
Learning Node Representations Using Stationary Flow Prediction on Large
Payment and Cash Transaction Networks

Ciwan Ceylan * 1 2 Salla Franzén 2 Florian T. Pokorny 1

Abstract
Banks are required to analyse large transaction
datasets as a part of the fight against financial
crime. Today, this analysis is either performed
manually by domain experts or using expensive
feature engineering. Gradient flow analysis
allows for basic representation learning as node
potentials can be inferred directly from network
transaction data. However, the gradient model has
a fundamental limitation: it cannot represent all
types of of network flows. Furthermore, standard
methods for learning the gradient flow are not
appropriate for flow signals that span multiple
orders of magnitude and contain outliers, i.e.
transaction data. In this work, the gradient model
is extended to a gated version and we prove
that it, unlike the gradient model, is a universal
approximator for flows on graphs. To tackle
the mentioned challenges of transaction data,
we propose a multi-scale and outlier robust loss
function based on the Student-t log-likelihood.
Ethereum transaction data is used for evaluation
and the gradient models outperform MLP models
using hand-engineered and node2vec features
in terms of relative error. These results extend
to 60 synthetic datasets, with experiments also
showing that the gated gradient model learns
qualitative information about the underlying
synthetic generative flow distributions.

1. Introduction
A bank will typically have millions of transactions flowing
through its systems on a daily basis, and the need to further
develop tools to monitor the flows for anomalous behaviours
has become a crucial activity. It is estimated that global
money laundering activities comprise 2 - 5% of global

1RPL, EECS, KTH Royal Institute of Technology, Stockholm,
Sweden 2SEB Group, Stockholm, Sweden. Correspondence to:
Ciwan Ceylan <ciwan@kth.se>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

annual GDP (United Nations office on drugs and crime,
2011), and transaction service providers, such as SEB
Group, are required by EU and national regulations to
report suspected money-laundering activity to the public
authorities (European Parliament and Council, 2018).

A large portion of everyday transactions are payments and
cash transactions, e.g. using bank transfers, mobile services
or cryptocurrencies. These transactions can be viewed as a
dynamic flow on the edges of a network where nodes are
accounts of individuals, companies, organisations etc.

Transaction network datasets available for research,
however, are scarce due to bank laws and client
confidentiality, and machine learning research to aid anti-
money laundry (AML) efforts has consequently been
impeded. A review of the literature shows a prevalent
use of feature engineering, a process which is both
time consuming and performance restrictive. Moreover,
difficulties in obtaining labelled AML data limits application
of supervised deep learning.

In this work, we propose a method to learn representations
automatically from network transaction data using a gated
extension to the gradient flow model from the literature
(Lim, 2020). To automatically learn the representations, we
formulate a stationary flow prediction task that provides both
a well-defined optimisation objective, which we formalise
into an outlier robust, multi-scale loss function fit for the
properties of cash transaction data, and a performance
measure for objective comparison of our gated gradient
model to baselines. To adhere to confidentiality regulation,
we here focus on publicly available ethereum transactions
which exhibit similar statistical properties to commercial
cash and payment transactions (Fig. 1).

The contributions of this work are 1) a gated extension
to the gradient flow model capable of learning node
representations automatically from network flow data, 2)
a proof that this gated model is a universal approximator
for flows on graphs, 3) a robust, multi-scale loss function
to be used for training flow prediction models on large
transactions datasets and 4) empirical evidence using
ethereum transactions and synthetic data that our model
learns representation with better flow prediction properties
than available engineered and learned feature baselines.

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

The code, datasets and results are accessible via
our project page https://ciwanceylan.github.io/

gated-gradient-flow/.

2. Background
The machine learning literature concerning payment and
cash transaction data, e.g. for anti-money laundering, is
sparse and fragmented due to bank secrecy deterring from
publication of benchmark datasets and exchange of AML
models (Oeben et al., 2019). In a review on machine
learning methods for AML, (Chen et al., 2018) state that
all methods rely on feature engineering as an expensive
preprocessing step before either unsupervised or supervised
machine learning algorithms are applied, e.g. (Le Khac
& Kechadi, 2010; Bhattacharyya et al., 2011; Weber et al.,
2019). With the advent of deep learning, the computer
vision field advanced rapidly by switching from feature
engineering to feature learning (LeCun et al., 2015). Yet,
even when applying graph convolutional networks to bitcoin
transaction data in a supervised AML setting, (Weber et al.,
2019) engineer features to use as input to the GCN.

Applying deep learning to naively engineered features can
work well if provided with enough labelled data. Obtaining
labels in a financial crime prevention setting, however, is
difficult and usually only available in the form of customer
reported fraud. In an unsupervised AML setting, it is
imperative that the features capture relevant aspects of
transaction behaviours. (Oeben et al., 2019) note that only
one third of the works surveyed include network information
in their features, despite the success of network analysis
for other network types, e.g. power grids (Albert et al.,
2004), affiliation networks (Barabâsi et al., 2002) and social
networks (Lewis et al., 2008). Among the works using
network features are (Fronzetti Colladon & Remondi, 2017),
where an Italian factoring company is monitored using
network analysis, and (Savage et al., 2016), who incorporate
network features in their supervised learning pipeline for
money laundering detection.

During the last decade, cryptocurrencies, e.g. bitcoin and
ethereum (Vujičić et al., 2018), have emerged as publicly
available transaction datasets since they by necessity
maintain a public ledger of all transactions (Zheng et al.,
2017). There are several works analysing the properties
of these network datasets. (Ron & Shamir, 2013) and
(Di Francesco Maesa et al., 2018) analyse the bitcoin
transaction graph, both spending significant parts of their
papers on how to turn the bitcoin data into a graph where
nodes represent users. (Ron & Shamir, 2013) focus
on user behaviour and tracing transaction histories while
(Di Francesco Maesa et al., 2018) provide many network
statistics, e.g. clustering coefficent, average distance and
degree distributions, and analyse how these evolve over

time. In their systematic study of the ethereum transaction
graph, (Chen et al., 2020) provide a wealth of statistics
and analyses. They also note that ethereum, unlike bitcoin,
includes the concept of accounts and balances, and thus
does not require the same difficult preprocessing. Contrary
to these works, we use the ethereum transaction data to
learn node representations to be used for stationary flow
prediction and downstream AML tasks.

To verify that the ethereum data shares some statistical
properties with our internal transaction data, and to verify
that our synthetic data does not adhere to a significantly
different distribution, we visualise the transaction amount
densities for these three cases using log-log axes, and with
the currency of the internal data converted to eth, in Fig. 1.
All three distributions are qualitatively similar with a peak
around 10 – 100 eth and span several orders of magnitude,
with the ethereum data displaying the heaviest tails.

10−5 10−2 101 104 107

amount

10−4

10−2

100

D
en

si
ty

data
eth
bank trans.
synthetic

Figure 1. Log-log densities of the preprocessed ethereum
transaction amounts, internal bank transaction amounts and
synthetic data from the gated gradient model.

3. Related Works
3.1. Node Representation Learning

LINE (Tang et al., 2015), DeepWalk (Perozzi et al., 2014)
and node2vec (Grover & Leskovec, 2016) are three well-
known node representation learning methods for which
embedding similarity corresponds to structural similarity
between node neighbourhoods. LINE uses first and second
order proximities to define similarity while DeepWalk
uses random walks. Node2vec generalises DeepWalk
by introducing hyperparameters p and q to control the
behaviour of the random walk, thereby allowing different
structural similarities to be learned. Unlike our work, these
methods learn embeddings unrelated to any flow in the
network. The structural embeddings may still be used for
stationary flow prediction but the performance will be poor
if flow values are independent of structural similarities.

https://ciwanceylan.github.io/gated-gradient-flow/
https://ciwanceylan.github.io/gated-gradient-flow/

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

3.2. Link Prediction

Link prediction, filling in missing edges of a graph, is a
classic task in the graph mining literature (Newman, 2018,
p. 298), and it has been demonstrated that it can be used to
learn node representations. (Sarkar et al., 2011) formalise
link prediction as a problem of estimating distances between
nodes embedded in a latent space and (Rendsburg et al.,
2020) propose a graph generator and link predictor via
asymmetric factorisation of the adjacency matrix, essentially
also learning latent node embeddings. This is similar to our
work in the sense that we use stationary flow prediction to
learn node representations. However, the approaches differ
in both the task formulation, as we assume knowledge of
all edges in the graph, and the models used, (Sarkar et al.,
2011) use distance models and (Rendsburg et al., 2020)
matrix factorisation, while we propose a gradient model.

SEAL (Zhang & Chen, 2018) uses a graph neural network
to learn heuristics for link prediction and defines the current
state-of-the-art performance for the task. While SEAL can
use node representations as input, it does not learn them
from data.

3.3. Weight Prediction

Weight prediction is the task of predicting real valued
weights on the edges of a network and thus similar to
stationary flow prediction as defined in Sec. 4. However, we
would like to highlight one conceptual and one practical
difference between prediction of network weights and
network flow. Conceptually, edge weights indicate concepts
like connection strengths, trust and opinion. Flow and
transactions, on the other hand, indicate that something
finite, e.g. currency, has been transferred from one node to
another. Multiple transactions over an edge may result in
zero net flow, which should not imply connection strength
zero. Practically, weights are assumed to be normalisable
to a bounded range, e.g. [−1, 1], (Kumar et al., 2016; Zhu
et al., 2016; Hou & Holder, 2018; Agrawal & de Alfaro,
2019). Normalising transactions which span multiple orders
of magnitude and contain outliers to a compact interval is
non-trivial, e.g. the test data may contain transactions much
larger than the largest transaction in the training data. For
these reasons, we consider the stationary flow prediction
task to be different from the weight prediction task.

(Kumar et al., 2016) propose to use a fairness and goodness
score calculated for each node in the network. These
scores are multiplied to compute edge weights which
are interpreted as trust. (Zhu et al., 2016) instead use
neighbourhood set intersections for computing weights
and (Agrawal & de Alfaro, 2019) use path aggregations
combined with a neural network to perform joint weight
and link prediction. The model proposed by (Hou &
Holder, 2018) is most similar to our model in the sense

that it also learns node embeddings to predict edge weights.
However, their embeddings are passed through a two layer
MLP, unlike our model which is derived from gradient flow
models, see sections 4.1 and 5.

4. Stationary Flow Prediction
Automatic representation learning requires a loss function
to be minimised, commonly based on a specific task, e.g.
classification loss for supervised learning (LeCun et al.,
2015) or reconstruction loss for auto-encoders (Hinton &
Salakhutdinov, 2006) and k-means (Murphy, 2012, p.356).
Similarly, we define the stationary flow prediction task for
network flow data.

Consider an undirected graph G = (V,E) without self-
loops, vertex set V , (n = |V |) and edge set E, (m = |E|).
Without loss of generality, we impose a canonical direction
on the edges, i.e. each edge is directed from lower to higher
indexed nodes, as is standard in flow analysis on networks
(Lim, 2020). A flow on the network can then be defined
as a vector of values y ∈ Rm where each component y(ij)

expresses the magnitude and direction of a flow on edge ij
relative to the canonical direction. Furthermore, we also
assume thatG is connected since each connected component
can be treated separately.

The stationary flow prediction task, which we refer to as
flow prediction here for brevity, is defined as a missing value
inference task. It is assumed that an incomplete flow ytrain is
observed, only containing values for edges ij ∈ Etrain ⊂ E
and the task is to predict the missing values on edgesEtest =
E \ Etrain. Since our aim is to learn node representations,
we further restrict this task by only considering models
on the form f (ij) = f(x(i),x(j)), where x(i) is a vector
representation of node i. This task is stationary since the
time component of transaction data is ignored to simplify
the problem.

We note that stationary flow prediction is not only a tool for
learning node representations, but has potential application
in its own right, e.g. filling in missing data or using
deviations from predictions as an anomaly score.

4.1. Gradient Model

Note that any flow can be decomposed into a sum of
a gradient flow and a divergence-free (i.e. in ker(div))
flow, see (Lim, 2020). By defining the Edge-Laplacian
∆1 as in (Lim, 2020), note that this divergence-free part
can furthermore be decomposed (by Equation 3.5, (Lim,
2020)) into a harmonic part and a part in the image of curl∗

by the Helmholtz decomposition. Of importance for our
application is that any flow on a graph can be expressed as
y = ygrad +ydiv, the two terms being orthogonal and ygrad
given by an element in the image of the gradient function,

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

defined as the natural extension of the gradient on a discrete
domain to the edges of a graph,

(grad z)(ij) = y
(ij)
grad = z(j) − z(i) for ij ∈ E. (1)

Here, the z(i) are real scalars called node potentials. In
the context of flow prediction, we view them as a 1D node
representation for a gradient model formalised as

f
(ij)
grad = z(j) − z(i). (2)

A consequence of ygrad and ydiv being orthogonal is that the
node potentials can always be inferred from an observed
flow, e.g. by minimising a squared error loss

∑
i,j(y

(ij)
train −

f
(ij)
grad)2 using LSQR (Paige & Saunders, 1982; Virtanen

et al., 2020). Note that the gradient flow model cannot
capture the divergence-free part of the flow and this limits
its application to flow data with significant divergence-free
component, e.g. the used ethereum data with a divergence-
free component norm of ∼ 42M and a gradient component
norm of ∼ 6M. Moreover, this model can still overfit to
training data if not regularised, like most machine learning
models. In Sec. 7 & 8, this model is denoted as ‘grad’.

4.2. Baseline Models

In addition to comparing our gated gradient model (Sec. 5)
to the simpler gradient model described in Sec. 4.1, we
include models using engineered features and node2vec
features as baselines. As feature engineering, we compute
the average sign of incoming/outgoing flows, the average
value, the standard deviation, the sum of the absolute values
of the flows, the mean of the absolute values and the node
degree, making six features in total, d = 6. For this, we do
not use the canonical orientation of the edges, but rather the
convention that incoming flow is positive and outgoing flow
is negative for each node. For training and prediction, the
sign of the y(ij) of course adhere to the canonical orientation
of the edges.

The node2vec features are learned using the implementation
in PYTORCH GEOMETRIC (Fey & Lenssen, 2019) and we
use the hyperparameters d = 128, r = 10, l = 80 and k =
10 as proposed by (Grover & Leskovec, 2016). Moreover,
we use p = 1, and for the ethereum data we tune q using
values {0.5, 1, 2} while q = 1 for the synthetic flows. For
flow prediction using either of these feature sets, we use a
two layer deep MLP, similar to (Hou & Holder, 2018). The
MLP received the feature vectors x(i) and x(j) to predict
the flow on edge ij, and each layer has 2d units. This model
will be referred to as ’dnn2’ combined with either ’feat.
engi.’ or ’f.e.’ for the engineered features or ’n2v’ for the
node2vec embeddings.

The fairness-goodness weight prediction model by (Kumar
et al., 2016) is also included as a baseline since an easy-to-

adapt implementation was readily available. This method
requires each flow value to be in the range [−1, 1]. Since the
largest flow value is many orders of magnitude larger than
the median flow value, we apply a modified version of the
Yeo-Johnson power transform (Yeo & Johnson, 2000) before
normalising the flow values, T (y) = sgn(y) log10(1+a|y|),
where a ∈ {1, 10, 100, 1000} is a hyperparameter. This
model will be referred to as ’Kumar et. al.’ in the results.

5. Gated Gradient Model
The representation capacity of the gradient flow model in
Eq. (2) is restricted by the scalar valued node potentials
since the gradient flow on one edge ij cannot be altered
without affecting the flow on other neighbours of i or j.
To address this, we propose K potentials on each vertex,
denoted by the vectors z(i) ∈ RK . For this to work, we also
introduce a gate function, σ̄ : RK ×RK 7→ [0, 1]K , which
can modulate the flow for each edge and component of z.
This gated gradient flow model is expressed as

f (ij) = σ̄(u(i),u(j))T
(
z(j) − z(i)

)
. (3)

The following theorem helps us establish that the gated
gradient model can approximate any network flow, unlike
the gradient model.

Theorem 1. Let G = (V,E) be any graph following the
specifications in Sec. 4, y an edge flow vector with ymax =
‖y ‖∞ and let σ(u(i),u(j)) : RK ×RK 7→ [0, 1]K denote
a function in a function class containing elements able to
map some set of parameter pairs (u(i),u(j)) for i, j ∈
{1, . . . , n} to one-hot vectors 1kij with bounded error for
any fixed choice of kij ∈ {1, . . . ,K} for i, j ∈ {1, . . . , n},
i.e. σ(u(i),u(j)) = 1kij

+ ε where ε is an error vector
with ‖ε‖∞ < ε. Then, for K = 2∆(G), σ can be chosen
in this function class together with parameters z(i) ∈ RK ,
such that the resulting gated flow model, Eq. (3), is able to
approximate the flow y such that

‖y− f ‖∞ ≤ 4ε∆(G)ymax,

where ∆(G) is the maximum degree of the graph.

Proof. We provide a proof by construction. To assign flow
values to each edge, iterate over the nodes in order by node
index. Let C be the set of completed nodes, meaning that
flow values have been assigned to each edge incident to
these nodes. Furthermore, let Q = V \ C.

Now consider assigning flow values to the node vi. If vi
already has flow values assigned to each edge, move vi to
C and continue with vi+1. Otherwise, vi has c neighbours
in C and q neighbours in Q, and thus c completed edges
and q edges without assigned flow values. Furthermore, this
means that c components of z(i) will have assigned values

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

and thus K − c = 2∆(G)− c components are unassigned.
Let Ji be the set of component indices with unassigned
values of node vi. Assign 0 to these K − c components of
z(i).

Each of the neighbouring nodes vj ∈ Q will have at least
K − (∆(G)− 1) = ∆(G) + 1 unassigned components of
z(j). For each vj , assign z(j)l = y(ij) for a component index
l ∈ Ji ∩ Jj , remove l from Ji and Jj , and let σ̄(i, j) =
σ̄(j, i) approximate 1l. Note that c + q ≤ ∆(G) and thus
|Ji| ≥ ∆(G). And since |Jj | ≥ ∆(G)+1 andK = 2∆(G),
such an index l will be available for every node vj by the
pigeonhole principle. Finally, move vi to C.

To obtain the error bound, note that the flow over each edge
can be expressed as

f (ij) = (1lij + ε)T (z(j) − z(i)) = y(ij) + εT (z(j) − z(i)).

Since z(i)k ∈ [−ymax, ymax] and εk ∈ [−ε, ε] we have

|y(ij) − f (ij)| = |εT (z(j) − z(i))| ≤ 2εKymax.

Note that if σ̄ is a universal approximator with range (0, 1),
e.g. a sufficiently large deep neural network with a sigmoid
function output layer, Theorem 1 implies that the resulting
gated gradient model is a universal approximator for flows
on graphs. The vectors {u(i)}i could either consist of vertex
data or, like {z(i)}i, be parameters which are learned via
optimisation. There is no additional vertex data available in
our case, so we let the {u(i)}i be parameters. In practice,
overfitting is a larger issue than model bias for transaction
data, so we choose a simple form for σ̄:

[σ̄(u(i),u(j))]k = σ(u
(i)
k , u

(j)
k) =

1

1 + e−(u
(i)
k +u

(j)
k)

. (4)

This choice has two motivations: interpretability (see Sec.
5.1) and numerical practicality, namely that its gradients
are non-zero at the origin. Also note that the gated model,
Eq. (3), reduces to the gradient flow model, Eq. (2), if u(i)

is a constant. In the future, other forms for σ̄ should be
explored.

The space complexity of the gated flow model is O(Kn),
where K is in practice typically a small fixed constant, K ≤
3 in our case. The model is hence linear and very space
efficient for large graphs.

5.1. Model Interpretation

Transactions are governed by human incentive which does
not closely follow any known physical law. Nevertheless,
the price dynamics on trade networks can be modelled
by combining supply-demand dynamics with game theory

(Kakade et al., 2004; 2005), and likewise, stability of
commodity transport networks can be analysed using current
laws under an optimal supply-demand network assumption
(Rubido et al., 2014). This motivates us to also interpret the
gated gradient model from a supply-demand perspective, in
which the z(i) represent supply/demand indicators for K
different goods and services, with higher values indicating
larger supply and low values lack of supply or demand. Note
that the model defines positive flow as directed from low
supply to high supply since the observed data tends to be
the payment for a product or service.

The [σ̄(u(i),u(j))]k are then a form of impedance for
transactions of the kth product/service along edge ij. With
our choice of σ̄ in Eq. (4), the parameters u(i)k indicate vertex
i’s willingness to trade in product k, with negative values
indicating reluctance and positive values eagerness.

6. Learning with Multiscale Transaction Data
6.1. Loss Function

Observe in Fig. 1 that the densities of transaction amounts
span multiple orders of magnitude and appear to be
relatively heavy-tailed. To better account for this situation,
we propose to utilize the following custom relative error
ε : R× R→ R:

ε(y, f) = (y − f)2/|y|, ∂ε

∂f
(y, f) = 2(f − y)/|y|. (5)

This error has the, we believe, desirable property that its
partial derivative above is invariant under a common scaling
of the magnitude of y and f by a constant α > 0 while
ε(y, f) itself still decreases with decreasing overall scaling
factor α > 0, as is the case with the standard squared
error. We believe this to be beneficial to mitigate the
otherwise dramatic variations in gradient norms for the
classical squared error over the multiple magnitudes of
scale observed in the input data. To avoid division by zero
and numerical instabilities, we furthermore truncate the
denominator of ε at a threshold specified per dataset which
has to be chosen in relation to the desired precision.

To address the heavy tails, we propose using a Student-t
log-likelihood (Lange et al., 1989) of the specific form

`(y, f) =
1 + ν

2m

∑
i,j∈E,
i<j

log
(

1 + ε(y(ij), f (ij))/ν
)
, (6)

where ν is a parameter (also referred to as dof/degree of
freedom in Sec. 8) for the Student-t distribution and the
denominator of ε is truncated at a constant τ > 0 as
mentioned above. The probabilistic motivation for this
loss is the assumption that our errors are well modelled
as a Student-t distribution scaled by the square-root of the
absolute value of the target variables.

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

The choice of ν allows for controlling the growth of
log terms in the sum above. Based on our preliminary
experiments, setting ν to the median of |y(ij)train| provided a
balance that did not over-emphasize the largest ε values
occurring in the loss function.

As mentioned in Sec. 5, overfitting is a challenge to
generalisation in the flow prediction task. To address this,
we introduced additional regularisation using the L1-loss
on the model parameter. Compared to the L2-loss, the L1
loss assigns lower penalty to large parameter values. This
is especially important for the z(i) parameters since they
need to be large to successfully reproduce large flows. The
complete loss function, where λz and λu are regularisation
strength hyperparameters, is

L(z,u) = `(y, f(z,u)) +
λz
nK
‖ z ‖1 +

λu
nK
‖u ‖1. (7)

6.2. Optimisation

The gated flow model is implemented in PYTORCH (Paszke
et al., 2019) and the loss function is minimised using
the library’s implementation of AdamW (Kingma & Ba,
2014; Loshchilov & Hutter, 2017), using learning rate
0.01, weight decay 0.01 and amsgrad (Reddi et al., 2019).
Full batches are used and the models are trained until
convergence, defined by a relative tolerance threshold on the
training loss set to 10−5. However, preliminary experiments
indicated that the loss function has stationary points not
necessarily close to the global minimum and the optimiser
tended to get stuck with both high training and validation
losses. To mitigate this, we investigate different initialisation
strategies since these have proved important for non-convex
optimisation of neural networks (Sutskever et al., 2013).

The poor performance observed when using noise from
a normal distribution to initialise z led to the conclusion
that the shape of the loss function makes it difficult for
the z to move away from the origin. To alleviate this, we
took advantage of the efficiency in inferring z(i) for the
gradient model, Eq. (2), when minimising a MSE loss using
LSQR (Paige & Saunders, 1982; Virtanen et al., 2020),
and subsequently set z(i)k = 2z(i) for each k for the gated
model. The factor 2 compensates for the factor 0.5 coming
from σ(u

(i)
k , u

(j)
k) as u is initialised at the origin. This

strategy, however, has the issue that the model is initialised
in a subspace of the parameter space, and by looking at
the gradients of gated model (Eq. (3)) one sees that it is
impossible to escape this subspace. We address this by
adding noise to the z after first initialising using LSQR,
where the noise is scaled by the magnitude of each z(i)k . We
call this third initialisation strategy LSQR+ and the three
strategies are compared using synthetic data in Sec. 8.

6.3. Preprocessing and Flow Prediction Evaluation

The transaction graphs are preprocessed by first extracting
the largest connected component and then trimming the
graph, meaning that all nodes of degree one are iteratively
removed. This is done since it is not possible to learn
to predict the flow to/from a node of degree one without
additional vertex data. The edges directed from lower
to higher indexed nodes, and the sign of flow values are
adjusted accordingly. The net flow is calculated in the case
of transactions going in opposite directions.

To create training, validation and test splits of the flow, a
random spanning tree of the graph is created and all edges
on the tree are put into the training set. The spanning tree
is necessary to ensure that the different splits belong to the
same connected graph. Additional edges are then added to
the training set until it reaches the desired size, e.g. 80% of
all edges, and the remaining edges are split into validation
and test sets. The graph preprocessing is done using GRAPH-
TOOL (Peixoto, 2014) and the splits using SCIPY (Virtanen
et al., 2020).

To evaluate the flow prediction performance across multiple
scales, the relative error

δ(ij) = |y(ij) − f (ij)|10−6/|y(ij)|10−6 (8)

For detailed analysis of the prediction performance, the
cumulative distributions of δ(ij) across all test edges are
studied, see Figs. 2 and 5. Note that δ(ij) = 0 can be
achieved by trivially predicting f (ij) = 0. The numerator
and denominator in Eq. (8) are truncated at 1e−6 to avoid
complications with division by zero. To summerise the error
into a single value, we use the median absolute error.

7. Experiments on Ethereum Transactions
Google’s BigQuery was used to extract all ethereum
transactions between 2018-06-01 and 2020-12-01 with a
value greater than zero (in particular contract transactions
without additional ether were excluded). The transactions
were grouped by directed edges and filtered by removing
edges with fewer than 10 transactions over the time period.
The time period was chosen based on the relative price
stability of around 100$/eth to 500$/eth. All transactions
were converted from wei to ether. The resulting transaction
graph contains 452862 vertices and 1107858 edges, and the
distribution of amounts can be seen in Fig. 1.

The edges are split into a train set (70%) for optimisation,
a validation set (15%) for hyperparameter selection and
a test set (15%) for evaluation. LSQR+ initialisation is
used for the gated and grad models and we perform a grid
search over the regularisation hyperparameters, λu and λz .
For the gated model we additionally include the dimension
K in the search. We use dimension {1, 2, 3} for K and

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

10−1 100 101

0

20

40

60

80

100

t

%
re

l.
er

ro
r<

t

gated
grad
f.e.+dnn2
n2v+dnn2
Kumar et.al.
zeros
grad (MSE)

Figure 2. Cumulative relative error distributions for the ethereum
data. The trivial prediction of zero for all edges is shown as a
dashed black curve. The larger the area under the curve to the left
of t = 1 the better.

values {3., 1, 0.3, 0.1} for λu and λz , resulting in a grid
search over 48 models. Each model takes around 30 min
to train on a consumer grade GPU (e.g. Nvidia RTX 2070).
Hyperparameter search is also performed for the baseline
models, using same regularisation strengths for the ’dnn2’
models, including q in the search for the node2vec feature
and tuning a for the ’Kumar et.al.’ model.

For the gated model, λu = λz = 0.3 andK = 1 perform best
with the model overfitting for higher dimensions and lower
regularisation strengths. For the gradient model λz = 0.3
is best for the ’dnn2’ models with q = 0.5 for ’n2v’. For
’Kumar et. al.’, a = 1000 is best.

In Fig. 2, the cumulative distributions of the relative errors
on the test split are shown for the different models. Our
gated model performs best, in the sense that it has the largest
mass of errors smaller than one, followed by the gradient
flow model and the ’dnn2’ baseline using node2vec features.
The ’dnn2’ model using the engineered features and the
weight prediction model by (Kumar et al., 2016) lie close to
the trivial performance indicated by the zeros curve. This is
also apparent in Table 1 where the median absolute errors
are shown. Also included is the gradient model when trained
with mean square error loss instead of our robust multi-scale
loss. Its performance in terms of relative error and median
absolute error is very poor since it overfits to the few very
large transactions.

The transaction amount densities for the test data and
the models’ predictions provide further insight into their
behaviour, see Fig. 3. Again, we see how the gradient model
trained using a squared loss is biased towards large amounts.
Conversely, both models trained using the multi-scale loss

10−5 10−3 10−1 101 103 105
0

0.5

1

1.5

2

·104

amount

C
ou

nt

eth
gated
grad
grad (MSE)

Figure 3. The histograms of ethereum transaction amounts and
predictions by the gradient models on the test set.

with L1 regularisation are biased towards smaller amounts
and fail to capture the right hand tail of the distribution.

8. Experiments on Synthetic Flow Data
As discussed in Sec. 2, publicly available transaction
datasets outside of cryptocurrencies are rare and machine
learning research in AML will likely need to rely on
synthesised transaction data to a large extent (Oeben et al.,
2019). Synthetic datasets also come with the advantage
that the ground truth about the data generation process is
known. We choose to use 60 different synthetic transaction
network datasets to further investigate the properties of the
gradient models and baselines. The datasets are generated
using three different graphs, and two different parameter
distributions for generating flows. For each of these six
combinations, we sample 10 sets of flows.

The aim of these experiments is to verify that the flow
prediction results for the ethereum data extend to other
graphs, flow distributions and flow samples, and, since we
have access to the ground truth flow generative distribution,
to investigate if the gated flow model is able to learn
qualitative information about this distribution. Additionally,
we perform an ablation study to see how L1 regularisation
and the initialisation strategies discussed in Sec. 6.2 affect
training and validation errors.

Table 1. Median absolute errors on reserved test transactions for
the ethereum dataset. ’Zeros’ is the trivial model of prediction zero
for each edge.

GATED GRAD F.E.+ N2V+ KUMAR ZEROS GRAD
DNN2 DNN2 ET. AL. (MSE)

9.34 10.39 13.10 11.25 14.19 14.61 397

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

Table 2. Mean and standard deviations of the log10 median relative error for the validation splits on the synthetic flow data. Lower values
are better. The means and standard deviations are calculated over 10 generated flows for each graph.

UNIMODAL MULTIMODAL
CORA BITCOIN COMPLETE CORA BITCOIN COMPLETE

MODELS

GATED −0.07± 0.00 −0.06± 0.01 −0.28± 0.07 −1.32± 0.02 −0.81± 0.06 −2.22± 0.18
GRAD −0.07± 0.00 −0.07± 0.01 −0.14± 0.03 −0.57± 0.00 −0.56± 0.02 −0.62± 0.04
F.E.+DNN2 −0.07± 0.01 −0.04± 0.01 −0.12± 0.03 −0.63± 0.06 −0.01± 0.02 −1.20± 0.15
N2V+DNN2 −0.00± 0.00 −0.02± 0.01 −0.26± 0.05 −0.00± 0.00 −0.00± 0.00 −0.92± 0.48
KUMAR ET.AL. −0.01± 0.00 −0.00± 0.00 −0.02± 0.01 −0.00± 0.00 −0.00± 0.00 −0.00± 0.00

The three graphs used are the cora citation graph (McCallum
et al., 2000) which is commonly used in graph-machine
learning research (Kipf & Welling, 2016; Rendsburg et al.,
2020), a version of the bitcoin transaction graph (Fire &
Guestrin, 2017) (which only contains the links and no actual
transaction amounts), and the complete graph on 40 vertices
(780 edges). After the preprocessing steps, the cora graph
contains 19727 nodes and 85718 edges and the bitcoin graph
12805 nodes and 36327 edges.

To generate flows, we sample values for z(i) and u(i) and
then run a forward pass through the gated flow model, Eq.
(3). We consider a unimodal and a multimodal setting for the
parameter distributions. The unimodal setting is designed
to mimic the transaction amount densities observed for real
data, see Fig. 1 for a comparison. This is achieved by using
student-t distributions with mean 0, scale 100 and dof 2 for
the z(i), and mean -2, scale 1 and dof 4 for u(i), and K = 3.
In the multimodal setting, mixture of student-t distributions
are used for both z and u, with three components and
dof 2 for each. For z(i), the components are centred at
(100, 100), (0, 0), (0,−50), and for u(i) they are centred at
(4, 4), (0,−5), (−5, 1), and scaled by 0.01. We use K = 2
and an example of sampled z(i) are shown in Fig. 4. This
setup results in a flow distribution with three sharp peaks:
one large peak close to zero from small transactions within
each component, one for transactions between component 0
and 1 and one for transactions between component 0 and 2.
A visualisation is available in the supplementary material.

For each of the six setups, 10 different ground truth
parameter sets are sampled and the 10 resulting flows are
split into 80-20 training/validation sets. The experiments are
performed jointly with the ablation study which consists of
six steps. First, all models are trained without regularisation
and noise from a normal distribution is used as initialisation
for the gradient models. Then the gradient models are
retained using LSQR and LSQR+. Using LSQR+ for the
following steps, L1 regularisation is added to u(i) only,
then to z(i) only, and finally to both parameter sets and the
weights of the baseline models. Regularisation strengths
λz = λu = 0.5 were used in the unimodal case and 0.05 in

Table 3. Clustering agreement scores averaged over 10 flow
samples. K-means clustering is applied to the ground truth and
model representations separately and the score is the cluster
assignment overlap. Scores lie in [0, 1], higher is better.

CORA BITCOIN COMPLETE
MODEL

GATED 0.92± 0.00 0.90± 0.03 0.95± 0.10
GRAD 0.69± 0.00 0.71± 0.04 0.57± 0.05
FEAT. ENGI. 0.68± 0.00 0.62± 0.01 1.00± 0.00
NODE2VEC 0.34± 0.00 0.34± 0.00 0.41± 0.04

the multimodal one. The training time ranges from 1-100s
per ablation step, depending on the data and model, on a
customer grade CPU and GPU.

Table 2 shows the flow prediction performance results
on the validation sets in terms of means with standard
deviations over the 10 different flows. The performance
is measured using the log10 median relative error, i.e.
log10 medianij δ

(ij). These errors are visualised using
vertical, dashed, coloured lines in Fig. 5 for one flow sample.
In the multimodal setting, the gated flow model outperforms
the other models by a wide margin and achieves low relative
errors on average for all three graphs. The unimodal setting
appears to be more difficult with models generally having
higher errors. Looking at the training set errors, we observe
larger discrepancies between the validation set errors in
the unimodal setting, indicating that overfitting is a partial
reason to the larger errors. We hypothesise that the discrete
nature of the multimodal setting reduces the number of
symmetries and local minima of the training loss surface,
resulting in better generalisation. We further observe that
overfitting is less of an issue for the complete graph and that
all models overfit more on the bitcoin graph compared to
cora. The reason is believed to relate to the graph sparsity
or possibly the clustering coefficient. Further analysis is left
as future work.

To determine if the gated gradient model can learn
qualitative information about the multimodal distribution,
we first look at one example visualised in Fig. 4. The figure

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

−75 −50 −25 0 25 50 75 100 125
z(i)1

−75

−50

−25

0

25

50

75

100

125

z(
i) 2

gt 0
gated 0
gt 1
gated 1
gt 2
gated 2

Figure 4. One sample set of {z(i)}i from the multimodal ground
truth distribution (red ellipses) for generating synthetic flow, and
the learned z(i) parameters (black ellipses) on the cora graph.

shows the ground truth and learned z(i) parameters for the
same multimodal flow sample underlying the error curves
in Fig. 5. The different components are highlighted using
ellipses with red border for the ground truth components
and black border for the learned representations. We
see that the gated gradient model is able to separate the
three components albeit along the diagonal on which the
parameters are initialised. To quantify the performance
across all the flow samples, we calculate a clustering
agreement score, see Table 3. This score is calculated by
running k-means clustering separately on the ground truth
and learned z(i) and computing the fraction of nodes which
get assigned to the same cluster. The gated model receives
the highest score on the cora and bitcoin graphs and is only
marginally worse than the hand-engineered features which
receive a perfect score on the complete graph.

The ablation study showed that LSQR+ performs the best
out of the three initialisation strategies. LSQR performs
similarly to LSQR+ on the multimodal data, but worse on
the unimodal data, and vice versa for the normal noise
initialisation. Since overfitting is the bottleneck for the
unimodal data, L1 regularisation improves the validation
errors slightly for the cora and bitcoin graph, while having
a detrimental effect in the multimodal case. The complete
results are displayed in the supplementary materials.

9. Conclusions
We have extended the gradient flow model to a gated version
capable of learning node representations automatically from
network flow data, not requiring hand-engineered features.
We have shown that our gated extension can be interpreted
as a universal approximator for flows on graphs, unlike
the gradient flow model. Furthermore, we propose a

10−2 10−1 100 101

0

20

40

60

80

100

t

%
re

l.
er

ro
r<

t

gated
grad
f.e.+dnn2
n2v+dnn2
Kumar et.al.
zeros

Figure 5. Cumulative relative error distributions over the validation
set of one synthetic flow sample generated from the mulitmodal
distribution on the cora graph. Median relative errors are marked
by dashed, coloured, vertical lines.

robust, multi-scale loss function to be used for training flow
prediction models on large cash transactions datasets, which
both span multiple order of magnitude and contain outliers.
When applied to ethereum transaction data, our gated model
outperforms both the gradient model and neural networks
using engineered features. These results hold when the
models are trained on 60 synthetic network flow datasets.

For the synthetic data, we observe that the learned node
representations capture some qualitative properties of the
flow generating distributions, e.g. the different modes of the
multimodal case. This is encouraging for the prospects of
using the learned representations for downstream tasks, e.g.
anomaly detection for financial crime prevention.

The main bottleneck for flow prediction generalisation
appears to be overfitting and experiments suggest both the
flow distribution and graph topology affect the overfitting
severity. We hypothesise that the risk of overfitting
generally increases for sparse graphs with lower global
clustering coefficient. Applying L1 regularisation does
reduce the overfitting, but we assert that there exist less
invasive regularisation methods which would allow to train
larger gated gradient flow models, cf. dropout for DNNs
(Srivastava et al., 2014).

Other potential areas for future research are unification of
link and stationary flow prediction into a single model, and
to extend the gated flow model to a full generative model.

Acknowledgements
This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP)
funded by the Knut and Alice Wallenberg Foundation.

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

References
Agrawal, R. and de Alfaro, L. Learning edge properties in

graphs from path aggregations. In The World Wide Web
Conference, pp. 15–25, 2019.

Albert, R., Albert, I., and Nakarado, G. L. Structural
vulnerability of the north american power grid. Physical
review E, 69(2):025103, 2004.

Barabâsi, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert,
A., and Vicsek, T. Evolution of the social network of
scientific collaborations. Physica A: Statistical mechanics
and its applications, 311(3-4):590–614, 2002.

Bhattacharyya, S., Jha, S., Tharakunnel, K., and Westland,
J. C. Data mining for credit card fraud: A comparative
study. Decision Support Systems, 50(3):602–613, 2011.
ISSN 0167-9236.

Chen, T., Li, Z., Zhu, Y., Chen, J., Luo, X., Lui, J. C.-S., Lin,
X., and Zhang, X. Understanding Ethereum via Graph
Analysis. ACM Transactions on Internet Technology, 20
(2):18:1–18:32, 2020.

Chen, Z., Teoh, E. N., Nazir, A., Karuppiah, E. K., Lam,
K. S., et al. Machine learning techniques for anti-money
laundering (aml) solutions in suspicious transaction
detection: a review. Knowledge and Information Systems,
57(2):245–285, 2018.

Di Francesco Maesa, D., Marino, A., and Ricci, L. Data-
driven analysis of Bitcoin properties: Exploiting the
users graph. International Journal of Data Science and
Analytics, 6(1):63–80, 2018.

European Parliament and Council. Directive (EU) 2018/843
of the European Parliament and of the Council of
30 May 2018 amending Directive (EU) 2015/849
on the prevention of the use of the financial system
for the purposes of money laundering or terrorist
financing, and amending Directives 2009/138/EC and
2013/36/EU (Text with EEA relevance), 2018. URL
http://data.europa.eu/eli/dir/2018/
843/oj/eng. http://data.europa.eu/eli/
dir/2018/843/oj/eng.

Fey, M. and Lenssen, J. E. Fast graph representation
learning with PyTorch Geometric. In ICLR Workshop
on Representation Learning on Graphs and Manifolds,
2019.

Fire, M. and Guestrin, C. The rise and fall of network stars.
arXiv preprint arXiv:1706.06690, 2017.

Fronzetti Colladon, A. and Remondi, E. Using social
network analysis to prevent money laundering. Expert
Systems with Applications, 67:49 – 58, 2017.

Grover, A. and Leskovec, J. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 855–864, 2016.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

Hou, Y. and Holder, L. B. Link weight prediction with node
embeddings. Submitted for review, ICLR18, 2018.

Kakade, S. M., Kearns, M., and Ortiz, L. E.
Graphical economics. In International Conference on
Computational Learning Theory, pp. 17–32. Springer,
2004.

Kakade, S. M., Kearns, M., Ortiz, L. E., Pemantle, R., and
Suri, S. Economic properties of social networks. In Saul,
L., Weiss, Y., and Bottou, L. (eds.), Advances in Neural
Information Processing Systems, volume 17, pp. 633–640.
MIT Press, 2005.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Kumar, S., Spezzano, F., Subrahmanian, V. S., and
Faloutsos, C. Edge weight prediction in weighted signed
networks. In 2016 IEEE 16th International Conference
on Data Mining (ICDM), pp. 221–230, 2016.

Lange, K. L., Little, R. J. A., and Taylor, J. M. G. Robust
statistical modeling using the t distribution. Journal of
the American Statistical Association, 84(408):881–896,
1989. ISSN 01621459.

Le Khac, N. A. and Kechadi, M.-T. Application of data
mining for anti-money laundering detection: A case study.
In 2010 IEEE International Conference on Data Mining
Workshops, pp. 577–584, 2010.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Lewis, K., Kaufman, J., Gonzalez, M., Wimmer, A., and
Christakis, N. Tastes, ties, and time: A new social
network dataset using facebook.com. Social networks, 30
(4):330–342, 2008.

Lim, L.-H. Hodge Laplacians on graphs. Siam Review, 62
(3):685–715, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017.

http://data.europa.eu/eli/dir/2018/843/oj/eng
http://data.europa.eu/eli/dir/2018/843/oj/eng
http://data.europa.eu/eli/dir/2018/843/oj/eng
http://data.europa.eu/eli/dir/2018/843/oj/eng

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

McCallum, A. K., Nigam, K., Rennie, J., and Seymore,
K. Automating the construction of internet portals with
machine learning. Information Retrieval, 3(2):127–163,
2000.

Murphy, K. P. Machine learning: a probabilistic perspective.
MIT press, 2012.

Newman, M. Networks. Oxford university press, 2018.

Oeben, M., Goudsmit, J., and Marchiori, E. Prerequisites
and AI challenges for model-based Anti-Money
Laundering. In AI for Social Good - IJCAI 2019
Workshop, pp. 1–4, 2019.

Paige, C. C. and Saunders, M. A. Lsqr: An algorithm for
sparse linear equations and sparse least squares. ACM
Transactions on Mathematical Software (TOMS), 8(1):
43–71, 1982.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. Pytorch: An
imperative style, high-performance deep learning library.
In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-
Buc, F., Fox, E., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019.

Peixoto, T. P. The graph-tool python library. figshare,
2014. URL http://figshare.com/articles/
graph_tool/1164194.

Perozzi, B., Al-Rfou, R., and Skiena, S. Deepwalk: Online
learning of social representations. In Proceedings of
the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 701–710,
2014.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of adam and beyond. arXiv preprint arXiv:1904.09237,
2019.

Rendsburg, L., Heidrich, H., and Von Luxburg, U.
NetGAN without GAN: From random walks to low-rank
approximations. In International Conference on Machine
Learning, pp. 8073–8082. PMLR, 2020.

Ron, D. and Shamir, A. Quantitative Analysis of the Full
Bitcoin Transaction Graph. In Sadeghi, A.-R. (ed.),
Financial Cryptography and Data Security, pp. 6–24.
Springer, 2013.

Rubido, N., Grebogi, C., and Baptista, M. S. Resiliently
evolving supply-demand networks. Phys. Rev. E, 89:
012801, Jan 2014.

Sarkar, P., Chakrabarti, D., and Moore, A. W. Theoretical
justification of popular link prediction heuristics. In IJCAI
proceedings-international joint conference on artificial
intelligence, volume 22, pp. 2722. Citeseer, 2011.

Savage, D., Wang, Q., Chou, P., Zhang, X., and Yu, X.
Detection of money laundering groups using supervised
learning in networks. arXiv preprint arXiv:1608.00708,
2016.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G.
On the importance of initialization and momentum in
deep learning. In International conference on machine
learning, pp. 1139–1147. PMLR, 2013.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei,
Q. Line: Large-scale information network embedding.
In Proceedings of the 24th international conference on
world wide web, pp. 1067–1077, 2015.

United Nations office on drugs and crime. UNODC report:
Estimating illicit financial flows resulting from drug
trafficking and other transnational organized crimes,
2011. https://www.unodc.org/unodc/en/
frontpage/2011/October/illicit-money_
-how-much-is-out-there.html.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020.

Vujičić, D., Jagodić, D., and Randić, S. Blockchain
technology, bitcoin, and ethereum: A brief overview.
In 2018 17th international symposium infoteh-jahorina
(infoteh), pp. 1–6. IEEE, 2018.

Weber, M., Domeniconi, G., Chen, J., Weidele, D. K. I.,
Bellei, C., Robinson, T., and Leiserson, C. E. Anti-
money laundering in bitcoin: Experimenting with graph
convolutional networks for financial forensics. arXiv
preprint arXiv:1908.02591, 2019.

Yeo, I.-K. and Johnson, R. A. A new family of power
transformations to improve normality or symmetry.
Biometrika, 87(4):954–959, 2000.

http://figshare.com/articles/graph_tool/1164194
http://figshare.com/articles/graph_tool/1164194
https://www.unodc.org/unodc/en/frontpage/2011/October/illicit-money_-how-much-is-out-there.html
https://www.unodc.org/unodc/en/frontpage/2011/October/illicit-money_-how-much-is-out-there.html
https://www.unodc.org/unodc/en/frontpage/2011/October/illicit-money_-how-much-is-out-there.html

Learning Node Representations Using Stationary Flow Prediction on Large Payment and Cash Transaction Networks

Zhang, M. and Chen, Y. Link prediction based on graph
neural networks. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Zheng, Z., Xie, S., Dai, H., Chen, X., and Wang, H.
An overview of blockchain technology: Architecture,
consensus, and future trends. In 2017 IEEE International
Congress on Big Data (BigData Congress), pp. 557–564,
2017.

Zhu, B., Xia, Y., and Zhang, X.-J. Weight prediction
in complex networks based on neighbor set. Scientific
reports, 6(1):1–10, 2016.

