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Abstract

We introduce and analyze a best arm identifica-
tion problem in the rested bandit setting, wherein
arms are themselves learning algorithms whose
expected losses decrease with the number of times
the arm has been played. The shape of the ex-
pected loss functions is similar across arms, and
is assumed to be available up to unknown param-
eters that have to be learned on the fly. We define
a novel notion of regret for this problem, where
we compare to the policy that always plays the
arm having the smallest expected loss at the end
of the game. We analyze an arm elimination algo-
rithm whose regret vanishes as the time horizon
increases. The actual rate of convergence depends
in a detailed way on the postulated functional
form of the expected losses. We complement our
analysis with lower bounds, indicating strengths
and limitations of the proposed solution.

1. Introduction
Multi-armed bandits are a mathematical framework of se-
quential decision problems that have played a fundamental
role in machine learning and statistics (see e.g. Bubeck
et al., 2012; Cesa-Bianchi, 2016; Lattimore & Szepesvári,
2020; Siegmund, 2003, and references therein). This frame-
work consists of a sequence of T interactions (or rounds)
between a learning agent and an unknown environment.
During each round the learner picks an action from a set of
options K, usually referred to as arms, and the environment
consequently generates a feedback (e.g., in the form of a
loss value) associated with the chosen action/pulled arm.
Multi-armed bandits have applications to a wide variety of
domains including clinical trials, online advertising, and
marketing.

In the standard i.i.d. stochastic bandit setting (Auer et al.,
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2002), the feedback generated when pulling an arm is mod-
eled as a random variable sampled from a prescribed dis-
tribution associated with the selected arm. In contrast, in
this paper we are interested in a non-stationary stochastic
bandit setting called rested bandits (Allesiardo et al., 2017;
Besbes et al., 2014; Cella & Cesa-Bianchi, 2020; Kleinberg
& Immorlica, 2018; Levine et al., 2017; Seznec et al., 2018),
whereby the feedback/losses received upon pulling arms
are not i.i.d. anymore. That is, the distribution of losses
changes as a function of the number of times each arm has
been pulled so far. As a relevant example, assume the ex-
pected loss of action i ∈ K at a given round is decreasing
with time and takes the parametric form

αi√
τ

+ βi , (1)

where τ is the number of times arm i has been pull up to
that round, and αi and βi are unknown parameters.

Considering decreasing expected losses is reasonable when-
ever the properties of the chosen arm improve as we allocate
resources to them. For example, this is the case in scenarios
where the goal is to find the best talent in a pool of candi-
dates, say, the most valuable worker to train in an online
labor platform having limited training time.

Overall, we interpret this problem as an algorithm selec-
tion or selective training problem. In this scenario, an arm
represents a learning device that satisfies Equation (1) (like
a specific neural network architecture) and the goal is to
keep training the learner that will be the best at the end of
the game. The parameters αi and βi in (1) may therefore
quantify relevant properties of such models. For instance,
in a standard statistical learning setting, parameter αi can
quantify the complexity (which may or may not be known)
of the i-th model class, βi might encode the representational
power of that class in the form of the statistical risk of the
best-in-class hypothesis (which is typically unknown), while
the dependence on 1/

√
τ is meant to suggest a plausible

behavior of the generalization error of the i-th algorithm as
a function of the training set size τ . Within this setting, an
arm i ∈ K with small αi and large βi may represent an em-
pirical risk minimizer (ERM) operating on a simple model
class where the ERM has an estimation error getting small
with few samples, but which only underfits the data without
effectively minimizing the approximation error. Conversely,
an arm i ∈ K with large αi and small βi may correspond
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to an ERM operating on a complex model class with large
estimation error (where overfitting is likely to occur) and
small approximation error.

Given a budget of T training samples, our specific goal is to
design a strategy for online selective training, whereby at
each round we have to decide which algorithm the next train-
ing example has to be fed to. This problem is of fundamental
importance since, in many practical situations, performing
a batch model selection (or model training) might be too
computationally demanding. Thus, the goal is to design
a strategy (a learning policy) that interacts with different
learning algorithms with the goal of spending the budget of
T samples on the algorithm/model that is likely to perform
best after training. Pulling an arm corresponds to feeding
the current sample to the associated algorithm, while observ-
ing the feedback corresponds to being able to estimate in
an approximate manner (e.g., on a separate test set) the gen-
eralization error of the trained algorithm for that arm, this
error being a decreasing function of the number of samples
the chosen algorithm has so far been trained over. Because
the algorithms to select from may originate from different
modeling assumptions, we also view this as a best model
identification problem.

Contributions. We first propose a novel notion of regret
which is suited to the online learning problem we consider
here. This regret criterion frames our problem as a best arm
identification problem within a rested bandit scenario. We
then characterize the structure of the problem by proving
a non-asymptotic lower bound restricted to the 2-arm case.
Finally, we propose two action elimination algorithms, and
show for one of the two algorithms a regret upper bound
that essentially matches the above-mentioned lower bound.

Notation. For a integer N > 0, we abbreviate the set
{1, . . . , N} by [N ]. We use E[·] and P[·], to denote expected
value and probability measure, respectively. Moreover, for a
given σ-algebra F , EF [·] and PF [·] denote their conditional
counterparts.

2. Related works
Our problem can be seen as a (rested variant of) the best
arm identification problem, in that our metric reminds the
simple-regret that was previously designed for the best-arm
identification problem in the standard (stationary) stochas-
tic multi-armed bandit setting (e.g. Even-Dar et al., 2006;
Audibert & Bubeck, 2010; Gabillon et al., 2012; Kaufmann
et al., 2016). The best arm identification problem has been
investigated from two slightly different viewpoints. In the
so called fixed-confidence variant, the goal is to minimize
the sample complexity (that is, the number of pulls) needed
to guarantee that, with some fixed confidence level, the se-
lected arm is the one with smallest expected loss. In the

fixed-budget variant, the goal is to find the best-arm within
a fixed number of rounds (budget), while minimizing the
probability of error.
In our case, we want the learning algorithm to single out
with high probability (fixed confidence) the best base learner
but, due to the non-stationary nature of the expected loss
of base learners, we also want to do so with as few pulls
as possible. Hence, we are in a sense combining the two
criteria of fixed confidence and fixed budget.

A problem which is similar in spirit to ours is that of online
model selection in bandit settings (that is, the case where the
base learners are themselves bandit algorithms). This has
been investigated in a number of papers in recent years, e.g.,
(Agarwal et al., 2017; Foster et al., 2019; 2020; Pacchiano
et al., 2020; Cutkosky et al., 2021). In particular Agarwal
et al. (2017) consider a very general class of base learners
which have to satisfy reasonable stability assumptions. In
order to deal with bandit information, importance weighted
feedback is given to the bandit learners. In (Foster et al.,
2019; 2020) the emphasis is specifically on linear bandit
model selection problems, where model selection operates
on the input dimension (Foster et al., 2019) or the amount
of misspecification (Foster et al., 2020). Similar to (Agar-
wal et al., 2017), in (Pacchiano et al., 2020) the authors
investigate the problem of algorithm selection in contextual
bandits where contexts are stochastic. In order to bypass
the stability assumption in (Agarwal et al., 2017), an addi-
tional smoothed transformation is introduced. The positive
side effect induced by this additional step is the ability to
feed the base learners with the original feedback with no
re-weighting.

Unlike all the above works, we assume the expected loss
of the base learners (which are not limited to bandit poli-
cies) depends in specific ways on the number of times each
base learner is selected, this dependence being known up
unknown parameters that have to be estimated. More impor-
tantly, we investigate a performance metric that is different
from the standard cumulative regret incurred with respect to
the best allocation policy, as studied in (Agarwal et al., 2017;
Foster et al., 2020; 2019; Pacchiano et al., 2020). Further
remarks on this comparison is given in the next section.

A different stream of literature, which is loosely related to
our work, is hyperparameter optimization; see (Li et al.,
2017) for a representative example. The main difference
with our setting is that, besides the standard exploration-
exploitation trade-off, here we also have to deal with a
trade-off induced by non-stationarity. Hyperparameter op-
timization algorithms like the one in (Li et al., 2017) adap-
tively searches in the space of hyperparameters, and the
goal is akin to best arm identification. Yet, the feedback
is assumed to be stationary, since hyperparameter values
do not correspond to stateful objects (as in the case of our



Best Model Identification: A Rested Bandit Formulation

base learners), and hyperparameter configurations are usu-
ally evaluated on a separate validation set. An adversarial
variant of hyperparameter optimization was considered in
(Jamieson & Talwalkar, 2016), but their notion of regret is
different from ours.

In the bandits literature, there are two standard ways of mod-
eling non-stationarity: restless (Whittle, 1988; Tekin & Liu,
2012; Ortner et al., 2014; Russac et al., 2019) and rested
(Levine et al., 2017; Mintz et al., 2017; Kleinberg & Immor-
lica, 2018; Seznec et al., 2018; Pike-Burke & Grunewalder,
2019; Cella & Cesa-Bianchi, 2020; Kolobov et al., 2020)
bandits. In the restless case, the non-stationary nature of the
feedback is determined only by the environment, and the
learning policies either try to detect changes in the payoff
distribution in order to restart the learning model, or to apply
a weight-decay scheme to the collected observations. On
the contrary, in rested bandits, the non-stationarity depends
on the learning policy itself. For instance, in (Cella & Cesa-
Bianchi, 2020; Kleinberg & Immorlica, 2018; Kolobov et al.,
2020; Pike-Burke & Grunewalder, 2019), an arm expected
payoff distribution is parametrized by the elapsed time since
that arm was last pulled. The main leverage given to the
proposed solutions is the possibility of observing more unbi-
ased samples corresponding to a fixed arm-delay pair. This
simplifies the parameter estimation problem. Similar to the
setting we are proposing, in (Levine et al., 2017; Seznec
et al., 2018) the authors assume the expected loss of an
arm to be monotonically increasing in the number of times
the arm was pulled. The striking difference is that, in their
variant, a simple greedy solution which at each round se-
lects the currently-best arm is actually an optimal solution.
Therefore, their learning problem reduces to estimating for
each arm the expected loss corresponding to its next pull
and always select the most promising one. In our setting
(see Section 3 below), because expected losses are decreas-
ing, a similar solution would be far from optimal, since our
objective is to identify the arm minimizing the resulting loss
at the end of the game.

3. Learning setting
We consider a set ofK arms (or learning agents)K = [K] =
{1, . . . ,K}, whose average performance improves as we
play them. At each round t ∈ [T ], the learner picks an arm
It ∈ K and observes the realization XIt,t of a loss random
variable whose (conditional) expectation µIt,t is a decreas-
ing function of the number of times arm It has been pulled
so far. Specifically, for any i ∈ K and t ∈ [T ], denote by
τ(i, t) the number of times arm i has been pulled up to time
t, and by Ft the σ-algebra generated by the past history of
pulls and loss random variables I1, XI1,1, . . . , XIt−1,t−1.
Given a time horizon T , a learning policy π is a func-
tion that maps at each time t ∈ [T ] the observed history

I1, XI1,1, . . . , It−1, XIt−1,t−1 to the next action It ∈ K.
At the end of round T , policy π has to commit to (or to
output) a given action iout ∈ K. We define

µi,t ≡ EFt [Xi,t] =
αi(

1 + τ(i, t− 1)
)ρ + βi , (2)

where exponent ρ ∈ (0, 1] is a known parameter common to
all arms while, for all arms i ∈ K, scaling parameter αi and
position parameter βi are assumed to be non-negative but
unknown to the learning algorithm. We assume αi ∈ [0, U ]
and βi ∈ [0, 1], where the upper extreme U is a known
quantity. Hence, µi,t is the expected loss of arm i at round
t, conditioned on the fact that i has already been played
τ(i, t− 1) times during the previous t− 1 rounds.
As a shorthand, from now on we will use µi(τ) to denote
the expected loss of arm i ∈ K if pulled so far τ ∈ [T ]
times. Notice that when αi = 0 for all i ∈ K our setting
reduces to the standard stochastic multi-armed bandit setting
(e.g. (Auer et al., 2002)).1 It is the decaying component

αi
(1+τ(i,t−1))ρ that makes this setting an instance of the rested
bandit setting, where the stochastic behavior of the arms
depends on the actual policy I1, . . . , It−1 that has so far
been deployed during the game.

We compare a learning policy π to the optimal policy that
knows all parameters {αi, βi}i∈K in advance, and pulls
from beginning to end the arm i∗T whose expected loss at
time T is smallest, i.e.,

i∗T = arg min
i∈K

( αi
T ρ

+ βi

)
.

We define the pseudo regret of π after T rounds as

RπT (µ) = µiout
(
τout

)
− µi∗T

(
T
)
, (3)

where τout = τ(iout, T ) is the random variable counting
the number of pulls of arm iout ∈ K after T rounds. In the
above, µ ∈ {µi : [T ]→ [0, 1]}i∈K collectively denotes the
non-stationary environment generating the observed losses.
Our goal is to bound pseudo-regret RπT (µ) with high proba-
bility, where the probability is w.r.t. the random draw of vari-
ables Xi,t (and possibly the random choice of I1, . . . , IT ,
and iout). Notice that RπT (µ) is always non-negative.

A closer inspection of Eq. (3) reveals that, unlike standard
best-arm identification problems (e.g., (Even-Dar et al.,
2006; Audibert & Bubeck, 2010; Gabillon et al., 2012;
Kaufmann et al., 2016)), our objective here is not limited
to predicting which arm is best at the end of the game, but
also to pull it as much as we can, that is, to single it out
as early as possible. This also entails that if the arm our
policy π pulls the most throughout the T rounds is i 6= i∗T ,

1Observe that the stationary case can equivalently be recovered
by setting ρ = 0, which is therefore redundant and ruled out by
the condition ρ ∈ (0, 1].
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then it may be better for π to output iout = i rather than i∗T
itself, even if π gets to know at some point the identity of i∗T
and starts pulling it from that time onward. This is because
if, say, for some t0 close to T we have τ(i, t0) = t0 and
τ(i∗T , t0) = 0, then we may well have µi,t0 < µi∗T ,T−t0 ,
so that (3) is smaller for iout = i than for iout = i∗T . In
order to gather further insights, it is also worth considering
the simple policy π which selects all arms T/K times, and
then outputs the best arm i∗T . According to Eq. (3), π will
still suffer significant regret, since it did not play i∗T often
enough throughout the T rounds (that is, π has explored
“too much” on sub-optimal arms). We can thus claim that,
thanks to the presence of the τout variable, our regret in (3)
is only seemingly non-cumulative.

Finally, observe that the average loss µi,t in (2) can be
expressed as the linear combination µi,t = x>t θ

∗
i , where

θ∗i = [αi, βi]
> is the unknown vector associated with arm i,

and xt = [1/τ(i, t− 1)ρ, 1]> is the “context” vector at time
t. This might give the impression of some kind of linear
contextual bandit (e.g., (Soare et al., 2014)) in the best arm
identification regime. Yet, this impression is erroneous,
since in our problem xt is itself generated by the learning
policy during its online functioning.

In the sequel, we also adopt the notion of state τ =
(τ1, τ2, . . . .τK) ∈ [T ]K to encode the case where, for all
i ∈ K, arm i has been pulled τi times. Notice that when
the learning policy is at state (τ, . . . , τ), keep sampling all
arms in a round-robin fashion (exploring) entails observing
K many samples with expected value µ1(τ), . . . , µK(τ) re-
spectively, and ending up into state (τ + 1, . . . , τ + 1) ∈
[T ]K . Conversely, when the learning policy is at state
(τ, . . . , τ), then keep pulling the same arm i ∈ K for the
remaining T −Kτ rounds (exploiting) corresponds to reach-
ing the furthest still reachable state where arm i (which
will then be the most pulled one) will have expected loss
µi(T − (K − 1)τ).

On the comparison to Bandit Model Selection. The
reader may wonder to what extent our task is similar to
the bandit model selection problem (Agarwal et al., 2017;
Foster et al., 2019; 2020; Pacchiano et al., 2020; Cutkosky
et al., 2021) we alluded to in the related works section. At a
high-level, this question is similar to the difference between
best-arm identification (BAI) and regret minimization (RM).
We can coarsely claim that the cited papers correspond to
the generalization to stateful arms of RM, while here we
generalize BAI to stateful arms having a specific parametric
form of their losses. In fact, we cannot easily compare to
bandit model selection, since our problem is substantially
different. To see why, consider two base learners (say, two
students) whose expected loss curves intersect just at time
T − 1. The first one has α1 = 0 and β1 > 0 (not improv-
ing over time but looking promising at the beginning), the

second one has α2 > 0 and β2 = 0 (lagging behind at the
beginning, but able to ramp up faster over time). In our
BAI setting, the optimal policy would stick to arm 2 since
µ2(T ) < µ1(T ), while an RM policy would clearly seek to
play arm 1. This also helps elucidate the key role played by
T : As T →∞ arm 2 becomes more attractive even in the
RM sense, while if we stop earlier, say T/2 (so that the two
loss curves no longer intersect), then arm 1 becomes better
also in our BAI setting. All in all, in our setting one has
to depart from the general idea, quite common in RM, of
studying regret “for large T ” (or even “for large K”), since
the complex interplay among problem parameters makes
these investigations less meaningful than in RM. Observe
that, as T →∞ our setting turns to standard stationary BAI,
since µi,t → βi in Eq. (2). Hence, what matters here is the
case when T is not large.

4. Main trade-offs and lower bound
In this section we provide a distribution-dependent lower
bound for the proposed setting. This will also give us the
chance to comment on the specific features of our learning
task in terms of the main trade-offs a learning policy has to
face. We start by defining the class of arm-elimination poli-
cies as those which periodically remove sub-optimal arms
and keep sampling in a round-robin fashion2 the remaining
arms across the rounds. The following simple fact holds.

Fact 1. The regret incurred by an arbitrary policy π is
invariant to permutations of the chronological order of its
actions. In fact, (3) only depends on the arm iout selected
at the end, and the number of times τout that arm has been
chosen during the T rounds. Hence, for any π, there exists
an arm-elimination policy π′ whose regret is not worse (i.e.,
having the same pair iout, τout).

Proof. Let for simplicity K = 2: (i) Since expected losses
(2) decrease with the noumber of pulls, it is easy to see that
the best thing a policy can do so as to minimize regret (3)
is to decide as early as possible which arm to commit to,
pull that arm from that point on, and output it as iout. Any
deviation from this results in higher regret. (ii) In the initial
stage before commitment, the best thing a policy can do is
to equalize the number of pulls of the two arms (hence the
round-robin sampling of an arm-elimination policy). Any
deviation from this equalization strategy can be penalized
by the adversary generating parameters (αi, βi): if we pull
arm 1 more than arm 2 the adversary may have made 2 the
optimal arm at the time we commit, and vice versa.

We can therefore restrict our lower bound investigation to
arm-elimination policies. An advantage of this restriction
is a more convenient characterization of the state space {τ}

2For simplicity, we restrict here to deterministic policies.
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µ2(τ)

β1

τ1 τ2 T − τ2 T − τ1 T
2
τ

µ2(T − τ2)− β1

µ2(τ1)− µ2(T − τ1)

Figure 1. Expected losses associated with the arms in Example 1.

associated with the learning problem. The size of the state
space is clearly of the form TK .

Another relevant aspect of our problem is that, based on
(2) and (3), for each given state (τ1, . . . , τK) ∈ [T ]K , there
are at most K many candidate optimal and still reachable
states that any policy could end up to. These are specifically
the K alternative states that the learning policy at hand
would reach by committing to one of the K arms for all the
remaining rounds. All other states (which are exponential
many) can easily be seen to be sub-optimal.

Before moving to the main result of this section (the regret
lower bound), we would like to give an additional charac-
terization of the considered class of policies. The missing
component which gives a well-specified policy is the condi-
tion governing the arm elimination. Since expected losses
(2) are non-increasing, and given the regret criterion (3),
once a policy is confident that sticking to an arm would give
a smaller expected loss than the one associated with the last
pull, this policy might be tempted to eliminate all the other
arms. In the next example we show that operating this way
can be sub-optimal.

Example 1. Let us consider the specific instance of our
problem with K = 2 arms whose expected losses are
sketched in Figure 1. Whereas the first arm is station-
ary µ1(τ) = β1, the second is not, µ2(τ) = α2

τρ + β1.
At state τ1 = (τ1, τ1) it may occur that the τ1 observa-
tions associated with arm 2 are enough to realize that
µ2(T − τ1) < µ2(τ1). Hence the learning policy knows
that if it kept sampling arm 2 for the remaining T − 2τ1
pulls it would achieve a smaller (expected) loss compared
to µ2(τ1). The same would not hold for the other arm, as it
is stationary.
Let us now denote by τ2 the number of pulls it takes to fig-
ure out that β1 < µ2(T − τ2). It could be the case that
τ2 > τ1 (that is, as in Figure 1, we have µ2(T − τ2)−β1 <
µ2(τ1)− µ2(T − τ1)). In order to maximize τout (so as to
minimize regret (3)) a naive policy might eliminate arm 1
after τ1 observations. This would translate into choosing
the wrong value of iout, hence clearly incurring a regret.
Conversely, a smarter policy that keeps exploring up to state

(τ2, τ2) would return iout = 1 and yield τout = T − τ2.
Notice that, thanks to the stationary nature of the optimal
arm, the regret incurred by this policy is indeed zero.

All in all, the above observations help better understand the
structure of our problem, which will be useful in all techni-
cal proofs (see the appendix). We can now turn our attention
to the lower bound. In doing so, we generalize the results in
(Bubeck et al., 2013), which in turn adopts a hypothesis test-
ing argument that hinges on a lower bound for the minimax
risk of hypothesis testing (ee e.g. Tsybakov, 2008, Ch. 2).
Notice that the classical lower bound result for stationary
bandits (Lai & Robbins, 1985) cannot easily be adapted
here since, being asymptotic in nature, that result tends to
lose the non-stationary component of our expected losses
(2), and thus the cumulated effect of this non-stationarity on
the τout variable.

As done in (Bubeck et al., 2013), for all arms and all pos-
sible number of pulls, we consider all families of loss dis-
tributions {Pµ}, indexed by their expected value µ, and
such that KL(Pµ,Pµ′) = C(µ − µ′)2 for some absolute
constant C > 0 (e.g., in the case of normal distributions,
KL(N (µ, σ),N (µ′, σ)) = 1

2 (µ− µ′)2). In the sequel, we
use τsub = T − τout to denote the number of rounds spent
by pulling all arms different from iout. Additionally, we
denote by Pµ(τ) = Pµ1(τ) ⊗ ...⊗ PµK(τ) the product distri-
bution that generates the losses from Pµi(τ) when pulling
arm i ∈ K for the τ -th time. The result that follows restricts
to the two arm case,3 and delivers a bound on the regret that
holds in expectation over the loss random draws.

Theorem 1. Let Pµ(τ) = Pµ1(τ) ⊗ Pµ2(τ) be defined by
distributions whose expected values are µ1(τ) = α1

τρ + β
and µ2(τ) = α2

τρ + β + ∆, respectively, where ∆ >
0 is an unknown but fixed constant. Additionally, let
Pµ′(τ) = Pµ′1(τ) ⊗ Pµ′2(τ) be another product distribution,
whose expected value components are µ′1(τ) = µ1(τ) and
µ′2(τ) = µ1(τ)−∆. Then, for any policy π, and any hori-

zon T ≥ 1, the quantity max
{
E
[
RπT (µ)

]
,E
[
RπT (µ′)

]}
can be lower bounded by


µ2(T − τsub)− µi∗T (T ) if T − τsub ≤ dτe, α1 > α2

µ1(T − τsub)− µi∗T (T ) if T − τsub ≥ dτe, α1 > α2

α1

(
1

(T−τsub)ρ −
1
Tρ

)
if α1 ≤ α2 ,

where τ =
(
α1−α2

∆

) 1
ρ satisfies µ1(τ) = µ2(τ). We also

have i∗T = {1} if τ < T and i∗T = {2} otherwise. Finally,

3We believe that restricting to the two arm case helps better
elucidate the nature and trade-offs in our problem. We conjecture
that a similar but more involved result can be shown for K arms.
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τsub is the smallest τ ∈ [T/2] which is strictly larger than

min

{
1

8C∆2
τ

log
(
C∆2

ττ/4
)
,

1

8C∆̃2
1,τ

log
(
C∆̃2

1,ττ/4
)
,

1

8C∆̃2
2,τ

log
(
C∆̃2

2,ττ/4
)}

,

where ∆τ = µ1(τ)− µ2(τ) and ∆̃i,τ = µi(T − τ − 1)−
µi(T − τ).

The proof is given in the appendix. The main idea behind
it is that under the assumptions of Theorem 1, we have two
quantities characterizing the lower bound on the number of
sub-optimal pulls τsub. The first one is associated with iout,
and is of order 1/∆2

τ . The second one is induced by the
objective of minimizing the incurred expected loss at τout,
and is of order 1/∆̃2

i,τ . The main point here is that exploring
towards arm iout is worthwhile only if it does not cause a
higher incurred loss µiout

(τout). The second ingredient is
specified by relation between α1 and α2. In fact, if α1 ≤ α2

we have that the second arm’s expected loss µ2(τ) is always
worse than the one of the first, if considered at the same
number of pulls τ . On the other hand, if α1 > α2 their
order relation depends on τ .

We would like to emphasize that even when α1 = α2, the
horizon T is large enough, and ∆→ 0 (that is, the two arms
are less and less statistically distinguishable), an optimal
strategy for our regret minimization problem is by no means
to pull both arms an equal (T/2) number of times. Rather,
an optimal strategy would commit to one of the two arms
as soon as it is confident enough on which of them has the
smaller loss (at any reachable state), unless trying to deter-
mine the best arm causes a bigger regret than immediately
committing to any of the two. The quantity τsub (at least in
the two-arm case) will play a key role in characterizing the
statistical complexity of our learning problem.

5. Estimation of parameters
In order to minimize the regret RπT (µ), any reasonable pol-
icy π has to be able to estimate, for all arms i ∈ K, the
associated expected loss µi(·), and it has to do so at any still
reachable state where arm i will be pulled τout times. To
this effect, we now introduce two statistically independent
estimators. Upon pulling arm i ∈ K for 2τ times, we define

X̂i,τ =
1

τ

τ∑
s=1

Xi(s) , X̃i,τ =
1

τ

2τ∑
s=τ+1

Xi(s) , (4)

where Xi,s denotes the loss incurred by arm i after having
pulled it s times (E[Xi,s] = µi,s). Notice, that due to the
way we have defined µi,s, the above estimators are empiri-
cal averages of independent but non-identically distributed

random variables, the independence deriving from the fact
that pulling one arm does not influence the distribution of
the others. Moreover, because of the time decay, the expec-
tation of X̂i,τ cannot be smaller than the one of X̃i,τ .
We combine these two estimators together with standard con-
centration inequalities to derive a joint estimator for (αi, βi).
Since the two estimators are non-redundant, this allows us
to come up with estimators for αi and βi individually. Using
Bernstein’s inequality,4 we can derive confidence bounds
around X̂i,τ and X̃i,τ as functions of βi and αi. Specifi-
cally, for each arm i ∈ K, number of pulls 2τ ∈ [T ], the
expectation E[X̂i,τ ] is contained with probability at least
1− δ in the interval [X̂i,τ − CBX̂,τ (δ), X̂i,τ + CBX̂,τ (δ)]
where

CBX̂,τ (δ) =
(√

U + 1
)2
√

2

τ
log

1

δ
+

(U + 1) log 1
δ

τ
.

A similar argument follows for E[X̃i,τ ] and CBX̃,τ (δ). We
defer to the appendix the details of the exact expression for
the confidence intervals. Starting from these definitions we
can build the following set of inequalities

E[X̂i,τ ]− CBX̂,τ (δ) ≤ X̂i,τ ≤ E[X̂i,τ ] + CBX̂,τ (δ)

E[X̃i,τ ]− CBX̃,τ (δ) ≤ X̃i,τ ≤ E[X̃i,τ ] + CBX̃,τ (δ)

which can be solved for αi and βi individually. As shown
in the appendix, this gives rise to the following confidence
intervals for αi :

αi ∈

α̂i,τ︷ ︸︸ ︷
τ∆X̂i,τ∑τ

s=1
1
sρ −

∑2τ
s=τ+1

1
sρ

±

±
5τρ
(√
U + 1

)2
ρ

[ log 1/δ

τ
+

√
1

τ
log

1

δ

]
, (5)

where ∆X̂i,τ = X̂i,τ − X̃i,τ . For brevity, the confidence
interval centroid will be denoted by α̂i,τ . Similarly, βi can
be shown to satisfy

βi ∈

β̂i,τ︷ ︸︸ ︷
X̂i,τ −

α̂i,τ
τ

τ∑
s=1

1

sρ
±

5
(√
U + 1

)2
(1− ρ)ρ

[
log 1/δ

τ
+

√
1

τ
log

1

δ

]
, (6)

where β̂i,τ denotes the centroid of confidence interval (6).
Despite we have provided separate estimators for αi and
βi, it is important to stress that our interest here is not to
estimate them separately. Combining these estimators gives

4It is worth mentioning in passing that the standard Hoeffding
inequality delivers vacuous estimators here.
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µ̂i,τ (τout) =
α̂i,τ
τρout

+ β̂i,τ ,

an estimate of the expected loss incurred by arm i ∈ K as if
we had pulled it τout times after having observed only 2τ
realizations of Xi,t. All the above can be summarized by
the following theorem.

Theorem 2. After observing Xi,1, . . . , Xi,2τ loss realiza-
tions of arm i ∈ K, we can predict the expected loss µi,τout
of arm i as it were pulled τout-many times (with τout > τ).
In particular, we have that with probability at least 1 − δ
jointly over i ∈ K, τ ∈ [T ] and τout ∈ [T ],

µ̂i,τ (τout)−CBµ,τ (δ) ≤ µi,τout
≤ µ̂i,τ (τout) + CBµ,τ (δ) ,

where

CBµ,τ (δ) =
10
(√

U + 1
)2

(1− ρ)ρ

[
log τKT

δ

τ
+

√
1

τ
log

τKT

δ

]
.

Hence, the approach contained in Theorem 2 allows us to
obtain confidence intervals for µi,τout

shrinking with τ as
1√
τ

up to a numerical constant depending on ρ and U .
Finally, observe that these confidence intervals are non-
vacuous only when ρ ∈ (0, 1), that is, excluding the extreme
cases ρ = 0 and ρ = 1. The case ρ = 0 is indeed uninterest-
ing, since it yields a stationary case which is equivalent to
the one achieved by the setting αi = 0 for all i. In fact, due
to the specific nature of the empirical averages in (4), when
ρ = 0 the centroid α̂i,τ occurring in (5) is not well defined,
independent of the number of observed samples τ . On the
other hand, because our derivations rely on approximations
of the form

∑τ
s=1

1
sρ ≈

s1−ρ

1−ρ , which only hold for ρ 6= 1,
the case ρ = 1 should be treated separately via standard
approximations of the form

∑τ
s=1

1
s ≈ log τ .

The above estimators will be the building blocks of our
learning algorithms, presented in the next section. In partic-
ular, the definition of CBµ,τ (δ) given in Theorem 2 above
will be repeatedly used throughout the rest of the paper.

6. Regret minimization
In this section we present two learning policies. We first de-
scribe as a warm-up a simple explore-then-commit strategy,
then we present a more sophisticated strategy inspired by
the Successive Reject algorithm (Audibert & Bubeck, 2010).
For both policies, we set the confidence parameter δ to 1

T .

The first solution we propose is a rested bandit variant of the
standard explore-then-commit (ETC) policy (e.g. Lattimore
& Szepesvári, 2020, Ch. 6)). In its original formulation,
ETC requires as input a parameter n ∈ [T ] specifying the
number of initial pulls associated with each arm. Once all
the arms have been pulled n times, the exploratory phase
finishes. The original ETC algorithm then sticks to the most

Algorithm 1 Explore-Then-Commit (ETC)
Require: Confidence parameter δ = 1/T

1: for n ∈ 1, . . . , bT/Kc do
2: pull each arm once
3: τout = T − n(K − 1)
4: if ∃i ∈ K : µ̂i,n(τout) < minj∈K\{i} µ̂j,n(τout) −

2CBµ,n(δ) then
5: iout = arg mini∈K µ̂i,n(τout)
6: break; {The exploration phase terminates}
7: end if
8: end for
9: Play iout until round T {Commit}

10: Output iout

promising arm according to the estimates computed during
the exploration. Hence the two phases of exploration and
exploitation are kept separate. This strategy has a clear
limitation. Since the exploration parameter n is an input to
the algorithm, the original ETC algorithm does not adapt
the length of the exploration phase to the actual samples,
so that understanding how to best set n is not a simple task.
One thing that is worth noticing is that in the 2-arm bandit
case, this parameter n takes values in the range [T/2]. If
τsub in our lower bound of Theorem 1 equals T/2 (that
is, when T/2 is smaller than log T/∆2

τ , log T/∆̃2
1,τ and

log T/∆̃2
2,τ ), we cannot commit to any specific arm, and

the ETC algorithm results in a solo-exploration strategy
which is indeed optimal in this case (up to the choice of
iout). Algorithm 1 describes a variant of the standard ETC
policy adapted to our rested bandit scenario. At a generic
round t = Kn, this algorithm starts committing to an arm
i ∈ K only when we are confident with probability at least
1− δ that i is the arm with lowest expected loss if pulled for
the remaining T −Kn times (Line 4). Hence, unlike the
original ETC algorithm, this algorithm implicitly computes
n on the fly based on the observed samples. Finally, upon
committing to an arm, our algorithm does not reconsider its
decision based on the newly collected samples (Line 9). We
have the following result, that help elucidate the benefit of
adaptively inferring n.
Theorem 3. Consider the same two-arm setting Pµ(τ) =
Pµ1(τ) ⊗ Pµ2(τ) contained in Theorem 1 and the notation
introduced therein. Running Algorithm 1 with T ≥ 1 yields

RETCT (µ) ≤ µiout(T − n0)− µi∗T (T )

with probability at least 1− 1
T , where n0 = min

{
T
2 ,

cρ
∆2
n0

}
and cρ = 1600(

√
U+1)4

ρ2(1−ρ)2 log(4n0T
2).

This result is optimal up to a logarithmic factor (namely,
iout ∈ arg mini∈K µi(T − n0) and n0 = τsub up to
a logarithmic factor) whenever n0 =

cρ
∆2
n0

and τsub =

1
8C∆2

τ
log
(
C∆2

ττ/4
)

. Conversely, when at least one of the
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above conditions is not met, the bound contains an addi-
tional Õ

(
1/
√
n0

)
term if compared to the result of Theorem

1, where Õ(·) hides log T factors.

Notice that finding the commitment condition for ETC can-
not be readily obtained by available results in the bandit
literature, as this requires a specific understanding of the
interplay among the loss curves. Even in the two arm case of
Theorem 3, it is not possible to avoid the unfriendly implicit
form of the regret bound coming from the definition of n0

therein.

Starting from ETC, in the next section we present our final
learning policy, which will be analyzed both in the general
K-armed case and in the specific setting contained in the
lower bound of Section 4.

6.1. Towards an Optimal Policy

The first limitation of the ETC strategy in Algorithm 1 be-
comes clear when considering more than 2 arms. Let us
consider an instance with K = 3 arms where there exist
two values n2, n3 satisfying:

µ̂1(n′) < µ̂2(n′)− 2CBµ,n2(n2) ∀n′ > n2

µ̂1(n′) < µ̂3(n′)− 2CBµ,n3(n3) ∀n′ > n3 .

The ETC policy in Algorithm 1 has a single counter n that
has to satisfy at the same time K − 1 = 2 arm elimination
conditions (line 4 of Algorithm 1). The best this algorithm
can do in order not to commit to the wrong arm is to keep
exploring up to n = max{n2, n3}. The obvious drawback
of this solution is that ETC would then waste |n2 − n3|
pulls on the sub-optimal arms 2 and 3, rather than selecting
iout = 1. We now present in Algorithm 2 the strategy REST-
SURE (RESTed SUccessive REject), a rested version of the
Successive Reject algorithm from (Even-Dar et al., 2006;
Audibert & Bubeck, 2010). As for its stationary counterpart,
REST-SURE keeps sampling all the active arms in a round-
robin fashion, and then periodically removes arms once it
is confident about their sub-optimality (line 12). The key
adaptation to our rested bandit scenario is that one arm is
deemed sub-optimal when there is a better arm in any of the
still reachable states.

Going into some details of the pseudocode, the stopping
condition in lines 4 of Algorithm 2 is inspired by the same
reasoning governing the commitment in the stationary ban-
dit problem. This condition tells us that exploration has
provided enough information to identify (with high proba-
bility) arm iout = arg mini∈K µi(τout) at the best reachable
state. The second stopping condition (line 8) is due to the
non-stationary component in the expected loss (2). This
condition controls the trade-off between the estimation of
iout = arg mini∈K µi(τout) and the minimization of the
incurred expected loss, namely the impact on the value of

Algorithm 2 REST-SURE
Require: Confidence parameter δ = 1/T

1: Initialize: A0 = K, n = 0, τout = T , and t = 0.
2: for t = 1, . . . , T do
3: τout = T − t+ n
4: if ∃i ∈ An : µ̂i(τout) < minj∈An\{i} µ̂j(τout) −

2CBµ,n(δ) then
5: iout = arg mini∈An µ̂i(τout)
6: break; {Found i∗τout w.h.p.}
7: end if
8: if mini∈An µ̂i,n(τout − |An| + 1) − 2CBµ,n(δ) >

mini∈An µ̂i,n(τout) then
9: iout randomly chosen in An

10: break; {No advantage in learning i∗τout}
11: end if
12: An+1 = An
13: for each arm i ∈ An+1 such that ∀m ∈ [n, τout] :

∃j ∈ An+1 : µ̂i,n(m)− µ̂j,n(m) > 2CBµ,n(δ) do
14: An+1 = An+1 \ {i} {Arm elimination}
15: end for
16: Pull once each active arm i ∈ An+1

17: t = t+ |An+1|; n = n+ 1
18: end for
19: Play iout until round T {Commit}
20: Output iout

τout. In particular, this condition stops the policy in its ex-
ploration towards the identity of iout as soon as this would
cause an increased regret due to a reduced valued of τout.

We need the following additional notation. We set for brevity
∆j,i(τ) = µj(τ) − µi(τ) for any τ ∈ [T ], Kn = K − n,
and µ∗(τ) = mini∈K µ(τ) denotes the smallest expected
loss over all arms after each one of them has been pulled τ
times. The following is the main result of this section.

Theorem 4. For all K > 1, if REST-SURE is run on
K arms having arbitrary non-stationary loss distributions
Pµ(m) = Pµ1(m),⊗, . . . ,⊗,PµK(m) with support in [0, 1]
and expected value parameterized according to (2), then
with probability at least 1− 1

T the pseudo-regret of REST-
SURE after T interactions satisfies

RREST−SURE
T (µ) ≤ µiout(T − n)− µi∗T (T ),

where n =
∑
s∈[K−1] nσ(s), and nσ(s) is defined as the
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Figure 2. Expected losses associated with the arms in Example 2.

smallest n ∈ [T ] which is greater than

min

{
T −

∑s−1
j=1 nσ(j)

Ks−1
,

cρ log(nK2T 2)

minj∈A∗s−1,m∈[nσ(s),τout(s)] ∆2
σ(s),j(m)

,

cρ log(nK2T 2)(
µ∗
(
τout(s)−Ks+1

)
− µ∗

(
τout(s)

))2 ,
cρ log(nK2T 2)(

minj∈K
(
∆σ(s),j(τout(s))

)2
}
.

In the above, A∗s = K \ {σ(1), . . . , σ(s − 1)}, τout(n) =

T −
∑n
s=1Ks+1nσ(s) and cρ = 1600(

√
U+1)2

ρ2(1−ρ)2 . No-
tice that σ(s) = arg minj∈A∗s−1

nσ(j). Finally, iout ∈
arg mini∈K µi(T − n) only if minj∈A∗s−1

∆σ(s),j(τout(s))

is greater than µ∗
(
τout(s) − Ks+1

)
− µ∗

(
τout(s)

)
. Con-

versely, when the latter condition is not met we can only
guarantee that µiout

(T − n) ≤ µ∗(T − n) + Õ
(
1/
√
niout

)
.

Notice that n is solely a function of the problem parameters
{αi, βi}i∈K, ρ,K, U , and T . This is because so are the
involved quantities σ(s) and nσ(s). The exact expression
for n might be somewhat hard to interpret. The first term in
the min plays the same role as term T/2 in Theorem 1, and
guarantees the total number of pulls is most T . The second
term is obtained from the arm-elimination condition of line
12. The third term in the min is obtained by analyzing the
condition at lines 7-8. Finally, the commitment to arm iout

yields the fourth term. In order to clarify the heavy statement
of Theorem 4, we now present a symbolic example.
Example 2. For the sake of illustration, let us consider
the specific instance of the ahove theorem with K = 3
arms whose expected losses are sketched in Figure 2. In
that figure, τ1 is the number of times REST-SURE needs to
pull each arm before eliminating arm 2. Hence, we have
σ(1) = 2 and nσ(1) = τ1. Similarly, τ2 is the number
of pulls associated with the remaining arms Aτ2 = {1, 3}
before committing to arm 3. Hence, with probability at least
1− 1/T , we have σ(2) = 1, iout = 3 and n = τ1 + τ2.

The proof of Theorem 4 is an extension of the proof of
Theorem 3, and is given in the appendix. To conclude, we
now show that the bound of REST-SURE matches the lower
bound given in Theorem 1 up to logarithmic factors.

Corollary 1. Let us consider the same two-arm setting
Pµ(τ) = Pµ1(τ) ⊗ Pµ2(τ) as in Theorem 1 and the notation
introduced therein. Running Algorithm 2 with T ≥ 1 yields

RREST−SURE
T (µ) ≤ µiout(T − n0)− µi∗T (T )

with probability at least 1 − 1
T . In the above,

n0 = min

{
cρ

∆2
n0

,
cρ

∆̃2
n0

, T2

}
and cρ = 25600(

√
U +

1)4 log(4n0T
2). This result is optimal up to a logarith-

mic factor (namely, iout ∈ arg mini∈K µi(T − n0) and
n0 = τsub up to a logarithmic factor) whenever n0 =

cρ
∆2
n0

and τsub = 1
8C∆2

τ
log
(
C∆2

ττ/4
)

. Conversely, when at
least one of the above conditions is not met, the bound
contains an additional Õ

(
1/
√
n0

)
term if compared to the

result of Theorem 1, where Õ(·) hides log T factors.

Notice that, differently from Theorem 3, the definition of n0

now matches the one of τsub in Theorem 1 up to a logarith-
mic factor. Furthermore, the extra term Õ

(
1√
n0

)
is always

smaller than the one mentioned in Theorem 3.

7. Conclusions and Ongoing Research
In this work we have proposed an online algorithm selection
problem formulated as a best arm identification within a
specific rested bandit scenario. Here, each arm represents
a candidate learning model and each pull corresponds to
giving the associated learner more i.i.d training samples,
thus allowing the learner to reduce its generalization error.
We formulated an ad hoc notion of regret, provided a lower
bound for the learning problem, and analyzed two alterna-
tive strategies, one of which we have shown to be optimal
in the cases covered by the lower bound.

We considered losses of the parametric form f(τ ; (α, β)) =
α
τρ+β due to their relevance when considering the typical
behavior of generalization error as a function of training set
size. Yet, our analysis can be generalized to any parametric
family of non-increasing functions f(τ ; θ), where θ is a
vector of parameters.

At last we note that, while the focus of this paper has been
theoretical, future work may be devoted to study the empiri-
cal performance of our methods and the underlying bounds.
In Appendix D we included simple preliminary experiments
on synthetic data that help corroborate our theoretical find-
ings. A deeper investigation on real-world data is left to the
future.
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This appendix provides the proofs of all theorems and corollaries contained in the main body of the paper. The presentation
is split into sections corresponding to the section of the main body.

A. Proofs for Section 4
A.1. Proof of Theorem 1

Inspired by (Bubeck et al., 2013), our proof rephrases our bandit learning task (Section 3) as a hypothesis testing problem,
and relies on the following well-known lower bound result for the minimax risk of hypothesis testing (see, e.g., Chapter 2 of
(Tsybakov, 2008)).

Lemma 1. Let Pµ1 ,Pµ2 be two probability distributions supported on some set X , having expected value µ1, µ2, and let
Pµ2

be absolutely continuous w.r.t. Pµ1
. Then for any measurable function π : X → {1, 2}, we have

PY∼Pµ1
(
π(Y ) = 2

)
+ PY∼Pµ2

(
π(Y ) = 1

)
≥ 1

2
exp

(
−KL

(
Pµ1

,Pµ2

))
.

The proof is split into three cases. Case 1 considers α1 = α2 and shows a O(1/∆2) lower bound assuming the expected
losses are known up to their ordering. Case 2 refers to a much more general case where α1 6= α2. Finally, Case 3 introduces
a log T dependency in the lower bound considering α1 6= α2.

Case 1. Let us first consider the case where Pµ(τ) = Pµ1(τ) ⊗ Pµ2(τ) is defined by distributions whose expected values
are µ1(τ) = α

τρ + β and µ2(τ) = α
τρ + β + ∆, respectively, where ∆ > 0 is an unknown but fixed constant. Additionally,

let Pµ′(τ) = Pµ′1(τ) ⊗ Pµ′2(τ) be another product distribution, whose expected value components are µ′1(τ) = µ1(τ) and
µ′2(τ) = µ1(τ)−∆. Hence, the expected values are known up to their ordering.

First, observe that in the considered instances µ, µ′, one arm always outperforms the other, independent on the number of
pulls (i.e., µ1(τ) < µ2(τ) ∀τ ∈ [T ]). Additionally, since the considered expected loss (2) decreases with τout, in order to
obtain a lower bound it suffices to upper bound τout = T − τ(2, T ), and set iout = 1. According to Fact 1, we will only
consider arm-elimination policies that after each round-robin phase consider a possible arm removal.
As explained in Section 3, at a generic round 2τ , after having pulled both arms τ times, any learning policy can either
commit to an arm, thereby obtaining τout = T − τ , or keep exploring, thereby having as best reachable state one where
τout = T − (τ + 1). For this reason, we can essentially view the problem at each state (τ, τ) ∈ [T ] × [T ] as a bandit
problem with three possible arms, whose expected losses are specified by the tuple(

µ1(T − τ), µ2(T − τ), min{µ1(T − τ − 1), µ2(T − τ − 1)}
)
. (7)

The first two components refer to the expected loss that any policy would obtain by committing to one of the arms. The third
component min{µ1(T − τ − 1), µ2(T − τ − 1)} is the smallest expected loss that any learning policy would be able to
obtain by keeping exploring at the current state (τ, τ).

Following the proof in (Bubeck et al., 2013), we first determine the lower bound due to the gap factor ∆. To this effect, let
us consider the following pair of instances µτ = (µ1(T − τ), µ1(T − τ) + ∆) and µ′τ = (µ1(T − τ) + ∆, µ1(T − τ)).
At this stage, when considering the policy at state (τ, τ) we also assume it to have access to τ independent and identically
distributed samples for each arm with expected value parameterized by τout = T − τ . Clearly, this stationary setting is
simpler than the original non-stationary bandit problem, therefore any lower bound for the former carries over to the latter.
We are interested in the stopping time associated with the exploratory stage, as given below:

max
(
E
[
τ(2, 2τ)

]
,E′
[
τ(1, 2τ)

])
≥ 1

2
E
[
τ(2, 2τ)

]
+

1

2
E′
[
τ(1, 2τ)

]
=

1

2

[
τ∑
s=1

Pµτ ,F2s
(I2s = 2) + Pµ′τ ,F2s

(I2s = 1)

]
,

where E[·],E′[·] denote the expected value when losses are generated according to µτ and µ′τ , respectively.
Additionally, because of Fact 1, we can consider F2s = {1, X1,1, 2, X2,2,, . . . , 1, X1,2s−1, 2, X2,2s} and
F ′2s = {2, X2,1, 1, X1,2,, . . . , X1,2s}, which entails that being in state (τ, τ) the maximal number of pulls associ-
ated with the sub-optimal arm is equal to τ . Finally, still relying on Fact 1, we can assume the sub-optimal arm to be
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selected only at even rounds in both instances µ and µ′.

We now leverage Lemma 1 assuming i∗T = 1 in the first environment and i∗T = 2 in the second. This yields

max
(
E
[
τ(2, 2τ)

]
,E′
[
τ(1, 2τ)

])
≥ 1

2

τ∑
s=1

exp
(
−KL

(
P⊗sµτ ,F2s

,P⊗sµ′τ ,F ′2s
))

≥ 1

2

τ∑
s=1

exp
(
− s max

s∈[1,s]
KL

(
Pµτ ,F2s

,Pµ′τ ,F ′2s
))

=
1

2

τ∑
s=1

exp
(
− 4sC∆2

)
≥ 1

8C∆2
.

Notice that this result holds for all states (τ, τ) since, for the referred instance, the KL-divergence is invariant with
respect to the state: KL(Pµs ,Pµ′s) = C∆2 ∀s ∈ [T ]. So far we have considered only the ∆ factor which allows any
policy to commit to the arm having the lower expected loss at τout. We move now to analyze the second reason of
commitment. In agreement with Equation 7, in order to minimize the regret, any policy at state (τ, τ) would terminate
the round-robin exploration also based on µ1(T − τ − 1) = min(µ1(T − τ − 1), µ2(T − τ − 1)). We can then repeat
the same analysis considering the pair of arms with expected value (µ1(T − τ), µ1(T − τ − 1)), and replacing ∆ with
∆̃τ = µ1(T − τ − 1)− µ1(T − τ) = α

(
1

(T−τ−1)ρ −
1

(T−τ)ρ

)
. Coherently with the previous assumption when evaluating

a policy at state (τ, τ) we can consider having τ stationary samples for each arm having expected value respectively equal to
µ1(T − τ) and µ1(T − τ − 1). This first case refers to the simpler problem of understanding which index corresponds to
the optimal arm assuming their expected values are known, and α1 = α2. By virtue of this result, we could already show
the 1

∆2 (respectively, 1/∆̃2
τ ) dependency. The lower bound is obtained by considering the first state (τ, τ) ∈ [T/2]× [T/2]

at which any policy would be able to distinguish based on ∆ or ∆̃τ . This smallest τ can be defined as

τsub = arg min

{
τ ∈ [T/2] : τ ≥ min

(
1

8C∆2
,

1

8C∆̃2
τ

)}
.

Case 2. We are now ready to consider the more general scenario where α1 6= α2, still focusing on the objective of
identifying the optimal arm (at any round τout) assuming knowledge of the arms’ expected loss functions. To do so, we
have to separate two main cases, α1 ≤ α2 and α1 > α2. The main difference between the two is that the intersection of the
arms’ expected loss functions only occurs when α1 > α2. Conversely, if α1 ≤ α2 the gap ∆τ = µ1(T − τ)− µ2(T − τ)
between the two arms reduces but it never vanishes. If this is the case we can use exactly the same analysis as before: set
iout = 1 and obtain

τsub = arg min

{
τ ∈ [T/2] : τ ≥ min

(
1

8C∆2
τ

,
1

8C∆̃2
1,τ

,
1

8C∆̃2
2,τ

)}
, (8)

where ∆̃i,τ = µi(T − τ − 1)− µi(T − τ).s

We now switch to the case α1 > α2. Let τ be such that µ1(τ) = µ2(τ), which can be seen to be define as

τ =

(
α1 − α2

∆

) 1
ρ

.

As we did for Case 1, we assume iout is the optimal arm if considered at τout, and focus on controlling τsub. It is easy to see
that, whenever τ > T , the optimal arm is always iout = 1 independent of τsub. Conversely, if τ ≤ T we have to separate
the two cases T − τsub ≤ bτc and T − τsub ≥ dτe. In the former case, we have to set iout = 2, whereas in the latter we
have iout = 1.

Recalling that the number of exploratory pulls associated with each arm τ is forced to be less than T/2, we have the
following regret lower bound:

max
{
E
[
RπT (µ)

]
,E
[
RπT (µ′)

]}
≥

{
µ2(T − τsub)− µi∗(T − τsub) if T − τsub ≤ dτe
µ1(T − τsub)− µi∗(T − τsub) if T − τsub ≥ dτe

,
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where τsub satisfies (8), i∗T = 1 if τ < T and i∗T = 2, otherwise.

Case 3. We now show that the sole knowledge of ∆τ (respectively ∆̃1,τ and ∆̃2,τ ) already leads to a lower bound on

max
{
E
[
τ(2, 2τ)

]
,E′
[
τ(1, 2τ)

]}
of the order of log(T∆2

τ )/∆2
τ (respectively, log(T ∆̃2

τ )/∆̃2
τ ).

Let us consider the generic instances specified by µτ = (α1/(T − τ)ρ + β, α2/(T − τ)ρ + β + ∆) and µ′τ = (α1/(T −
τ)ρ + β, α2/(T − τ)ρ + β −∆), and notice that

max
{
E
[
τ(2, 2τ)

]
,E′
[
τ(1, 2τ)

]}
≥ E

[
τ(2, 2τ)

]
.

Following the same steps taken above, being in state (τ, τ) implies

max
{
E
[
τ(2, 2τ)

]
,E′
[
τ(1, 2τ)

]}
≥ 1

2

τ∑
s=1

exp
(
−KL

(
P⊗sµτ ,F2s

,P⊗sµ′τ ,F ′2s
))

. (9)

Finally, in the considered environments (µτ , µ′τ ), KL(·, ·) is only function of the second arm, specifically

KL
(
P⊗τµτ ,F2s

,P⊗τµ′τ ,F ′2s
)

= 4C∆2E[τ(2, 2τ)] .

We can then combine the above results together as follows:

max
{
E
[
τ(2, 2τ)

]
,E′
[
τ(1, 2τ)

]}
≥ 1

2

[
E[τ(2, 2τ)] +

1

2

τ∑
s=1

exp
(
−KL

(
P⊗sµτ ,F2s

,P⊗sµ′τ ,F ′2s
))]

≥ 1

2
min
x∈[0,τ ]

[
x+

τ

2
exp

(
− 4C∆2x

)]
≥ 1

8C∆2
log
(
C∆2τ/4

)
.

The above also holds for ∆τ , ∆̃1,τ and ∆̃2,τ , so that the resulting lower bound on the number of sub-optimal pulls τsub

becomes

min

{
τ ∈ [T/2] : τ ≥ min

{
1

8C∆2
log
(
C∆2τ/4

)
,

1

8C∆̃2
1,τ

log
(
C∆̃2

1,ττ/4
)
,

1

8C∆̃2
2,τ

log
(
C∆̃2

2,ττ/4
)}}

.

The statement directly follows by combining this result with the same reasoning adopted in case 2.

A.2. Lower Bound with K = 2 and α1 = α2

A clearer interpretation of the bound contained in Theorem 1 is provided by the below corollary, where we consider the case
where ρ = 1/2 and α1 = α2.

Corollary 2. Let Pµ(τ) = Pµ1(τ) ⊗ Pµ2(τ) be defined by distributions whose expected values are µ1(τ) = α√
τ

+ β and
µ2(τ) = µ1(τ) + ∆, respectively, where ∆ > 0 is an unknown but fixed constant. Additionally, let Pµ′(τ) = Pµ′1(τ)⊗Pµ′2(τ)

be another product distribution, whose expected value components are µ′1(τ) = µ1(τ) and µ′2(τ) = µ1(τ)−∆. Then, for
any policy π, and any horizon T ≥ 1, the following holds:

max
{
E
[
RπT (µ)

]
,E
[
RπT (µ′)

]}
≥ α

(
1√

T − τsub

− 1√
T

)
,

where τsub is the smallest τ ∈ [T ] defined as

τsub = min

{
T

2
,

⌈
log T

C∆2

⌉
,

log T

Cα2
(T − τ − 1)3

}
.

These results help elucidate the novel trade-off characterizing the proposed non-stationary bandit problem. In fact, the
variable τsub, which can be interpreted as counting the number of pulls of the sub-optimal arm, is not only a function of
1/∆2, as is for the stationary case. Here, τsub also depends on the relative size of T , α and 1/∆2. The main intuition behind
this result is that, the more the samples, the better a learning policy π may understand the shape of the arms’ expected loss
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functions. In particular, at a given round, π need not realize which arm is optimal (the arms may or may not be statistically
equivalent), still π might realize that, the more it keeps exploring the higher the expected loss at τout.

The proof is a combination of the result of Theorem 1 with the following inequalities

√
x−
√
x− 1 >

1

2
√
x

√
x−
√
x− 1 <

1

2
√
x− 1

which hold for x ≥ 1.

When considering ρ = 1
2 , we adopted them to obtain a simpler form for the difference ∆̃τ = 1

(T−τ−1)ρ −
1

(T−τ)ρ . We can
write

1√
T − τ − 1

− 1√
T − τ

=

√
T − τ −

√
T − τ − 1√

T − τ
√
T − τ − 1

<
1

2
√

(T − τ − 1)3

1√
T − τ − 1

− 1√
T − τ

=

√
T − τ −

√
T − τ − 1√

T − τ
√
T − τ − 1

>
1

2
√

(T − τ)3
.

Given the above, starting from the proof of Theorem 1 and considering the case α1 = α2, simple arithmetic calculations
yield

τsub = min

{
τ ∈ [T/2] : τ ≥

⌈
log(τC∆2)

8C∆2

⌉
,

⌈
(T − τ − 1)3

2Cα2
log

(
τCα2

16(T − τ)3

)⌉}
.

Finally, the T/2 factor guarantees the feasibility in agreement with the fact that T is the maximum number of pulls.

B. Proofs for Section 5
B.1. Proof of Theorem 2

As mentioned in Section 5, the estimation of parameters αi, βi relies on Bernstein’s inequality, which we recall below.

Theorem 5. Let Xi(1), . . . , Xi(τ) be t independent random variables with range [0, U + 1] and variance V[Xi(s)]. Then
the following holds:

∣∣∣∣∣1τ
τ∑
s=1

Xi(s)−
1

τ

τ∑
s=1

E[Xi(s)]

∣∣∣∣∣ ≤ 2(U + 1) log 1/δ

3τ
+

1

τ

√√√√2 log
1

δ

τ∑
s=1

V[Xi(s)]

with probability at least 1− δ.

Since the loss random variables in this paper have support in [0, U + 1], we can use the fact that ∀ i ∈ K , τi ∈ [T ]

V[Xi(τi)] ≤ (U + 1)E[Xi(τi)] .

Starting from the estimators defined in Equation (4) and in agreement with Theorem 5 we can construct the following
confidence intervals

βi +
αi
τ

τ∑
s=1

1

sρ
− CBX̂,τ (δ) ≤ X̂i,τ ≤ βi +

αi
τ

τ∑
s=1

1

sρ
+ CBX̂,τ (δ)

βi +
αi
τ

2τ∑
s=τ+1

1

sρ
− CBX̃,τ (δ) ≤ X̃i,τ ≤ βi +

αi
τ

2τ∑
s=τ+1

1

sρ
+ CBX̃,τ (δ) ,



Best Model Identification: A Rested Bandit Formulation

where we introduced for brevity the following confidence bounds around X̂i,τ and X̃i,τ :

CBX̂,τ (δ) =

1

τ

√√√√ τ∑
s=1

U

sρ
+

√
1

τ

√2(U + 1) log
1

δ
+

2(U + 1) log 1/δ

3τ


CBX̃,τ (δ) =

1

τ

√√√√ 2τ∑
s=τ+1

U

sρ
+

√
1

τ

√2(U + 1) log
1

δ
+

2(U + 1) log 1/δ

3τ

 .
Let now ∆X̂i,τ = X̂i,τ − X̃i,τ . Since CBX̂,τ (δ) ≥ CBX̃,τ (δ) we can write

αi
τ

(
n∑
s=1

1

sρ
−

2τ∑
s=n+1

1

sρ

)
− 2CBX̂,τ (δ) ≤ ∆X̂i,τ

≤ αi
τ

(
n∑
s=1

1

sρ
−

2τ∑
s=n+1

1

sρ

)
+ 2CBX̂,τ (δ).

Solving for αi and abbreviating αi’s confidence interval [α̂i − CB(δ) , α̂i + CB(δ)] by αi ∈ α̂i ± CB(δ), we can write

αi ∈
τ∑τ

s=1
1
sρ −

∑2τ
s=τ+1

1
sρ

[
∆X̂i,τ ± 2CBX̂,τ (δ)

]
∈ τ∆X̂i,τ∑τ

s=1
1
sρ −

∑2τ
s=τ+1

1
sρ

± (2τ)ρ

(2ρ − 1)

1

τ

√√√√ τ∑
s=1

U

sρ
+

√
1

τ

 2

√
2(U + 1) log

1

δ
+

4(U + 1) log 1/δ

3τ


∈ α̂i,τ ±

5τρ
(√

U + 1
)2

ρ

[√
1

τ
log

1

δ
+

log 1/δ

τ

]
,

which corresponds to the confidence interval in Equation (5). In the second step above we have used 2
√

2/(2ρ − 1) ≥
2
√

2/(ρ log 2) ≥ 5/ρ, while in the first step we exploited the following lower bound argument:

1

τ

τ∑
s=1

( 1

sρ
− 1

(s+ τ)ρ

)
≥ 1

τ

τ∑
s=1

(
s+τ
s

)ρ − 1

(2τ)ρ

=
1

τ

τ∑
s=1

(
1 + τ/s

2τ

)ρ
− 1

τ

τ∑
s=1

1

(2τ)ρ

=
1

τ

τ∑
s=1

(
1

2τ
+

1

2s

)ρ
− 1

(2τ)ρ

≥ 1

(2τ)ρ
(2ρ − 1) .

Plugging the above confidence bounds for αi back into the first equation of the original system of inequalities, we obtain the
following result for βi:

βi ∈ X̂i,τ −
α̂i,τ
τ

τ∑
s=1

1

sρ

± 5τρ

ρ

τ1−ρ

(1− ρ)τ

√√√√ τ∑
s=1

U

sρ
+

√
1

τ

√2(U + 1) log
1

δ
+

2(U + 1) log 1/δ

3τ


∈ X̂i,τ −

α̂i,τ
τ

τ∑
s=1

1

sρ
± 5

ρ(1− ρ)

[(√
U + 1

)2
√

1

τ

√
2 log

1

δ
+

2(U + 1) log 1/δ

3τ

]
,
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which in turn corresponds to the confidence interval in Equation (6). The confidence interval associated with the expected loss
µi(τout) incurred by arm i ∈ K after τout pulls then follows from properly combining the above bounds, taking into account
(2). Finally, Theorem 2 is obtained by an union bound over i, j ∈ K, τ, τout ∈ [T ] that allows us to state that for all i, j, τ ,
and τout, µi(τout) > µj(τout) holds with probability at least 1− δ, starting from µ̂i,τ (τout) > µ̂j,τ (τout) + 2CBµ,τ (δ).

C. Proofs for Section 6
C.1. Proof of Theorem 3

Let us recall the confidence bound around µ:

CBµ,τ (δ) =
10
(√

U + 1
)2

(1− ρ)ρ

[
log(4τT 2)

τ
+

√
1

τ
log(4τT 2)

]
.

According to Algorithm 1, we have that the exploration phase terminates once the confidence interval at τout stops
overlapping with the one containing the smallest estimated loss, that is when µ̂2,n0(τout)− µ̂1,n0(τout) ≥ 2CBµ,n0(1/T ).
According to Theorem 2, this translates into the following condition on the gap parameter ∆n0

:

∆n0
− 2CBµ,n0

(1/T ) ≥ µ̂2,n0
(τout)− µ̂1,n0

(τout) ≥ 2CBµ,n0
(1/T ) .

This implies

∆n0
≥

40
(√

U + 1
)2

(1− ρ)ρ

[
log(4n0T

2)

n0
+

√
1

n0
log(4n0T 2)

]
.

Solving for n0 and lower bounding the RHS by removing term log(4n0T
2)/n0 we obtain that

n0 >
1600(

√
U + 1)4

ρ2(1− ρ)2

log(4n0T
2)

∆2
n0

.

For this being feasible we must also have n0 ≤ T
K . Finally, the optimality condition directly follows from Theorem 1.

According to the above results we have that

n0 = min

{⌈
1600(

√
U + 1)4

ρ2(1− ρ)2

log(4n0T
2)

∆2
n0

⌉
,

⌈
T

2

⌉}
.

Notice that only when the minimum corresponds to the first argument ETC can guarantee µiout(T −n0) = µ∗(T −n0) with
probability at least 1−δ. In the second case the only available guarantee is that µiout(T−n0) ≤ µ∗(T−n0)+2CBµ,n0(1/T ).

C.2. Proof of Theorem 4

We only present the analysis for the first arm σ(1) ∈ A∗1. The same line of reasoning holds for the other arms, the only
difference being that set A∗s becomes A∗s = K \ {σ(1), . . . , σ(s− 1)}.
According to the elimination condition in Line 2 of Algorithm 2, the exploration over arm σ(1) terminates as soon as the
following condition is satisfied

min
i∈K,m∈[nσ(1),T−(K−1)nσ(1)]

(
µσ(1)(m)− µi(m)

)
≥

40
(√

U + 1
)2

(1− ρ)ρ

[
log(nσ(1)K

2T 2)

nσ(1)
+

√
1

nσ(1)
log(nσ(1)K2T 2)

]
.

Similar to the proof of Theorem 3, solving the above for nσ(1) gives

nσ(1) ≥
1600(

√
U + 1)4

ρ2(1− ρ)2

log(nσ(1)k
2T 2)(

mini∈K,m∈[nσ(1),T−(K−1)nσ(1)]

(
µσ(1)(m)− µi(m)

))2 .
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The other case where arm σ(1) is (implicitly) removed corresponds to the case where REST-SUREprefers to commit to
i ∈ K. This occurs in one of the following cases:

µ∗
(
T − (K − 1) (nσ(1) + 1)

)
− µ∗

(
T − (K − 1)(nσ(1))

)
≥

20(
√
U+1)

2

(1−ρ)ρ

[
log(nσ(1)K

2T 2)

nσ(1)
+
√

1
nσ(1)

log(nσ(1)K2T 2)

]
mini∈K\{σ(1)}

(
µi(T − nσ(1))− µσ(1)(T − nσ(1))

)
≥

20(
√
U+1)

2

(1−ρ)ρ

[
log(nσ(1)K

2T 2)

nσ(1)
+
√

1
nσ(1)

log(nσ(1)K2T 2)

]
,

these inequalities corresponding to the conditions specified in Line 2 and Line 2 of Algorithm 2, respectively. Solving these
for nσ(1) yields: 

nσ(1) ≥ 1600(
√
U+1)4

ρ2(1−ρ)2
log(nσ(1)K

2T 2)(
µ∗
(
T−(K−1)(nσ(1)+1)

)
−µ∗
(
T−(K−1)(nσ(1))

))2

nσ(1) ≥ 1600(
√
U+1)4

ρ2(1−ρ)2
log(nσ(1)K

2T 2)(
mini∈K\{σ(1)}

(
µi(T−nσ(1))−µσ(1)(T−nσ(1))

))2 .

Notice that there is a substantial difference between the two conditions above. In the first case, thanks to the
constructed confidence bounds (Theorem 2) which hold with high probability, REST-SUREcan guarantee that
iout ∈ arg mini∈K µi

(
T − (K − 1)nσ(1)

)
with the same probability. Conversely, in the second case, the only available

guarantee is that µiout
(T − (K − 1)nσ(1)) ≤ mini∈K µi(T − (K − 1)nσ(1)) + 2CBµ,nσ(1)(δ). Finally, in both cases we

would have τout = T − (K − 1)nσ(1).

It is important to remark here that σ(1) is defined as σ(1) = arg minj∈A∗0 nσ(j), which is solely a function of the problem
parameters, rather than an algorithm-dependent quantity. Finally, the statement of the Theorem is then obtained by iterating
this very same reasoning to all arms σ(2), . . . , σ(K − 1), iout in turn.

C.3. Dual of Corollary 2 for policy REST-SURE

Corollary 3. Let us consider the same two-arm setting Pµ(τ) = Pµ1(τ)⊗Pµ2(τ) as in Corollary 2. Then, running Algorithm
2 with T ≥ 1 yields

RREST−SURE
T (µ) ≤ α

(
1√

T − n0

− 1√
T

)
+ Õ

( 1√
T

)
,

with probability at least 1− 1
T , where n0 is the smallest n ∈ [T ] which is greater than

n0 = min

{
cρ
∆2

, cρ
(T − n0)3

α2

}
,

cρ = 25600(
√
U + 1)4 log(4n0T

2) and Õ(·) hides log T factors.

We observe that also this result is consistent with the main analysis, since it matches the lower bound contained in Corollary
2 up to a logarithmic factor.

The proof directly follows from the one mentioned in the previous section. Following the notation adopted in the statement
of Theorem 4, we set nσ(1) = n2 for the number of pulls necessary to eliminate arm 2 ∈ K based on the condition displayed
in Line 2 of Algorithm 2. Hence, for arm 2 ∈ K, we can write

∆ ≥
40
(√

U + 1
)2

(1− ρ)ρ

[
log(4n2T

2)

n2
+

√
1

n2
log(4n2T 2)

]
.

Similar to what we did in the proof of Theorem 3, solving the above for n2 yields

n2 ≥ 25600(
√
U + 1)4 log(4n2T

2)

∆2
.
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Figure 3. Noisy versions of loss µiout(τout): loss of arm iout incurred at time τout by the four policies Random, Optimal, Rest-Sure, and
Greedy. The results are averaged over 50 repetitions.

We can now analyze the implicit elimination condition that corresponds to REST-SUREcommitting to arm iout. When this
is the case, we have

niout ≥ 25600(
√
U + 1)4 log(4nioutT

2)

α2

(
1(

T−(niout+1)
) 1

2
− 1(

T−niout
) 1

2

)2

which, similar to the derivation contained in the proof of Corollary 2, gives

niout
≥ 25600(

√
U + 1)4 (T − niout)3

α2
log(4nioutT

2) .

Combining the above results we obtain

n0 = min

{
cρ
∆2

, cρ
(T − n0)3

α2

}
,

where cρ = 25600(
√
U + 1)4 log(4n0T

2). As already discussed, if the commitment occurs due to the second condition
(Line 2 of Algorithm 2), the tighter regret bound we can obtain satisfies

µiout
(T − n0) < µ∗(T − n0) + 2CBµ,niout (δ).

Conversely, when REST-SUREcommits to iout based on the first condition (Line 2 of Algorithm 2), we have the tighter
result βiout

= β1.

Finally, the aim of the next result is to provide a regret bound without implicit conditions. Hence, similarly to what we have
done when considering the lower bound with Corollary 2, we focus now to the simpler case where ρ = 1/2 and α1 = α2.

D. Experimental Results
We now provide a simple experimental evaluation of the proposed policy carried out in a synthetic environment. We consider
K = 3 arms with parameters α1 = 10, α2 = 30, α3 = 70 and β1 = 20, β2 = 10, β3 = 5. Moreover, we set ρ = 0.8 and
T = 100. The box plot in Figure 3 gives the average over 50 different repetitions, where a different seed is used at each
repetition to generate random losses. At each round t, the losses are generated as noisy observations given by their expected
value plus Gaussian white noise with variance equal to 1.

Notice that this instance of our problem is characterized by having arms’ expected loss functions intersecting with one
another. Additionally, the loss of the first arm is almost always much worse than that of the others, thereby promoting arm
elimination. The greedy policy is inspired by the rotting-bandit literature (Levine et al., 2017; Seznec et al., 2018) and
it always pulls the arm having the smallest average loss. Observe that this policy is outperformed by the random policy
which always select the next arm independent of the collected observations. This corroborates the theoretical challenges
characterizing the our setting as compared to rotting bandit setting. Importantly, the box plots in Figure 3 also show a small
performance gap between our solution Rest-Sure and the optimal policy π∗ that always selects i∗T .



Best Model Identification: A Rested Bandit Formulation

Figure 4. Noisy versions of loss µiout(τout): Loss of arm iout incurred at time τout by the four policies Random, Optimal, Rest-Sure, and
Greedy against the total number of interactions T , averaged over 60 repetitions. Standard deviations are also depicted.

As further validation, we conducted an additional experiment with K = 10 arms and ρ = 0.8. We plot in Figure 4 the regret
of the compared policies as a function of the number of interactions T . The results are averaged over 60 repetitions. Results
of a similar flavor are observed, yet the increase of T makes the performance of Greedy and Random to get closer, and
likewise the performance of Rest-Sure and Optimal.


