0 (f)((1−η0 )µb1−η0µb0 )Γ0bZ b ΓZ = 1
0 (f)(1 − η − ηf = 1, = 0 f = 1, Similarly, by In-1 . 

(1−η1) Pr[f=1,Zb=0]−η1 Pr[f =1,Zb=1]= 
(1 − η0 1)µb0 − ηi 

0 
1µb1 equalities 17 and 20, we have h h i b b(1 − η1) Pr f = 1, Z = 0 − η1 Pr f = 1, Z = 1 

Γ0(f)= ≥ τ − δ − ζα0,(1 − η1)µb0 − η1µb1 + (η1 − η0 1) Γ1(f) 
1) Pr [f 

(1 − η1)µb0 − η1µb1 + (η1 − ηh 

0(η1 − η = 1] 
(17)+ 0 Pr[f=1]) where α0 +=1i h i 0 (f)((1−η1 )µb0−η1µb1 )Γ1b b ΓZ = 0 − η1 Pr f = 1, Z = 1 0 

0(f)(1 − η1) Pr f = 1, . Thus, we have 
(1−η0) Pr[f=1,Zb=1]−η0 Pr[f =1,Zb=0]∈ 

(1 − η1)µb0 − η1µb1 

ζ · Pr [f = 1]± (Defn. of ζ)
(1 − η1)µb0 − η1µb1 

ζ · Pr [f = 1]∈ Γ0(f) ± . (Defn. of Γ0(f))
(1 − η1)µb0 − η1µb1 

Symmetrically, we have 

ζ · Pr [f = 1]
Γ0 1(f) ∈ Γ1(f) ± . 

(1 − η0)µb1 − η0µb0 

By a similar argument, we can also prove that 

1 1 

γΔ(f, Sb) ≥ τ − δ − ζ · max {α0, α1} . 

The influence of the above inequality is that the fairness 
guarantee of Theorem 3.3 changes to be 

γ(fΔ, S) ≥ τ − 3(δ + ζ · max {α0, α1}), 

(18) i.e., the estimation errors will weaken the fairness guarantee 
of our denoised program. Also, observe that the influence 
becomes smaller as ζ goes to 0. 

D. Proof of Theorem 3.3∈0 
0Γ (f) Γ0(f ) 

(19)
± h 

ζi h i . In this section, we prove Theorem 3.3 and show how to 
(1 − η1) Pr f = 1, Zb = 0 − η1 Pr f = 1, Zb = 1 extend the theorem to multiple protected attributes and mul-

tiple fairness constraints (Remark D.7). Denote Qlinf to be 
and the collection of all group performance functions. Denote 

1 1 Qlin ⊆ Qlinf to be the collection of linear group perfor-
∈ mance functions. 0Γ (f) Γ1(f )1 

ζ (20)
± h i h i . b b(1 − η0) Pr f = 1, Z = 1 − η0 Pr f = 1, Z = 0 

Then by the denoised constraint on η0 and η0 , i.e., 0 1 � � 
Γ0 Γ0 1(f) 0(f)min , ≥ τ − δ, (21)
Γ0 (f) Γ0 (f)0 1 

we conclude that 

Γ1(f) 
Γ0(f)� � 

ζ · Pr [f = 1] � 1 ≥ Γ1 
0 (f) − × − 

(1 − η0)µb1 − η0µb0 Γ0 (f)0 

ζ �h i h i b b(1 − η1) Pr f = 1, Z = 0 − η1 Pr f = 1, Z = 1 

(Ineqs. 18 and 19) 

Γ0 1(f) � Pr [f = 1]≥ − ζ + 
Γ0 (f) Γ0 (f) ((1 − η0)µb1 − η0µb0)0 0 

Remark D.1 The fairness metric considered in (Awasthi 
et al., 2020), i.e., equalized odds, can also be captured by 
Qlinf ; equalized odds simply requires equal false positive 
and true positive rates across the protected types. The fair-
ness metrics used in (Lamy et al., 2019), on the other hand, 
are somewhat different; they work with statistical parity 
and equalized odds for binary protected attributes, how-
ever, while we define disparity Ωq as the ratio between the 
minimum and maximum qi, (Lamy et al., 2019) define the 
disparity using the additive difference of qi across the pro-
tected types. It is not apparent how to extend their method 
for improving additive metrics to linear-fractional fairness 
metrics as they counter the noise by scaling the tolerance 
of their constraints, and it is unclear how to compute these 
scaling parameters prior to the optimization step when the 
group performance function q is conditioned on the classi-
fier prediction. On the other hand, our method can handle 
additive metrics by using the difference of altered qi across 
the noisy protected attribute to form fairness constraints. 
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Similar to Eq (3), we first have for each i ∈ [p] h i 
Pr ξ0(f), Zb = i = X h i bPr Z = i | ξ0(f), Z = j Pr [ξ0(f), Z = j] . 
j∈[p] 

By Definition 2.3 and a similar argument as in the proof of 
Lemma 3.6, we have the following lemma. h i 
Lemma D.2 (Relation between Pr ξ0(f), Zb = i and 
Pr [ξ0(f), Z = j]) Let ε ∈ (0, 1) be a fixed constant. With 
probability at least 1 − 2pe−ε2 n/6, we have for each i ∈ [p], h i 
Pr ξ0(f), Zb = i ∈ 

P 
Hji · Pr [ξ0(f), Z = j] ± ε.j∈[p] 

Define 

w(f) := (Pr [ξ0(f), Z = 1] , . . . , Pr [ξ0(f), Z = p]) , 

and recall that � h i h i� 
wb(f) := Pr ξ0(f), Zb = 1 , . . . , Pr ξ0(f), Zb = p . 

By Lemma D.2, we directly obtain the following lemma. 

Lemma D.3 (Approximation of Pr [ξ0(f), Z = i]) With 
probability at least 1 − 2pe−ε2 n/6, for each i ∈ [p], 

−1 −1 −1 w(f)i ∈ (H>) wb(f ) ± εk(H>) k1 ∈ (H>) wb(f) ± εM. i i i 

Thus, we use (H>)−1 wb(f) to estimate Pr [ξ0(f), Z = i].i 
Similarly, we define 

u(f) := (Pr [ξ(f), ξ0(f), Z = i])i∈[p] , 

and recall that � h i� 
ub(f) := Pr ξ(f), ξ0(f), Zb = i . 

i∈[p] 

Once again, we use (H>)−1 ub(f) to estimatei 
Pr [ξ(f), ξ0(f), Z = i] and to estimate constraint 
mini∈[p] Pr [ξ(f), ξ(f), ξ0(f), Z = i] ≥ λ, we construct 
the following constraint: 

(H>)−1ub(f) ≥ (λ − εM)1, (22) 

which is the first constraint of Program (DFair). 

To provide the performance guarantees on the solution of the 
above program, once again we define the following general 
notions of bad classifiers and the corresponding capacity. 

Definition D.4 (Bad classifiers in general) Given a family 
XF ⊆ {0, 1} , we call f ∈ F a bad classifier if f belongs 

to at least one of the following sub-families: 

� 
• G0 := f ∈ F : mini∈[p] Pr [ξ(f), ξ

0(f), Z = i] < λ 
2 ; 

2(τ−3δ)• Let T = d232 log log 
λ e. For i ∈ [T ], define n o 

τ−3δ τ −3δGi := f ∈ F \ G0 : Ωq (f, S) ∈ [ , ) . 
1.012

i+1−1 1.012
i −1 

Note that Definition 3.7 is a special case of the above def-
inition by letting p = 2, M = 10, ξ(f) = (f = 1) and 
ξ0(f) = ∅. We next propose the following definition of the 
capacity of bad classifiers. 

Definition D.5 (Capacity of bad classifiers in general) 
λ−2δ 1.012

i−1 
δLet ε0 = . Let εi = for i ∈ [T ] where 5M 5 

2(τ −3δ) X
T = d232 log log e. Given a family F ⊆ {0, 1} ,λ 
we denote the capacity of bad classifiers by 

Φ(F) := X ε2λ2 
i n 

−ε2 n/6Mε0 

−0 2400M22pe (G0) + 4p e · Mεiλ/10M (Gi). 
i∈[T ] 

By a similar argument as in Lemma 3.8, we can prove that 
Φ(F) is an upper bound of the probability that there exists a 
bad classifier feasible for Program DFair. Now we are ready 
to prove Theorem 3.3. Actually, we prove the following 
generalized version. 

Theorem D.6 (Performance of Program DFair) Suppose 
the VC-dimension of (S, F) is t ≥ 1. Given any non-P 
singular matrix H ∈ [0, 1]p×p with Hij = 1 forj∈[p] 
each i ∈ [p] and λ ∈ (0, 0.5), let fΔ ∈ F denote an opti-
mal fair classifier of Program DFair. With probability at 

λ2δ2 −least 1− Φ(F) − 4pe 2400M
n 
2 , the following properties hold 

1 P 
1 P 

• L(fΔ, sa) ≤ L(f?, sa);N a∈[N ] N a∈[N ] 

• Ωq (f
Δ, S) ≥ τ − 3δ. 

Specifically, if the VC-dimension of (S, F) is t and 
δ ∈ (0, 1), the success probability is at least 1 − 

λ2δ2 n− +t ln(50M/λδ)O(pe 60000M2 ). 

The proof is almost the same as in Theorem 3.3: we just 
1need to replace by M everywhere. For multiple1−η0−η1 

fairness constraints, the success probability of Theorem 3.3 
changes to be 

n +t ln(50M/λδ)
60000M 21 − O(kpe− λ2δ2 

). 

λ2δ2 − 
2400M2Proof: Note that the term 4pe 

n 

is an upper bound 
of the probability that f? is not feasible for Program DFair. 



	

Fair Classification with Noisy Protected Attributes 

λδThe idea comes from Lemma D.3 by letting ε = such20M 
that for each i ∈ [p], 

w(f?)i ∈ (1 ± 
δ 
)(H>)−1 wb(f?) andi10 

u(f?)i ∈ (1 ± 
δ 
)(H>)−1 ub(f?).i10 

1 P 
Consequently, L(fΔ, sa) ≤N a∈[N ] 
1 P 

L(f?, sa). Since Φ(F) is an upper boundN a∈[N ] 
of the probability that there exists a bad classifier feasible 
for Program DFair, we complete the proof. � 

Remark D.7 (Generalization to multiple protected at-
tributes and multiple fairness metrics) For the general 
case that m, k ≥ 1, i.e., there exists m protected attributes 
Z1 ∈ [p1], . . . , Zm ∈ [pm] and k group performance 
functions q(1), . . . , q(l) together with a threshold vector 
τ ∈ [0, 1]k where each q(l) is on some protected attribute. 
In this case, we need to make a generalized assumption of 
Assumption 1, i.e., there exists constant λ ∈ (0, 0.5) such 
that for any l ∈ [k], � � 

mini∈[p] PrD ξ
(l)(f?), (ξ0)(l)(f?), Z = i ≥ λ. 

The arguments are almost the same except that for each 
group performance function q(i), we need to construct cor-
responding denoised constraints and have an individual 
capacity φ(i)(F). Consequently, the success probability of �P � 
Theorem D.6 becomes 1 − O φ(i)(F) .i∈[m] 

E. Other empirical details and results 
We state the exact empirical form of the constraints used for 
our simulations in this section and then present additional 
empirical results. 

E.1. Implementation of our denoised algorithm. 

As a use case, we solve Program DFair for logistic regres-� 
sion. Let F 0 = f 0 | θ ∈ Rd be the family of logisticθ 
regression classifiers where for each sample s = (x, z, y), 
f 0 1(x) := −hx,θi . We learn a classifier f 0 ∈ F 0 and then θ 1+e θ 

9round each f 0 (xbi) to fθ(xbi) := I [f(xbi) ≥ 0.5].θ 

We next show how to implement the Program DFair for any 
general fairness constraints. Let ξ(f) and ξ0(f) denote the 
relevant events to measure the group performances. The 
constraints use the group-conditional probabilities of these� h i� 
events, i.e. ub(f) := Pr ξ(f), ξ0(f), Zb = i and 

i∈[p] 

9The extension to non-linear classifiers, such as kernel SVMs, 
can be done by changing the formulation of fθ accordingly. For 
instance, we can extend to kernel SVM by letting fθ (xbi) = 
I[K(θ, xbi) ≥ 0] where K is some non-linear kernel function. 

� h i� bwb(f) := Pr ξ0(f), Z = i . Let N = |S| and let 
i∈[p] 

u0(f), w0(f) denote the empirical approximation of ub(f), 
wb(f) respectively; i.e., ⎛ ⎞ 

u 0(f) := ⎝ 1 
X 

1 [ξ(f(xα)), ξ
0(f(xα))]⎠ ,

N 
ˆα∈[N ],Z=i i∈[p] ⎛ ⎞ X 

w 0(f) := ⎝ 1 1 [ξ0(f(xα))]⎠ . 
N 

ˆα∈[N ],Z=i i∈[p]� � � � 
Let Γ0 i(f) := (H>)−1u0(f) / (H>)−1w0(f) , for

i i 

each i ∈ [p] and M := maxi∈[p] k(H>)−1k1. Then, given i 
τ ∈ [0, 1] and λ, δ > 0, the empirical implementation in 
Program DFair use the following constraints. ( 

Γ0 (f) ≥ (τ − δ) · Γ0 (f), ∀i, j ∈ [p] × [p],� i � j (23)
(H>)−1u0(f) ≥ (λ − Mδ), ∀i ∈ [p].

i 

The program DLR simply implements the following opti-
mization problem. X1 
min − (ya log fθ(xa) + (1 − ya) log(1 − fθ(xa))) 
θ∈Rd N 

a∈[N ] 

s.t. Constraints (23) are satisfied. 
(DLR) 

Program DFair for statistical rate metric (DLR-SR). 
For statistical rate metric, simply set ξ(fθ(xα)) = 
(fθ(xα) = 1) and ξ0(fθ(xα)) = ∅, and compute the empiri-
cal constraints in Eqns 23. 

Program DFair for false positive rate metric (DLR-
FPR). For false positive rate metric, set ξ(fθ(xα)) = 
(fθ(xα) = 1) and ξ0(fθ(xα)) = (Y = 0), and compute 
the empirical constraints in Eqns 23. 

Program DFair for false discovery rate metric (DLR-
FDR). For false discovery rate metric, simply set 
ξ(fθ(xα)) = (Y = 0) and ξ0(fθ(xα)) = (fθ(xα) = 1), 
and compute the empirical constraints in Eqns 23. 

If required, one can also append a regularization term C · 
kθk22 to the above loss function where C ≥ 0 is a given 
regularization parameter. 

E.2. SLSQP parameters 

We use standard constrained optimization packages to solve 
this program, such as SLSQP (Kraft, 1988) (implemented 
using python scipy package). For each optimization prob-
lem, we run the SLSQP algorithm for 500 iterations, starting 
with a randomly chosen point and with parameters ftol=1e-3 
and eps=1e-3. 
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Figure 1. Performance of DLR-SR and baselines with respect to statistical rate and accuracy for different combinations of dataset and 
protected attribute. For DLR-SR, the performance for different τ is presented, while for LZMV the input parameter εL is varied. The 
plots shows that for all settings DLR-SR can attain a high statistical rate, often with minimal loss in accuracy. 

Figure 2. Performance of DLR-FPR and baselines with respect to false positive rate and accuracy for different combinations of dataset 
and protected attribute. For DLR-FPR, the performance for different τ is plotted to present the entire fairness-accuracy tradeoff picture. 
Similarly, for LZMV the input parameter εL is varied. The plots shows that for all settings FPR can attain a high false positive rate, often 
with minimal loss in accuracy. 
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Table 2. The performance of all algorithms over test datasets with respect to false discovery rate fairness metric - average and standard 
error (in brackets) of accuracy and false discovery rate. Our method DLR-FDR, with τ = 0.9, achieves higher false discovery rate than 
baselines in almost every setting, at a minimal cost to accuracy. 

Adult COMPAS 
sex (binary) race (binary) sex (binary) race (non-binary) 

acc FDR acc FDR acc FDR acc FDR 

LR-SR .76 (.01) .55 (.45) .76 (.01) .56 (.46) .67 (.01) .66 (0) .58 (.05) .73 (.06) 
LR-FPR .76 (.01) .54 (.45) .76 (0) .35 (.43) .67 (.01) .75 (.09) .56 (.05) .72 (.05) 
LZMV εL = .01 .35 (.01) 0 (0) .37 (.05) 0 (0) .55 (.01) .74 (.04) - -
LZMV εL = .04 .67 (.04) 0 (0) .77 (.03) 0 (0) .58 (.01) .74 (.04) - -
LZMV εL = .10 .78 (.02) .47 (.01) .80 (0) .76 (.05) .64 (.02) .83 (.04) - -
AKM .77 (0) .55 (.17) .80 (0) .71 (.01) .69 (.01) .75 (.03) - -
WGN+ .59 (0) .54 (.02) .67 (0) .65 (.01) .54 (.01) .72 (.05) .56 (.03) .68 (.07) 

DLR-FDR τ = .7 .73 (.04) .66 (.07) .80 (.02) .76 (.06) .64 (.03) .75 (.11) .67 (.02) .79 (.03) 
DLR-FDR τ = .9 .75 (.01) .87 (.08) .76 (.02) .89 (.09) .60 (.07) .77 (.10) .54 (.13) .79 (.07) 

E.3. Baselines’ parameters 

LZMV: For this algorithm of Lamy et al. (2019), we use the 
implementation from https://github.com/AIasd/ 
noise_fairlearn . The constraints are with respect to 
additive statistical rate. The fairness tolerance parameter ε 
(referred to as εL in our empirical results to avoid confusion) 
are chosen to be {0.01, 0.04, 0.10} to present the range 
of performance of the algorithm. See the paper (Lamy 
et al., 2019) for descriptions of these parameters. The base 
classifier used is the algorithm of Agarwal et al. (2018), and 
the noise parameters are provided as input to the LZMV 
algorithm. 

AKM: For this algorithm, we use the implemen-
tation from https://github.com/matthklein/ 
equalized_odds_under_perturbation. The 
constraints are with respect to additive false positive rate 
parity. Once again, the algorithm takes noise parameters as 
input and uses the base classifier of Hardt et al. (2016). 

WGN+: For this algorithm, we use the implemen-
tation from https://github.com/wenshuoguo/ 
robust-fairness-code. Once again, the constraints 
here are additive false positive rate constraints using the 
soft-group assignments. See the paper (Wang et al., 2020) 
for descriptions of these parameters. The learning rate pa-
rameters used for this algorithm are ηθ ∈ {.001, 0.01, 0.1}, 
ηλ ∈ {0.5, 1.0, 2.0}, and ηW ∈ {0.01, 0.1}. These parame-
ters are same as the one the authors suggest in their paper 
and code. We run their algorithm for all combinations of the 
above parameters and select and report the test performance 
of the model that has the best training objective value, while 
satisfying the program constraints. 

E.4. Other results 

In this section, we present other empirical results to comple-
ment the arguments made in Section 4. First, we present the 
plot for comparison of all methods with respect to statistical 
rate, Figure 1, and false positive rate, Figure 2. 

E.4.1. PERFORMANCE WITH RESPECT TO FALSE 
DISCOVERY RATE 

We also present the empirical performance of our algorithm, 
compared to baselines, when the fairness metric in consid-
eration is false discovery rate (a linear-fractional metric). 
Table 2 presents the results. For most combinations of 
datasets and protected attributes, our method DLR-FDR, 
with τ = 0.9, achieves a higher false discovery rate than 
baselines, at a minimal cost to accuracy. 

E.4.2. VARIATION OF NOISE PARAMETER 

We also investigate the performances of algorithms w.r.t. 
varying η0, η1. We consider η0 = η1 = η ∈ 
{0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} for the binary case, and 
Hi,j ∈ {0.05, · · · , 0.25}, for i 6= j, in the non-binary case. 
Other settings are the same as in the main text. We select 
τ = 0.9 for FairLR and DLR. The performance on Adult 
dataset is presented in Figure 3 when sex is the protected 
attribute and in Figure 4 when race is the protected attribute. 
The performance on COMPAS dataset is presented in Fig-
ure 5 when sex is the protected attribute and in Figure 6 
when race is the protected attribute. 

E.4.3. ERROR IN NOISE PARAMETER ESTIMATION 

As discussed at the end of Section 3.2, the scale of error 
in the noise parameter estimation can affect the fairness 
guarantees. In this section, we empirically look at the impact 
of estimation error on the statistical rate of the generated 
classifier. 

We set the true noise parameters η0 = η1 = 0.3, in case� � 
0.70 0.15 0.15 

of binary protected attribute, and H = 0.15 0.70 0.15 , 
0.15 0.15 0.70 

in case of non-binary protected attribute. The estimated 
noise parameter ranges η0 ranges from 0.1 to 0.3. In case 
of non-binary protected attribute, the noise is distributed 
equally amongst all different protected attribute values (e.g., 
when η0 = 0.1, Z = 0 flips to Z = 1 with probability 

https://github.com/AIasd/noise_fairlearn
https://github.com/AIasd/noise_fairlearn
https://github.com/matthklein/equalized_odds_under_perturbation
https://github.com/matthklein/equalized_odds_under_perturbation
https://github.com/wenshuoguo/robust-fairness-code
https://github.com/wenshuoguo/robust-fairness-code
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(a) Accuracy vs η (b) Statistical Rate vs η (c) False Positive Rate vs η 

Figure 3. Performance of DLR-SR, DLR-FPR (τ = 0.9) and baselines with respect to statistical rate, false positive rate and accuracy for 
different noise parameters η. The dataset used is Adult and the protected attribute is sex. 

(a) Accuracy vs η (b) Statistical Rate vs η (c) False Positive Rate vs η 

Figure 4. Performance of DLR-SR, DLR-FPR (τ = 0.9) and baselines with respect to statistical rate, false positive rate and accuracy for 
different noise parameters η. The dataset used is Adult and the protected attribute is race. 

(a) Accuracy vs η (b) Statistical Rate vs η (c) False Positive Rate vs η 

Figure 5. Performance of DLR-SR, DLR-FPR (τ = 0.9) and baselines with respect to statistical rate, false positive rate and accuracy for 
different noise parameters η. The dataset used is COMPAS and the protected attribute is sex. 
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(a) Accuracy vs η (b) Statistical Rate vs η (c) False Positive Rate vs η 

Figure 6. Performance of DLR-SR, DLR-FPR (τ = 0.9) and baselines with respect to statistical rate, false positive rate and accuracy for 
different noise parameters η. The dataset used is COMPAS and the protected attribute is race. 

0.05 and to Z = 2 with probability 0.05). The variation 
of accuracy and statistical rate with noise parameter esti-
mate of DenoisedLR-SR for COMPAS and Adult datasets 
is presented in Figure 7a,b. The plots show that, in most 
settings, the best statistical rate (close to the desired guar-
antee of 0.90) is achieved when the estimate is close to the 
true noise parameter value. However, even for estimates 
that are considerably lower than the true estimate (for in-
stance, η0 < 0.2), the average statistical rate is still quite 
high (> 0.75). 

The results show that if the error in the noise parameter esti-
mate is reasonable, the framework ensures that the fairness 
of the generated classifier is still high. 

E.4.4. PERFORMANCE USING PREDICTED PROTECTED 
ATTRIBUTE 

The primary empirical results consider the setting when the 
noise in the protected attribute is i.i.d. While this assump-
tion is necessary for our theoretical analysis, it may not be 
satisfied in many real-world settings, for example, when 
the protected attribute is predicted using other features. In 
this section, we present the empirical performance of our 
approach when the protected attribute is partially predicted 
using other non-protected features. 

Methodology. We randomly split a given dataset into 
three parts (40-40-20 split). The first partition is treated 
as an auxiliary dataset for which the underlying protected 
attributes are known and is used to train a protected attribute 
prediction model. Using this auxiliary partition, we con-
struct a simple 2-layer multi-perceptron protected attribute 
classification model g. To predict the protected attribute of 
any new sample, we return the true label of the sample with 
probability 0.5 and return the label predicted using g with 
probability 0.5 (this way we ensure that the requirement 

of less than 50% corrupted samples - on average - for any 
protected attribute in Definition 2.3 is satisfied). 

The normalized confusion matrix for this prediction process 
on the auxiliary dataset is used as the noise matrix H for 
the rest of our analysis. The above prediction model is 
then used to predict the protected attributes of the second 
and third partition, and the predicted protected attributes 
are treated as the noisy protected attributes. The second 
partition is employed as the train partition for the denoised 
fair classification algorithms and the third partition is the 
test partition to evaluate the performance. The rest of the 
parameters are kept to be the same as the simulations in 
the main body. We repeat this process multiple times with 
multiple random splits of both Adult and COMPAS datasets 
and report the mean and standard error of the accuracy and 
fairness of the returned classifier over the test dataset. 

Results. The results are presented in Table 3. Despite the 
fact that the noise in this case is non-identical, DLR with 
τ = 0.9 is still able to achieve high values of fairness. In all 
settings, the mean of the fairness of the output classifier is 
greater than ≥ 0.79. 

In the case of statistical rate metric, DLR-SR can achieve 
higher fairness than baselines in all cases except Adult with 
race as the protected attribute. In the case of false posi-
tive rate metric, DLR-FPR can achieve higher fairness than 
baselines in all cases except Adult with sex as the protected 
attribute. Both methods, for all settings, achieve high fair-
ness at certain cost to accuracy, showing that our approach 
can indeed handle settings where protected attribute is par-
tially predicted. 
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(a) Adult - sex (b) Adult - race (c) COMPAS - sex (d) COMPAS - race 

Figure 7. Performance of DLR-SR (τ = 0.9) with respect to statistical rate and accuracy for different noise parameter estimate η0 . The 
true noise parameters are η0 = η1 = 0.3. 

Table 3. The performance on accuracy and fairness metrics of all algorithms over the test datasets when the protected attribute is partially 
predicted using other non-protected attributes; we report the average and standard error (in parenthesis) across multiple random splits of 
the dataset. 

Adult COMPAS 
sex (binary) race (binary) sex (binary) race (non-binary) 

acc SR FPR acc SR FPR acc SR FPR acc SR FPR 

Unconstrained .80 (.01) .33 (.02) .49 (.03) .80 (.01) .52 (.06) .52 (.09) .66 (.01) .78 (.04) .70 (.07) .66 (.01) .62 (.05) .56 (.09) 
LR-SR .75 (.03) .79 (.10) .83 (.13) .74 (.06) .82 (.11) .87 (.12) .61 (.05) .87 (.05) .91 (.03) .56 (.05) .83 (.12) .77 (.13) 
LR-FPR .73 (.11) .74 (.09) .89 (.06) .78 (.02) .67 (.20) .69 (.21) .62 (.03) .89 (.06) .93 (.04) .56 (.07) .74 (.19) .72 (.18) 

DLR-SR τ =.9 .75 (.02) .85 (.11) .82 (.17) .73 (.05) .79 (.10) .85 (.09) .63 (.02) .87 (.02) .94 (.02) .55 (.03) .95 (.04) .92 (.05) 
DLR-FPR τ=.9 .76 (.02) .70 (.15) .80 (.22) .77 (.03) .76 (.08) .83 (.10) .63 (.04) .85 (.07) .93 (.05) .55 (.05) .89 (.12) .90 (.09) 

F. Discussion of initial attempts 
We first discuss two natural ideas including randomized la-
beling (Section F.1) and solving Program ConFair that only 
depends on Sb (Section F.2). For simplicity, we consider the 
same setting as in Section 3.3: p = 2 with statistical rate, 
and assume η = η1 = η2 ∈ (0, 0.4). We also discuss their 
weakness on either the empirical loss or the fairness con-
straints. This section aims to show that directly applying the 
same fairness constraints on Sb may introduce bias on S and, 
hence, our modifications to the constraints (Definition 3.1) 
are necessary; see Section F in the Supplementary Material 
for a discussion. 

F.1. Randomized labeling 

A simple idea is that for each sample sa ∈ S, i.i.d. draw 
the label f(sa) to be 0 with probability α and to be 1 with 
probability 1 − α (α ∈ [0, 1]). This simple idea leads to a 
fair classifier by the following lemma. 

XLemma F.1 (A random classifier is fair) Let f ∈ {0, 1}
be a classifier generated by randomized labeling. With 

αλN− 
1.2×105probability at least 1 − 2e , γ(f, S) ≥ 0.99. 

Proof: Let A = {a ∈ [N ] : za = 0} be the collection of 
samples with Z = 0. By Assumption 1, we know that 
|A| ≥ λN . For a ∈ A, let Xa be the random variable 

where Xa = f(sa). By randomized labeling, we know that 
Pr [Xi = 1] = α. Also, P 

i∈A Xi 
Pr [f = 1 | Z = 0] = . (24)

|A| 

Since all Xi (i ∈ A) are independent, we have " #X 
Pr Xi ∈ (1 ± 0.005) · α|A|

i∈A 

0.0052α|A| (25)
− 3≥ 1 − 2e (Chernoff bound) 

αλN− 
1.2×105≥ 1 − 2e . (|A| ≥ λN) 

αλN− 
1.2×105Thus, with probability at least 1 − 2e , 

Pr [f = 1 | Z = 0]P 
i∈A Xi 

= (Eq. 24)
|A| 

α|A|∈ (1 ± 0.005) · (Ineq. 25)
|A|

∈ (1 ± 0.005)α. 

Similarly, we have that with probability at least 1 − 
αλN− 

1.2×1052e , 

Pr [f = 1 | Z = 1] ∈ (1 ± 0.005)α. 
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By the definition of γ(f, S), we complete the proof. � 

However, there is no guarantee for the empirical risk of ran-
domized labeling. For instance, consider the loss function 
L(f, s) := I [f(s) = y] where I [·] is the indicator function, 

Nand suppose there are samples with ya = 0. In this2 
setting, the empirical risk of f? may be close to 0, e.g., 
f? = Y . Meanwhile, the expected empirical risk of ran-
domized labeling is � � 

1 N N 1 
(1 − α) · + α · = ,

N 2 2 2 

which is much larger than that of f? . 

F.2. Replacing S by Sb in Program TargetFair 

Another idea is to solve the following program which only 
depends on Sb, i.e., simply replacing S by Sb in Program Tar-
getFair. 

min 
f ∈F 

1 
N 

X 

a∈[N ] 

L(f, bsa) s.t. 

γ(f, bS) ≥ τ. 

(ConFair) 

Remark F.2 Similar to Section 4, we can design an algo-
rithm that solves Program ConFair by logistic regression. 

X1 
min − (ya log fθ (sa) + (1 − ya) log(1 − fθ (sa))) 
θ∈Rd N 

a∈[N ]X 
s.t. µb1 · I [hxa, θi ≥ 0] 

a∈[N ]:Zb=0 X 
≥τµb0 · I [hxa, θi ≥ 0] , 

a∈[N ]:Zb=1 X 
µb0 · I [hxa, θi ≥ 0] 

a∈[N ]:Zb=1 X 
≥τµb1 · I [hxa, θi ≥ 0] . 

a∈[N ]:Zb=0 

(FairLR) 

Let fb? denote an optimal solution of Program ConFair. Ide-
ally, we want to use fb? to estimate f? . Since Z is not used 
for prediction, we have that for any f ∈ F , X X 

L(f, sa) = L(f, sba). 
a∈[N ] a∈[N ] 

Then if fb? satisfies γ(fb?, S) ≥ τ , we conclude that fb? is 
also an optimal solution of Program TargetFair. However, 
due to the flipping noises, fb? may be far from f? (Exam-
ple F.3). More concretely, it is possible that γ(fb?, S) � τ 

(Lemma F.4). Moreover, we discuss the range of Ω(f? , Sb) 
(Lemma F.5). We find that Ω(f? , Sb) < τ may hold which 
implies that f? may not be feasible for Program ConFair. 
We first give an example showing that fb? can perform very 
bad over S with respect to the fairness metric. 

Example F.3 Our example is shown in Figure 8. We as-
sume that µ0 = 1/3 and µ1 = 2/3. Let η = 1/3 be the 
noise parameter and we assume π20 = π01 = 1/3. Conse-
quently, we have that 

µb0 = 1/3 × 2/3 + 2/3 ∗ 1/3 = 4/9. 

Then we consider the following simple classifier f ∈ 
X{0, 1} : fb? = Z. We directly have thath i h i 

Pr fb? = 1 | Z = 0 = 0 and Pr fb? = 1 | Z = 1 = 1, 

which implies that γ(fb?, S) = 0. We also have that h i 
Pr fb? = 1 | Zb = 0 h i 

= Pr Z = 1 | Zb = 0 (fb? = Z) 

π01 · µ1 
= (Observation B.1) 

µb0 

= 0.5, 

and h i 
Pr fb? = 1 | Zb = 1 h i 

= Pr Z = 1 | Zb = 1 (fb? = Z) 

π11 · µ1 
= (Observation B.1) 

µb1 

= 0.8, 

which implies that γ(fb? , Sb) = 0.625. Hence, there is a gap 
between γ(fb?, S) and γ(fb? , Sb), say 0.625, in this example. 
Consequently, fb? can be very unfair over S, and hence, is 
far from f? . 

Next, we give some theoretical results showing the weak-
nesses of Program ConFair. 

An upper bound for γ(f, S). More generally, given a 
Xclassifier f ∈ {0, 1} , we provide an upper bound for 

γ(f, S) that is represented by γ(f, Sb); see the following 
lemma. 

Lemma F.4 (An upper bound for γ(f, S)) Suppose we 
have h i h i 

1. Pr f = 1 | Zb = 0 ≤ Pr f = 1 | Zb = 1 ; h i 
2. Pr f = 1, Z = 0 | Zb = 0 ≤ α0 · h i 
Pr f = 1, Z = 1 | Zb = 0 for some α0 ∈ [0, 1]; 
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Figure 8. An example showing that γ(f, S) and γ(f, Sb) can differ by a lot. The detailed explanation can be found in Example F.3. 

Z = 0 Z = 1

Ẑ = 1 Ẑ = 0 Ẑ = 0 Ẑ = 1

f̂τ = 0 f̂τ = 1

h i 
3. Pr f = 1, Z = 0 | Zb = 1 ≤ α1 · h i 
Pr f = 1, Z = 1 | Zb = 1 for some α1 ∈ [0, 1]. 

µbiLet βij = for i, j ∈ {0, 1}. The following inequality µj 

holds 

α0(1+α1)β00 ·γ(f,Sb)+α1(1+α0)β10γ(f, S) ≤ 
(1+α1)β01 ·γ(f,Sb)+(1+α0)β11 

µ1≤ max {α0, α1} · . µ0 

The intuition of the first assumption is that the statistical rate 
for Z = 0 is at most that for Z = 1 over the noisy dataset Sb. 
The second and the third assumptions require the classifier 
f to be less positive when Z = 0. Intuitively, f is restricted 
to induce a smaller statistical rate for Z = 0 over both S and 
Sb. Specifically, if α0 = α1 = 0 as in Example F.3, we have 
γ(f, S) = 0. Even if α0 = α1 = 1, we have γ(f, S) ≤ µ1 

µ0 

which does not depend on γ(f, Sb). 
Proof: [Proof of Lemma F.4] By the first assumption, we 
have h i 

Pr f = 1 | Zb = 0 
γ(f, Sb) = h i . (26) 

Pr f = 1 | Zb = 1 

By the second assumption, we have h i 
Pr f = 1, Z = 1 | Zb = 0 h i 
(1 + α0) · Pr f = 1, Z = 1 | Zb = 0 

= 
1 + α0h i 

Pr f = 1, Z = 1 | Zb = 0 
≥ (27) 

1 + α0h i 
Pr f = 1, Z = 0 | Zb = 0 

+ 
1 + α0h i1 

= · Pr f = 1 | Zb = 0 . 
1 + α0 

Similarly, we have the following h i 
Pr f = 1, Z = 0 | Zb = 0 

α0 
h i (28) 

≤ Pr f = 1 | Zb = 0 . 
1 + α0 

Also, by the third assumption, we have h i 
Pr f = 1, Z = 1 | Zb = 1 

1 h i (29) 
≥ Pr f = 1 | Zb = 1 ,

1 + α1 

and h i 
Pr f = 1, Z = 0 | Zb = 1 

α1 
h i (30) 

≤ Pr f = 1 | Zb = 1 . 
1 + α1 

Then 

Pr [f = 1 | Z = 0]h i 
= Pr f = 1, Zb = 0 | Z = 0 h i 

+ Pr f = 1, Zb = 1 | Z = 0 h i 
= Pr f = 1, Z = 0 | Zb = 0 · µb0 

µ0h i µb1 
+ Pr f = 1, Z = 0 | Zb = 1 · 

µ0h i 
(31)= Pr f = 1, Z = 0 | Zb = 0 · β00 h i 

+ Pr f = 1, Z = 0 | Zb = 1 · β10 

(Defn. of β00 and β10) h iα0β00≤ · Pr f = 1 | Zb = 0 
1 + α0 h iα1β10 
+ · Pr f = 1 | Zb = 1 . 
1 + α1 

(Ineqs. 28 and 30) 
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By a similar argument, we have 

Pr [f = 1 | Z = 1]h i 
= Pr f = 1, Z = 1 | Zb = 0 · β01 h i 

+ Pr f = 1, Z = 1 | Zb = 1 · β11 

(Defn. of β01 and β11) (32)h iβ01≥ · Pr f = 1 | Zb = 0 
1 + α0 h iβ11 
+ · Pr f = 1 | Zb = 1 . 
1 + α1 

(Ineqs. 27 and 29) 

Thus, we have 

γ(f, S) 

Pr [f = 1 | Z = 0]≤ (Defn. of γ(f, S))
Pr [f = 1 | Z = 1]h i h i 
α0β00 α1β10Pr f = 1 | Zb = 0 + Pr f = 1 | Zb = 1
1+α0 1+α1≤ h i h i 
β01 β11Pr f = 1 | Zb = 0 + Pr f = 1 | Zb = 1
1+α0 1+α1 

(Ineqs. 31 and 32) 

α0(1 + α1)β00 · γ(f, Sb) + α1(1 + α0)β10 
= (Eq. 26) 

(1 + α1)β01 · γ(f, Sb) + (1 + α0)β11� � 
β00 β10≤ max α0 · , α1 · 
β01 β11 

µ1 
= max {α0, α1} · , (Defn. of βij ) 

µ0 

which completes the proof. � 

f? may not be feasible in Program ConFair. We con-
sider a simple case that η1 = η2 = η. Without 
loss of generality, we assume that Pr [f? = 1 | Z = 0] ≤ 
Pr [f? = 1 | Z = 1], i.e., the statistical rate of Z = 0 is 
smaller than that of Z = 1 over S. Consequently, we have 

Pr [f? = 1 | Z = 0]
γ(f?, S) = . 

Pr [f? = 1 | Z = 1] 

Lemma F.5 (Range of Ω(f? , Sb)) Let ε ∈ (0, 0.5) be a 
given constant and let 

ηµ0 + (1 − η)(1 − µ0)
Γ = × 

(1 − η)µ0 + η(1 − µ0) 

(1 − η)µ0γ(f?, S) + η(1 − µ0) 
. 

ηµ0γ(f?, S) + (1 − η)(1 − µ0) 

− ε
2ηλN 
192With probability at least 1 − 4e , the following holds � � 

1 
γ(f? , Sb) ∈ (1 ± ε) · min Γ, . 

Γ 

For instance, if µ0 = 0.5, γ(f?, S) = 0.8 = τ and η = 0.2, 
we have 

γ(f? , Sb) ≈ 0.69 < τ. 

Then f? is not a feasible solution of Program ConFair. Be-
fore proving the lemma, we give some intuitions. 

Discussion F.6 By assumption, we have that for a given 
classifier f? ∈ F , 

h i h i b bPr Z = 1 | Z = 0 ≈ Pr Z = 0 | Z = 1 ≈ η (33) 

Moreover, the above property also holds when conditioned 
on a subset of samples with Z = 0 or Z = 1. Specifically, 
for i ∈ {0, 1}, 

h i bPr Z = 1 | f? = 1, Z = 0 h i (34)b≈ Pr Z = 0 | f? = 1, Z = 1 ≈ η 

Another consequence of Property 33 is that for i ∈ {0, 1}, 

µbi = πi,iµi + πi,1−iµ1−i (Observation B.1) 
(35)

≈ (1 − η)µi + ηµ1−i. (Property 33) 
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Then we have Thus, it suffices to provide an upper boundh i h i for Pr f? = 1 | Zb = 0 and a lower bound for?Pr f = 1 | Zb = 0 h i h i Pr f? = 1 | Zb = 1 . Similar to Discussion F.6, we
? = Pr f = 1, Z = 0 | Zb = 0 

have h i 
+ Pr f = 1, Z = 1 | Zb = 0? h i h i h i f? = 1 | b 

? Pr Z = 0b= Pr Z = 0 | Zb = 0 · Pr f = 1 | Z = 0, Z = 0 h i h i Pr [Z = 0] · Pr [f? = 1 | Z = 0] 
+ Pr Z = 1 | Zb = 0 · Pr f? = 1 | Z = 1, Zb = 0 = h i × bPr Z = 0h iπ00µ0 ? b= · Pr f = 1 | Z = 0, Z = 0 h i 
µb0 Pr Zb = 0 | f? = 1, Z = 0h iπ01µ1 
+ · Pr f? = 1 | Z = 1, Zb = 0 

µb0 Pr [Z = 1] · Pr [f? = 1 | Z = 1]
+ h i × 

(Observation B.1) bPr Z = 0h i(1 − η)µ0 ? h i≈ · Pr f = 1 | Z = 0, Zb = 0 b (36)
(1 − η)µ0 + ηµ1 Pr Z = 0 | f? = 1, Z = 1h iηµ1 ? b+ · Pr f = 1 | Z = 1, Z = 0 · Pr [f? = 1 | Z = 0]µ0(1 − η)µ0 + ηµ1 = × 

π00µ0 + π01(1 − µ0)(Properties 33 and 35) h i b(1 − η)µ0 Pr Z = 0 | f? = 1, Z = 0 
= × 

(1 − η)µ0 + η(1 − µ0) h i µ1 · Pr [f? = 1 | Z = 1]
+ ×Pr [f? = 1 | Z = 0] · Pr Zb = 0 | f? = 1, Z = 0 π00µ0 + π01(1 − µ0)h i h ibPr Z = 0 | Z = 0 Pr Zb = 0 | f? = 1, Z = 1 , 

ηµ1 
+ × 
(1 − η)µ0 + η(1 − µ0)h i and 

Pr [f? = 1 | Z = 1] · Pr Zb = 0 | f? = 1, Z = 1 h ih i 
Pr Zb = 0 | Z = 1 Pr f? = 1 | Zb = 1 

(1 − η)µ0 Pr [Z = 0] · Pr [f? = 1 | Z = 0]
≈ · Pr [f? = 1 | Z = 0] = h i × 

(1 − η)µ0 + η(1 − µ0) bPr Z = 1 
ηµ1 

+ · Pr [f? = 1 | Z = 1] . h i 
(1 − η)µ0 + η(1 − µ0) bPr Z = 1 | f? = 1, Z = 0 

(Properties 33 and 34) 
Pr [Z = 1] · Pr [f? = 1 | Z = 1]

+ h i ×Similarly, we can represent bPr Z = 1h i h i 
f? (37)Pr = 1 | Zb = 1 b = 1 | f?Pr Z = 1, Z = 1 

ηµ0≈ Pr [f? = 1 | Z = 0] µ0 · Pr [f? = 1 | Z = 0]
ηµ0 + (1 − η)(1 − µ0) = × 

π11(1 − µ0) + π20µ0 
(1 − η)µ1 h i 

+ Pr [f? = 1 | Z = 1] . Pr Zb = 1 | f? = 1, Z = 0ηµ0 + (1 − η)(1 − µ0) h i µ1 · Pr [f? = 1 | Z = 1] 
f? = 1 | b + ×Applying the approximate values of Pr Z = 0 π11(1 − µ0) + π20µ0h i h i 

and Pr f? = 1 | Zb = 1 to compute γ(f?, S), we have Pr Zb = 1 | f? = 1, Z = 1 , 
Lemma F.5. 

We then analyze the right side of the Equation 36. We take h iProof: [Proof of Lemma F.5] By definition, we have bthe term Pr Z = 0 | f? = 1, Z = 1 as an example. Leth i 
Pr f? = 1 | Zb = 0 A = {a ∈ [N ] : f?(sa) = 1, za = 0}. By Assumption 1, 

γ(f? , Sb) ≤ h i . we have |A| ≥ λN . For i ∈ A, let Xi be the random 
f?Pr = 1 | Zb = 1 variable where Xi = 1 − zbi. By Definition 2.3, we know 
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that Pr [Xi = 1] = η. Also, and h i P Pr f? = 1 | Zb = 1 1 
Pr 

h 
Zb = 0 | f? = 1, Z = 1 

i 
= i∈A Xi 

. (38) h i ∈ (1 ± ε) · . 
Γ|A| Pr f? = 1 | Zb = 0 

Since all Xi (i ∈ A) are independent, we have " # By the definition of γ(f? , Sb), we complete the proof. � X ε 
Pr Xi ∈ (1 ± ) · η|A|

8 
i∈A 

ε2η|A| (39)
− 192≥ 1 − 2e (Chernoff bound) 

− ε
2ηλN 
192≥ 1 − 2e . (|A| ≥ λN) 

− ε
2 ηλN 
192Thus, with probability at least 1 − 2e , h i bPr Z = 0 | f? = 1, Z = 1 P 

i∈A Xi 
= (Eq. 38)

|A|
ε η|A|∈ (1 ± ) · (Ineq. 39)
8 |A|
ε ∈ (1 ± )η. 
8 

Consequently, we have h i bPr Z = 1 | f? = 1, Z = 1 h i b= 1 − Pr Z = 0 | f? = 1, Z = 1 

ε ∈ 1 − (1 ± )η (Ineq. 40)
8 

ε ∈ (1 ± )(1 − η) (η < 0.5)
8 

Similarly, we can prove that with probability at least 1 − 
− ε

2 ηλN 
1924e , h i b = 1 | f?• π01, π20, Pr Z = 1, Z = 0 ,h i bPr Z = 0 | f? = 1, Z = 1 ∈ (1 ± ε )η;8 h i b• π00, π11, Pr Z = 0 | f? = 1, Z = 0 ,h i 
Pr Zb = 1 | f? = 1, Z = 1 ∈ (1 ± ε )(1 − η).8 

Applying these inequalities to Equations 36 and 37, we have 
− ε

2ηλN 
192that with probability at least 1 − 4e , h i 

Pr f? = 1 | Zb = 0 h i 
Pr f? = 1 | Zb = 1 

ηµ0 + (1 − η)(1 − µ0)∈ (1 ± ε) · × 
(1 − η)µ0 + η(1 − µ0) 

(1 − η)µ0γ(f?, S) + η(1 − µ0) 
ηµ0γ(f?, S) + (1 − η)(1 − µ0) 

∈ (1 ± ε) · Γ, 


