
Supplementary Material

Additional results, specifically visualisations of the learned
representations and model evaluation via correlations
analysis, from the etherum data experiments are presented
in Sec. A. Sec. B contains additional results for the synthetic
flow datasets. This includes the ablation study results, flow
prediction performance results, and visualisation of the flow
distributions.

A. Additional Results: Ethereum Dataset
Similar to the transaction amount distributions, the
distribution of z parameters learned by the gated gradient
model span multiple orders of magnitude and therefore,
a power transform that allows for both zero and negative
values is useful for visualisation. We choose a modified
version of the Yeo-Johnson transform (Yeo & Johnson,
2000),

T (y) = sgn(y) log10(1 + |y|). (1)

Compared to using log10(|y|), the cost of preserving the
sign of y is the loss of values |y| / 1.

As stated in Sec. 6 in the main paper, the best performing
gated gradient model used K = 1, and consequently, the
learned representations {z(i)} and gate parameters {u(i)}
for each node can be visualised in a 2D scatter plot, see Fig.
1(a). The colour and size of each marker is determined by
the nodes total degree in the transaction graph. We note that
the nodes of the tail-end of the degree distribution tend to
have learned large values for |z(i)|, and this observation is
confirmed in Fig. 1(b) where only the parameters of nodes
with degree > 15 are visualised.

In the case of K = 1 and with the chosen sign convention,
a large negative values of z(i) indicate that the node
functions as a source of ether in the network, while a
large positive value correspond to sink behaviour. When
investigating the identity of the ten highest degree nodes
using https://etherscan.io/, we find that the four nodes with
large negative z are mining pools, while the six nodes with
large positive values are exchanges. This makes sense
since miners generate ether as payment for the the proof
of work, while exchanges accept ether in exchange for
other currencies, e.g. USD or other tokens on the ethereum
blockchain.
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(a) All 452862 node parameter pairs.
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(b) 4635 node parameter pairs for nodes with degree > 15, and
with the top ten nodes by degree labelled.

Figure 1. Parameters, z(i) and u(i), learned by the gated gradient
model and coloured by node degree. The power transform in Eq.
(1) is used for z(i) to visually capture patterns across multiple
orders of magnitude. In (b), the top ten nodes by degree are
labelled. Blue font indicates a miner and orange font an exchange.

In addition to the cumulative relative errors distributions
and amount histograms, Fig. 2 and 3 in the main paper, the
correlation between model predictions and ground truth
transactions can be used to evaluated the performance
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Table 1. Coefficients of determination of model predictions and
ground truth transactions on ethereum data test split. Values are
calculated after applying the power transform in Eq. (1). Higher
values indicate better performance is better.

COEF. OF DETERMINATION
MODEL

GATED 0.38
GRAD 0.32
F.E.+DNN2 0.24
N2V+DNN2 0.31
KUMAR ET.AL. 0.00

of a regression model. In Fig. 2, correlations between
ground truth, x-axis, and model predictions, y-axis, on the
ethereum data test split are visualised as 2D histograms.
A perfect predictor would produce a histogram tracing the
diagonals, highlighted in red. To quantify the correlation,
the coefficient of determination, defined as the square of
the correlation coefficient between two variables (Everitt
& Skrondal, 2002, p.89), can be used. Intuitively, this is
the proportion of the variation in the ground truth flow
accounted for by the model predictions. As expected, this
results in the same ordering of model performance as seen
in Fig. 1 in the main paper.

B. Additional Results: Synthetic Flow Data
The result of the ablation study for the gated gradient model
is presented in Tbl. 2. Here, the errors are defined as

error∗ = log10 median
ij

δ(ij), (2)

with δ(ij) being the relative error as defined in Eq. (9) in
the main article. The means and standard deviations are
calculated over the 10 different flows. The conclusions
are the same as in the main paper, repeated here: LSQR+
performs the best out of the three initialisation strategies.
LSQR performs similarly to LSQR+ on the multimodal
data but worse on the unimodal data, and vice versa for
the normal noise initialisation. Overfitting is the bottleneck
for the unimodal data and L1 regularisation improves the
validation errors slightly for the cora and bitcoin graph,
while having a detrimental effect in the multimodal case.
We further observe that overfitting is less of an issue for
the complete graph and that all models overfit more on the
bitcoin graph compared to cora. The reason is believed
to relate to the graph sparsity or possibly the clustering
coefficient and further analysis is left as future work.

The full results of the flow prediction performance
experiments for both validation and training splits are
presented as tables, see Tbls. 3 and ??, and as box plots, see
Figs. 5 and 6, with the error defined in (2) as performance
measure.

For the gated gradient model, we note large discrepancies
between validation and training error for the cora and
bitcoin graphs, indicating that overfitting is an issue. We
also note that the model using node2vec features performs
well on average on the complete graph, but with a large
variance. We also note a significant overfitting of the MLP
using the node2vec features on the complete graph due
to the large embedding dimension used for the node2vec
representations.

The distributions of z(i) used to generate synthetic flow
samples in the multimodal case are visualised in Fig. 3 for
the three graphs. Also visualised are the parameter values
inferred by the gated gradient model. Ellipses are used
to highlight the ground truth modes (red edges) and the
same nodes of the learned parameters (black edges). For all
three graphs we see that the gated gradient model is able
to separate the three modes, albeit along the diagonal on
which the parameters are initialised.

In Fig. 4, the distribution of flow values are visualised as
histograms. The values are collected from the validation
edges of one flow sample per graph and parameter
distribution. The synthetic ground truth flow is shown in
black, the predictions of the gated gradient model in blue
and the gradient model in orange. As explained in the main
paper, the unimodal setting aims to mimic the distribution
of real data, with a single mode spanning multiple orders
of magnitude. Conversely, three distinct peaks are observed
in the multimodal setting, corresponding to flows within
modes, flows between group 0 and group 1, and group 0
and group 2, see Fig. 3 . We see that the gradient model is
unable to capture the third peak of the flow distributions in
the multimodal case since it lacks the gate parameters.

Finally, in Fig. 7, the cumulative relative errors curves are
shown for one flow sample in each setting. The gated
gradient model generally performs better than the other
models in the multimodal case, as was also observed in the
box plots in Fig. 5, since it is able to infer the different
modes of the ground truth parameter distribution.
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Table 2. Ablation study results for the gated gradient model, showing training and validation error for each graph and flow distribution.
The errors are log10 of the median relative errors aggregated over 10 different flow samples, lower is better. Regularisation strengths were
λz = λu = 0.5 for the unimodal case and 0.05 for the multimodal case.

(a) Cora, unimodal

VAL ERROR* TRAIN ERROR*
MEAN STD MEAN STD

INIT AND REG.

NORMAL NOISE -0.04 0.00 -1.23 0.01
LSQR -0.04 0.00 -0.45 0.01
LSQR+ -0.03 0.00 -1.24 0.01
LSQR+, L1(u) -0.07 0.01 -0.95 0.01
LSQR+, L1(z) -0.05 0.00 -0.49 0.01
LSQR+, L1(u), L1(z) -0.07 0.00 -0.39 0.01

(b) Bitcoin, unimodal

VAL ERROR* TRAIN ERROR*
MEAN STD MEAN STD

INIT AND REG.

NORMAL NOISE -0.04 0.01 -1.84 0.11
LSQR -0.03 0.01 -0.96 0.05
LSQR+ -0.03 0.01 -2.02 0.13
LSQR+, L1(u) -0.06 0.01 -1.35 0.06
LSQR+, L1(z) -0.02 0.01 -1.13 0.08
LSQR+, L1(u), L1(z) -0.05 0.02 -0.90 0.05

(c) Complete graph, unimodal

VAL ERROR* TRAIN ERROR*
MEAN STD MEAN STD

INIT AND REG.

NORMAL NOISE -0.19 0.05 -0.47 0.06
LSQR -0.16 0.06 -0.22 0.04
LSQR+ -0.28 0.07 -0.52 0.13
LSQR+, L1(u) -0.27 0.12 -0.36 0.19
LSQR+, L1(z) -0.10 0.04 -0.16 0.04
LSQR+, L1(u), L1(z) -0.10 0.03 -0.13 0.03

(d) Cora, multimodal

VAL ERROR* TRAIN ERROR*
MEAN STD MEAN STD

INIT AND REG.

NORMAL NOISE -0.01 0.00 -0.30 0.01
LSQR -1.32 0.02 -1.95 0.01
LSQR+ -1.20 0.03 -2.08 0.02
LSQR+, L1(u) -1.06 0.03 -2.03 0.01
LSQR+, L1(z) -0.88 0.02 -1.39 0.01
LSQR+, L1(u), L1(z) -0.91 0.02 -1.41 0.01

(e) Bitcoin, multimodal

VAL ERROR* TRAIN ERROR*
MEAN STD MEAN STD

INIT AND REG.

NORMAL NOISE -0.01 0.00 -0.36 0.16
LSQR -0.78 0.08 -2.27 0.06
LSQR+ -0.81 0.06 -2.39 0.07
LSQR+, L1(u) -0.67 0.09 -2.22 0.04
LSQR+, L1(z) -0.56 0.07 -1.40 0.02
LSQR+, L1(u), L1(z) -0.62 0.07 -1.39 0.03

(f) Complete graph, multimodal

VAL ERROR* TRAIN ERROR*
MEAN STD MEAN STD

INIT AND REG.

NORMAL NOISE -0.24 0.48 -0.36 0.47
LSQR -1.93 0.15 -1.98 0.14
LSQR+ -2.15 0.12 -2.23 0.08
LSQR+, L1(u) -2.22 0.18 -2.30 0.14
LSQR+, L1(z) -1.34 0.10 -1.42 0.04
LSQR+, L1(u), L1(z) -1.44 0.09 -1.48 0.06
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Table 3. Mean and standard deviations of the median log10 relative error for the train and validation splits on the synthetic flow data. For
the validation split, lower values are better. The means and standard deviations are calculated over 10 generated flows for each graph.

(a) Validation split

UNIMODAL MULTIMODAL
CORA BITCOIN COMPLETE CORA BITCOIN COMPLETE

MODELS

GATED −0.07± 0.00 −0.06± 0.01 −0.28± 0.07 −1.32± 0.02 −0.81± 0.06 −2.22± 0.18
GRAD −0.07± 0.00 −0.07± 0.01 −0.14± 0.03 −0.57± 0.00 −0.56± 0.02 −0.62± 0.04
F.E.+DNN2 −0.07± 0.01 −0.04± 0.01 −0.12± 0.03 −0.63± 0.06 −0.01± 0.02 −1.20± 0.15
N2V+DNN2 −0.00± 0.00 −0.02± 0.01 −0.26± 0.05 −0.00± 0.00 −0.00± 0.00 −0.92± 0.48
KUMAR ET.AL. −0.01± 0.00 −0.00± 0.00 −0.02± 0.01 −0.00± 0.00 −0.00± 0.00 −0.00± 0.00

(b) Train split

UNIMODAL MULTIMODAL
CORA BITCOIN COMPLETE CORA BITCOIN COMPLETE

MODELS

GATED −0.39± 0.01 −1.35± 0.06 −0.52± 0.13 −1.95± 0.01 −2.39± 0.07 −2.30± 0.14
GRAD −0.24± 0.00 −0.29± 0.02 −0.15± 0.02 −0.69± 0.01 −1.05± 0.09 −0.62± 0.03
F.E.+DNN2 −0.17± 0.00 −0.12± 0.04 −0.34± 0.04 −0.88± 0.07 −0.04± 0.09 −1.28± 0.10
N2V+DNN2 −0.03± 0.04 −0.13± 0.06 −1.70± 0.20 −0.00± 0.00 −0.01± 0.01 −2.32± 1.28
KUMAR ET.AL. −0.05± 0.00 −0.08± 0.01 −0.03± 0.01 −0.01± 0.00 −0.01± 0.00 −0.00± 0.00
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(c) n2v+dnn2

Figure 2. Correlation histograms for the gated gradient model, the
gradient model and the two layer MLP model with node2vec
features. The x-axes is the ground truth transactions on the
ethereum test split and the y-axes are the predictions. Each variable
has been transformed using Eq. (1). The result of an ideal model
is highlighted by the red diagonals.
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(a) Cora graph

−75 −50 −25 0 25 50 75 100 125
z(i)1

−75

−50

−25

0

25

50

75

100

125

z(
i) 2

gt 0
gated 0
gt 1
gated 1
gt 2
gated 2

(b) Bitcoin graph

−75 −50 −25 0 25 50 75 100 125
z(i)1

−75

−50

−25

0

25

50

75

100

125

z(
i) 2

gt 0
gated 0
gt 1
gated 1
gt 2
gated 2

(c) Complete graph

Figure 3. {z(i)} samples from the distribution used to generate
synthetic flows in the multimodal case, highlighted in red, and the
values learned by the gated gradient model, highlighted in black.
The ellipses are used as a visual aid and Student-t distributions are
used for each mode, as specified in the main article.
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Figure 4. Histograms showing distributions of ground truth validation flows (absolute values) for each of the three graphs and two flow
distributions, together with the histograms of predictions for the gated gradient model and the gradient model.
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(a) Cora graph, unimodal
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(b) Cora graph, multimodal
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(c) Bitcoin graph, unimodal
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(d) Bitcoin graph, multimodal
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(e) Complete graph, unimodal
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(f) Complete graph, multimodal

Figure 5. Validation split flow prediction performance results for each of the three graphs and two flow distributions, with each box plot
created using 10 different flow samples. The errors are calculated on the validation set not seen during training.
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(a) Cora graph, unimodal
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(b) Cora graph, multimodal
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(c) Bitcoin graph, unimodal
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(d) Bitcoin graph, multimodal
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(e) Complete graph, unimodal
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Figure 6. Train split flow prediction performance results for each of the three graphs and two flow distributions, with each box plot created
using 10 different flow samples.
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(a) Cora graph, unimodal
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(b) Cora graph, multimodal
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(c) Bitcoin graph, unimodal
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(d) Bitcoin graph, multimodal
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(e) Complete graph, unimodal
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Figure 7. Cumulative relative error distributions using one flow samples for each of the three graphs and two flow distributions. The
coloured, dashed, vertical lines indicate the median log10 errors for each curve. Note the different scales on x-axes in the multimodal
cases.


