
Locally Private k-Means in One Round

Supplementary Material
A. Missing Proofs
A.1. Proof of Lemma 8and Lemma 9

To prove Lemma 9, we will use the following fact, which is simple to verify.

Fact 23. For any ⇠ > 0 and any a, b 2 R, (a+ b)
2 (1 + ⇠)a

2
+ (1 + 1/⇠) · b2.

Proof of Lemma 9. We have

costS(� � ,C) =

X

y2Bd

wS(y) · ky � c�((y))k2

=

X

x2Bd

X

y2 �1(x)

wS(y) · ky � c�(x)k2

(Triangle Inequality)
X

x2Bd

X

y2 �1(x)

wS(y) ·
�
kx� c�(x)k+ kx� yk

�2

(Fact 23)
X

x2Bd

X

y2 �1(x)

wS(y) ·
�
(1 + ⇠) · kx� c�(x)k2 + (1 + 1/⇠) · kx� yk2

�

= (1 + ⇠) ·

0

@
X

x2Bd

wS(
�1

(x)) · kx� c�(x)k2
1

A

+ (1 + 1/⇠) ·

0

@
X

y2Bd

wS(y) · k (y)� yk2
1

A

 (1 + ⇠) ·

0

@
X

x2Bd

wS0(x) · kx� c�(x)k2
1

A

+ 4(1 + ⇠) ·

0

@
X

x2Bd

|wS(
�1

(x))� wS0(x)|

1

A

+ (1 + 1/⇠) ·

0

@
X

y2Bd

wS(y) · k (y)� yk2
1

A

 (1 + ⇠) · costS0(�,C) + 4(1 + 1/⇠) ·mt(,S,S0
),

yielding the first inequality.

To prove the second inequality, let �⇤ : Bd ! [k] denote the map of each point to its closest center in C. We have

costS0(C) =

X

x2Bd

wS0(x) · kx� c�⇤(x)k
2

 4

0

@
X

x2Bd

|wS(
�1

(x))� wS0(x)|

1

A+

X

x2Bd

wS(
�1

(x)) · kx� c�⇤(x)k
2

= 4

0

@
X

x2Bd

|wS(
�1

(x))� wS0(x)|

1

A+

X

x2Bd

X

y2 �1(x)

wS(y) · kx� c�⇤(x)k
2

 4

0

@
X

x2Bd

|wS(
�1

(x))� wS0(x)|

1

A+

X

x2Bd

X

y2 �1(x)

wS(y) · kx� c�⇤(y)k
2

Locally Private k-Means in One Round

(Triangle Inequality) 4

0

@
X

x2Bd

|wS(
�1

(x))� wS0(x)|

1

A

+

X

x2Bd

X

y2 �1(x)

wS(y) · (ky � c�⇤(y)k+ kx� yk)2

 4

0

@
X

x2Bd

|wS(
�1

(x))� wS0(x)|

1

A

+

X

x2Bd

X

y2 �1(x)

wS(y) ·
�
(1 + ⇠) · ky � c�⇤(y)k

2
+ (1 + 1/⇠) · kx� yk2

�

= (1 + ⇠) ·

0

@
X

y2Bd

wS(y) · ky � c�⇤(y)k
2

1

A

+ 4

0

@
X

x2Bd

|wS(
�1

(x))� wS0(x)|

1

A

+ (1 + 1/⇠) ·

0

@
X

y2Bd

wS(y) · k (y)� yk2
1

A

 (1 + ⇠) · costS(C) + 4(1 + 1/⇠) ·mt(,S,S0
),

as desired.

With Lemma 9 ready, we turn our attention back to the proof of Lemma 8.

Proof of Lemma 8. Consider any (ordered) set C of centers. Let �⇤ be the mapping that maps every point to its closest
center in C. On the one hand, applying the second inequality of Lemma 9, we get

costS0(C) (1 + 0.5⇠) · costS(C) + 4(1 + 2/⇠) ·mt(,S,S0
)

 (1 + ⇠) · costS(C) + 4(1 + 2/⇠)t,

where the second inequality follows from the assumed upper bound on mt(S,S0
).

Let : Bd ! Bd be such that mt(,S,S0
) = mt(S,S0

). We can use the first inequality of Lemma 9 to derive the
following inequalities.

costS0(C) = costS0(�⇤,C)

(Lemma 9) � 1

1 + 0.5⇠
· costS(�⇤ �)�

4(1 + 2/⇠)

1 + 0.5⇠
·mt(,S,S0

)

� (1� 0.5⇠) · costS(�⇤ �)� 4(1 + 2/⇠) ·mt(S,S0
).

As a result, we can conclude that S0 is an (⇠, 4(1 + 2/⇠)t)-coreset of S as desired.

A.2. Proof of Theorem 20

Proof. • First, from the operation of Algorithm 2, we have ⌧i �ka 2
O⇠(d) · k · (log n).

By how T is constructed, the number of internal nodes is ⌧1+ · · ·+ ⌧T , which is at most T�ka 2
O⇠(d) ·k · (log n)2.

Finally, since by Lemma 15 the branching factor B is also just 2O(d) , the total number of nodes is indeed 2
O⇠(d) · k ·

(log
2
n).

Locally Private k-Means in One Round

• Using Lemma 16, we have

mt(T ,S,ST)

0

@
X

z2leaves(T)

|fz � f̃z|

1

A+

X

z2leaves(T)

fz · (4⇢2level(z))

 4

0

@
X

z2leaves(T)

f̃z · (⇢2level(z))

1

A+ 2
O⇠(d) · k · (log2 n) · ⌘, (4)

where the second inequality follows from the bound on the number of nodes in the first item and the ⌘-accuracy
guarantee of the frequency oracle.

To bound the summation term on the right hand side of (4), we may rearrange it as

X

z2leaves(T)

f̃z · (⇢2level(z)) =

0

@
X

i2[T�1]

2
�2i ·

0

@
X

z2leaves(Ti)

f̃z

1

A

1

A+ 2
�2T ·

X

z2leaves(TT)

f̃z. (5)

Using Lemma 19, we may bound the first term above by
0

@
X

i2[T�1]

2
�2i ·

0

@
X

z2leaves(Ti)

f̃z

1

A

1

A

X

i2[T�1]

2
�2i ·

⇣
2 bottommi�⌧i�ka

⇣
(f̃z)z2leaves(Ti

)

⌘
+ (n+ |Ti|⌘)/2�

⌘

0

@
X

i2[T�1]

2
1�2i · bottommi�⌧i�ka

�
(fz)z2leaves(Ti

)
�
1

A+O

⇣
1 + 2

O⇠(d) · k · (log2 n)
⌘
,

where the second inequality follows from our choice of � and the fact that ⌘ n which may be assumed without loss
of generality (otherwise, we might just let the frequency oracle be zero everywhere) and the bound on the number of
nodes in T from the first item. Next, to bound the first summation term above, let ri := ✓ · 2�i. We have

0

@
X

i2[T�1]

2
1�2i · bottommi�⌧i�ka

�
(fz)z2leaves(Ti

)
�
1

A

(Corollary 18)

0

@
X

i2[T�1]

2
1�2i

/r
2
i
·OPT

k

S\ �1
T (leaves(Ti))

1

A

(Our choice of ✓) =
⇠

32(1 + 2/⇠)
·

0

@
X

i2[T�1]

OPT
k

S\ �1
T (leaves(Ti))

1

A

 ⇠

32(1 + 2/⇠)
·
⇣
OPT

kS
i2[T�1](S\

�1
T (leaves(Ti)))

⌘

 ⇠

32(1 + 2/⇠)
·OPT

k

S .

Finally, we may bound the second term in (5) by

2
�2T ·

X

z2leaves(TT)

f̃z (n+ |TT | · ⌘)/n 2
O⇠(d) · k · (log2 n),

where we used the bound 2
�2T 1/n which follows from our choice of T .

Locally Private k-Means in One Round

Combining the above four inequalities together, we get

mt(T ,S,ST)
⇠

8(1 + 2/⇠)
·OPT

k

S +2
O⇠(d) · k · (log2 n) · ⌘.

• Applying Lemma 8 to the above inequality implies that ST is a (⇠, 2
O⇠(d) · k · (log2 n) · ⌘)-coreset of S as desired.

In terms of the running time, it is obvious that apart from Line 7 in Algorithm 1, all other steps run in time poly(|T |), which
is at most poly(NT) times the running time of a frequency oracle call. As for Line 7 in Algorithm 1, we may compute
the set children(z) for some node z 2 Lj as follows. First, we use Lemma 10 to compute the set cand(z) of all nodes
z
0 2 Lj+1 such that |z � z

0| ⇢j ; this takes time 2
O(d). Next, for each z

0 2 cand(z), we check whether z is its closest
point in Lj , which once again can be done via Lemma 10 in time 2

O(d). Thus, each execution of Line 7 in Algorithm 1
takes only 2

O(d) time; hence, in total this step only takes 2O(d) · |T | poly(NT) time.

A.3. Proof of Theorem 22

To prove this theorem, we will also use the following simple well-known fact (see e.g., Aggarwal et al., 2009, Proposition
1), which tell us an excess in k-means objective for each cluster in terms of the distance between the true center and the
noised center.

Fact 24. For any weighted point set S and c 2 Rd, costS(c)�OPT
1
S = |S| · kµ(S)� ck2.

Proof of Theorem 22. Since each of Enchist(✏/2,�/2),Enc
vec
(✏/2,�/2) is (✏/2, �/2)-DP, basic composition theorem immediately im-

plies that CLUSTERINGENCODER✏,� is (✏, �)-DP.

Next, notice that we only call the oracles f̃ (resp. ṽ) on the nodes of the tree T . Since the number of nodes is at most
NT , a union bound ensures that all of these queries provide ⌘-accurate (resp. ⌘̃-accurate) answers with probability at least
1� 0.1�. Henceforth, we may assume that such an accuracy guarantee holds for all queries.

For notational convenience, let S = {x1, . . . , xn},S0
= {x0

1, . . . , x
0
n
}, S̃ = {x̃1, . . . , x̃n},C = {c1, . . . , ck}, and C0

=

{c01, . . . , c0k}.

From Theorem 20, we have ST is a
⇣
0.1↵, 2

O↵(d0) · k · (log2 n) · ⌘
⌘

-coreset of S0. From this and from the -
approximation guarantee of algorithm A, we have

costST (C
0
) ·OPT

k

ST
 (1 + 0.1↵)OPT

k

S + · 2O↵(d0) · k · (log2 n) · ⌘.

Let �⇤ : leaves(T)! [k] denote the mapping from each leaf to its closest center, and let �0
: S0 ! [k] be �

0
:= �⇤ � T .

With this notation, we have that the following holds with probability at least 1� 0.1�:

costS0(�
0
) = costS0(�⇤ � T)

 costS0(�⇤ � T ,C
0
)

(Lemma 9) (1 + 0.1↵) · costST (�⇤,C
0
) + 4(1 + 1/⇠) ·mt(T ,S

0
,ST)

(Theorem 20) (1 + 0.1↵) · costST (�⇤,C
0
)

+ 4(1 + 1/⇠) ·
✓

⇠

8(1 + 2/⇠)
·OPT

k

S +2
O⇠(d) · k · (log2 n) · ⌘

◆

(From ⇠ = 0.1↵) (1 + 0.15↵) · costST (�⇤,C
0
) + 2

O↵(d0) · k · (log2 n) · ⌘

(guarantee of A) (1 + 0.15↵) ·OPT
k

ST +2
O↵(d0) · k · (log2 n) · ⌘

(Theorem 20) (1 + 0.15↵)(1 + 0.1↵) ·OPT
k

S0 +2
O↵(d0) · k · (log2 n) · ⌘

 (1 + 0.3↵) ·OPT
k

S0 +2
O↵(d0) · k · (log2 n) · ⌘.

For notational convenience, we let �̃ (respectively �) denote the canonical mapping from S̃ (respectively S) to [k] corre-
sponding to �

0. Standard concentration inequalities imply that with probability 1 � 0.1� we have kx̃ik 1/⇤, meaning

Locally Private k-Means in One Round

that x0
i
= ⇤x̃i for all i 2 [n]. When this holds, we simply have

costS0(�
0
) = ⇤

2 · costS̃(�̃).

Plugging this into the previous inequality, we have

costS̃(�̃) = (1 + 0.3↵) ·OPT
k

S̃
+(1/⇤

2
) · 2O↵(d0) · k · (log2 n) · ⌘. (6)

Next, applying Theorem 21, the following holds with probability 1� 0.1�:

costS̃(�̃) � (d/d
0
) · costS(�)/(1 + 0.1↵),

and

OPT
k

S̃
 (1 + 0.1↵)(d/d

0
) ·OPT

k

S .

Plugging the above two inequalities into (6), we arrive at

costS(�) (1 + 0.3↵)(1 + 0.1↵)
2
OPT

k

S +(d
0
/d) · (1/⇤2

) · 2O↵(d0) · k · (log2 n) · ⌘

 (1 + ↵)OPT
k

S +2
O↵(d0) · k · (log2 n) · log(n/�) · ⌘. (7)

Next, we will bound costS(C) in comparison to costS(�) that we had already bounded above. To do this, first notice that

costS(C) costS(�,C) =

X

j2[k]

cost��1(j)(cj)

(Fact 24) =
X

j2[k]

⇣
OPT

1
��1(j) +|��1

(j)| · kµ(��1
(j))� cjk2

⌘

= costS(�) +

0

@
X

j2[k]

|��1
(j)| · kµ(��1

(j))� cjk2
1

A . (8)

Furthermore, since we assume that the vector summation oracle is ⌘̃-accurate, using the triangle inequality we get

kvj � ṽ
jk ⌘̃ · |T |. (9)

Similarly, let nj
= �

�1
(j). From the fact that the frequency oracle is ⌘-accurate, we have

|ñj � n
j | ⌘ · |T |. (10)

We next consider two cases, based on how large n
j is.

• Case I: nj 2(⌘ + ⌘̃) · |T |. In this case, we simply use the straightforward fact that kµ(��1
(j)) � cjk 2. This

gives

|��1
(j)| · kµ(��1

(j))� cjk2 8(⌘ + ⌘̃) · |T |.

• Case II: nj
> 2(⌘ + ⌘̃) · |T |. In this case, first notice that

kµ(��1
(j))� cjk kµ(��1

(j))� c̃jk

=

����
v
j

nj
� ṽ

j

ñj

����

=
1

nj ñj
· kvj ñj � ṽ

j
n
jk

(From the triangle inequality, (10), nj
> 2⌘ · |T |) 2

(nj)2
·
�
kvj(ñj � n

j
)k+ k(ṽj � v

j
)n

jk
�

Locally Private k-Means in One Round

(From (9), (10), and kvjk n
j
) 2

(nj)2
·
�
n
j · ⌘ · |T |+ ⌘̃ · |T | · nj

�

=
2(⌘ + ⌘̃)|T |

nj
.

From this, we have

|��1
(j)| · kµ(��1

(j))� cjk2 n
j · 4(⌘ + ⌘̃)

2|T |2

(nj)2
 2(⌘ + ⌘̃)|T |.

Thus, in both cases, we have |��1
(j)| · kµ(��1

(j))� cjk2 8(⌘ + ⌘̃)|T |. Plugging this back to (8), we get

costS(C) costS(�) + 8k(⌘ + ⌘̃)|T | costS(�) + 2
O↵(d0) · k2 · (log2 n) · (⌘ + ⌘̃),

where the second inequality follows from the first item of Theorem 20. Finally, plugging this into (7), we can conclude
that

costS(C) (1 + ↵)OPT
k

S +2
O↵(d0) · k · (log2 n) · log(n/�) · ⌘

+ 2
O↵(d0) · k2 · (log2 n) · (⌘ + ⌘̃)

(From d = O↵(log k)) (1 + ↵)OPT
k

S +k
O↵(1)

(log
2
n) (log(n/�) · ⌘ + ⌘̃) ,

as desired.

The running time claim for the decoder (Algorithm 4) follows immediately from the running time of BUILDTREE from
Theorem 20 and from 2

O(d0)
= k

O↵(1) due to our choice of d0. As for the encoder (Algorithm 3), it is clear that every
step runs in poly(ndk, t(Enchist), t(Encvec)) time, except Lines 7 and 9 where we need to find a closest point in Lj from
some given point. However, Lemma 10 ensures that this can be computed in time 2

O(d0) which is equal to k
O↵(1) due to

our choice of parameters. This completes our proof.

B. Frequency and Vector Summation Oracles in Local Model
In this section, we explain the derivations of the bounds in Section 2.4 in more detail. To do so, we first note that given an
algorithm for histogram (resp., bucketized vector summation), we can easily derive an algorithm for generalized histogram
(resp., generalized bucketized vector summation) with a small overhead in the error. This is formalized below. (Note that,
for brevity, we say that an algorithm runs in time t(·) if both the encoder and the decoder run in time at most t(·).) We
remark that, while we focus on the local model in this section, Lemma 25 works for any model; indeed we will use it for
the shuffle model in the next section.

Lemma 25. Suppose that there is a t(n, Y, ✏, �)-time (✏, �)-DP (⌘(n, ✏, �),�(n, ✏, �))-accurate algorithm for histogram.
Then, there is an O(T · t(nT, Y, ✏/T, �/T))-time (✏, �)-DP
(⌘(nT, ✏/T, �/T),�(nT, ✏/T, �/T))-accurate algorithm for generalized histogram.

Similarly, suppose that there is a t(n, Y, d, ✏, �)-time (✏, �)-DP (⌘(n, d, ✏, �),�(n, d, ✏, �))-accurate algo-
rithm for bucketized vector summation. Then, there is an O(T · t(nT, Y, d, ✏/T, �/T))-time (✏, �)-DP
(⌘(nT, d, ✏/T, �/T),�(nT, d, ✏/T, �/T))-accurate algorithm for generalized bucketized vector summation.

Proof. Suppose there is an (✏, �)-DP (⌘(n, ✏, �),�(n, ✏, �))-accurate algorithm for histogram. To solve generalized his-
togram, each user runs the T encoders in parallel, each on an element y 2 Yi and with (✏/T, �/T)-DP. By basic composi-
tion, this algorithm is (✏, �)-DP. On the decoder side, it views the randomized input as inputs from nT users and then runs
the standard decoder for histogram. As a result, this yields an (⌘(nT, ✏/T, �/T),�(nT, ✏/T, �/T))-accurate algorithm for
generalized histogram. The running time claim also follows trivially.

The argument for bucketized vector summation is analogous to the above.

The above lemma allows us to henceforth only focus on histogram and bucketized vector summation.

Locally Private k-Means in One Round

B.1. Histogram Frequency Oracle

In this subsection, we briefly recall a frequency oracle of Bassily et al. (2020) (called EXPLICITHIST in their paper), which
we will extend in the next section to handle vectors. We assume that the users and the analyzer have access to public
randomness in the form of a uniformly random Z 2 {±1}|Y |⇥n. Note that while this requires many bits to specify, as
noted in Bassily et al. (2020), for the purpose of the bounds below, it suffices to take Z that is pairwise independent in each
column (but completely independent in each row) and thus it can be compactly represented in O(n log |Y |) bits.

The randomizer and analyzer from Bassily et al. (2020) can be stated as follows.

Algorithm 5 ExplicitHist Encoder
1: procedure EXPLICITHISTENCODER✏(xi;Z)

2: x̃i Zxi,i

3: yi =

(
x̃i with probability e

✏

e✏+1

�x̃i with probability 1
e✏+1

4: return yi

Algorithm 6 ExplicitHist Decoder.
1: procedure EXPLICITHISTDECODER✏(v; y1, . . . , yn;Z)

2: return e
✏+1

e✏�1 ·
P

i2[n] yi · Zv,i

Bassily et al. (2020) proved the following guarantee on the above frequency oracle:
Theorem 26. EXPLICITHIST is an (O(

p
n log(|Y |/�)/✏),�)-accurate ✏-DP algorithm for histogram in the local model.

Moreover, it can be made to run in time poly(n, log |Y |).

The above theorem in conjunction with the first part of Lemma 25 implies Theorem 12.

B.2. Vector Summation Oracle

Duchi et al. (2013) proved the following lemma10, which can be used to aggregate d-dimensional vectors of bounded
Euclidean norm.
Lemma 27 ((Duchi et al., 2013)). For every d 2 N and ✏ 2 (0, O(1)), there exists B = ⇥(

p
d/✏) such that there is a

polynomial-time ✏-DP algorithm Rvec
✏

in the local model that, given an input vector x, produces another vector z such that
kzk = B and E[z] = x.

Notice that this algorithm allows us to compute an estimate of a sum of vectors by simply adding up the randomized
vectors; this gives an error of O(

p
dn/✏). Below we combine this with the techniques of Bassily et al. (2020) to get a

desired oracle for vector summation. Specifically, the algorithm, which we call EXPLICITHISTVECTOR, are presented
below (where yi is the bucket and xi is the vector input).

Algorithm 7 ExplicitHistVector Encoder
1: procedure EXPLICITHISTVECTORENCODER✏(yi, xi;Z)

2: zi Rvec(Zyi,i · xi)

3: return zi

Lemma 28. EXPLICITHISTVECTOR is an (O(
p

nd log(d|Y |/�)/✏),�)-accurate ✏-DP algorithm for bucketized vector
summation in the local model. Moreover, it can be made to run in time poly(nd, log |Y |).

To prove Lemma 28, we require a concentration inequality for sum of independent vectors, as stated below. It can be
derived using standard techniques (see e.g., Jin et al., 2019, Corollary 7, for an even more general form of the inequality).

10See expression (19) and Lemma 1 of Duchi et al. (2013). Note that we use L = 1; their choice of B = e✏+1
e✏�1 ·

⇡
p
d�(d�1

2 +1)
�(d

2+1)
indeed

satisfies B = O(
p
d).

Locally Private k-Means in One Round

Algorithm 8 ExplicitHistVector Decoder.
1: procedure EXPLICITHISTVECTORDECODER✏(v; z1, . . . , zn;Z)

2: return
P

i2[n] zi · Zv,i

Lemma 29. Suppose that u1, . . . , un 2 Rd are random vectors such that E[ui] = 0 for all i 2 [n] and that kuik �.
Then, with probability 1� �, we have

���
P

i2[n] ui

��� O

⇣
�
p
n log(d/�)

⌘
.

Proof of Lemma 28. Since we only use the input (xi, yi) once as the input to Rvec
✏

and we know that Rvec
✏

is ✏-DP, we can
conclude that EXPLICITHISTVECTORDECODER is also ✏-DP.

To analyze its accuracy, consider any v 2 Y . For i 2 [n], let

ui =

(
zi · Zv,i � xi if v 2 V,

zi · Zv,i if v /2 Y.

Notice that the error of our protocol at v is exactly
P

i2[n] ui. Furthermore, from the guarantee of Rvec
✏

, it is not hard to
see that E[ui] = 0 and that kuik kzi � xik O(

p
d/✏). As a result, applying Lemma 29, we can conclude that with

probability 1� �,
���
P

i2[n] ui

��� O(
p
nd log(d/�)/✏), as desired.

Similar to EXPLICITHIST, it suffices to take Z that is pairwise independent in each column, which can be specified in
O(n log |Y |) bits. As a result, the total running time of the algorithm is poly(nd, log |Y |) as desired.

Lemma 28 and the second part of Lemma 25 imply Lemma 13.

C. Shuffle Model
In this section, we derive our bounds for the shuffle DP model (Theorem 2).

The shuffle DP model (Bittau et al., 2017; Erlingsson et al., 2019; Cheu et al., 2019) has gained traction due to it being
a middle-ground between the central and local DP models. In the shuffle DP model, a shuffler sits between the encoder
and the decoder; this shuffler randomly permutes the messages from the encoders before sending it to the decoder (aka
analyst). Two variants of this model have been studied in the literature: in the single-message model, each encoder can
send one message to the shuffler and in the multi-message model, each encoder can send multiple messages to the shuffler.
As in the local DP model, a one-round (i.e., non-interactive) version of the shuffle model can be defined as follows. (Here
we use X to denote the set of possible inputs and Y to denote the set of possible messages.)

Definition 30. For an n-party protocol P with encoding function Enc that produces m messages per user, and for an input
sequence x 2 Xn, we let SEnc

x denote the distribution on Ynm obtained by applying Enc on each element of x and then
randomly shuffling the outputs.

Definition 31 (Shuffle DP). A protocol P with encoder Enc : X ! Ym is (✏, �)-DP in the shuffle model if the algorithm
whose output distribution is SEnc

x is (✏, �)-DP.

Recent research on the shuffle DP model includes work on aggregation (Balle et al., 2019; Ghazi et al., 2020d; Balle et al.,
2020; Ghazi et al., 2021b), histograms and heavy hitters (Ghazi et al., 2021a; Balcer and Cheu, 2020; Ghazi et al., 2020a;c),
and counting distinct elements (Balcer et al., 2021; Chen et al., 2021).

C.1. Frequency and Vector Summation Oracles

We start by providing algorithms for frequency and vector summation oracles in the shuffle DP model. These are summa-
rized below.

Theorem 32 ((Ghazi et al., 2021a)). There is an (O(poly log

⇣
|Y |T
��

⌘
/✏),�)-accurate (✏, �)-DP algorithm for generalized

histogram in the shuffle model. The encoder and the decoder run in time poly

⇣
nT/✏, log

⇣
|Y |
��

⌘⌘
.

Locally Private k-Means in One Round

Theorem 33. There is an (O(
T
p
d

✏
·poly log(dT/(��))),�)-accurate (✏, �)-DP algorithm for generalized bucketized vector

summation in the shuffle model. The encoder and the decoder run in time poly(ndT/�, log

⇣
|Y |
✏�

⌘
).

We will prove these two theorems in the next two subsections.

C.1.1. FREQUENCY ORACLE

(Ghazi et al., 2021a) gave a frequency oracle for histogram with the following guarantee:

Theorem 34 ((Ghazi et al., 2021a)). There is an (O(poly log

⇣
|Y |
��

⌘
/✏),�)-accurate (✏, �)-DP algorithm for histogram in

the shuffle model. The encoder and the decoder run in time
poly

⇣
n/✏, log

⇣
|Y |
��

⌘⌘
.

We note that as stated in Ghazi et al. (2021a), the protocol underlying Theorem 34 uses poly(|Y | · n · log(1/�)) bits of
public randomness. This can be exponentially reduced using the well-known fact that pairwise independence is sufficient
for the Count Sketch data structure (which is the basis of the proof of Theorem 34).

Combining Theorem 34 and Lemma 25 yields Theorem 32.

C.1.2. VECTOR SUMMATION ORACLE

For any two probability distributions D1 and D2, we denote by SD(D1,D2) the statistical (aka total variation) distance
between D1 and D2.

We next present a bucketized vector summation oracle in the shuffle model that exhibits almost central accuracy.

Theorem 35. There is an (O(

p
d

✏
· poly log(d/(��))),�)-accurate (✏, �)-DP algorithm for bucketized vector summation

in the shuffle model. The encoder and the decoder run in time poly(nd/�, log

⇣
|Y |
✏�

⌘
).

The rest of this subsection is decidated to the proof of Theorem 35; note that the theorem and the second part of Lemma 25
immediately imply Theorem 33.

In order to prove Theorem 35, we recall the following theorem about the analysis of a variant of the split-and-mix protocol
of Ishai et al. (2006). For more context, see e.g., (Ghazi et al., 2020d; Balle et al., 2020) and the references therein.

We start by defining the notion of secure protocols; roughly, their transcripts are statistically indistinguishable when run on
any two inputs that have the same function value.

Definition 36 (�-secure shuffle protocols). Let ⌫ be a positive real number. A one-round shuffle model protocol P =

(Enc,A) is said to be ⌫-secure for computing a function f : Xn ! Z if for any x,x0 2 Xn such that f(x) = f(x0
), we

have SD(S
Enc
x , S

Enc
x0) 2

�⌫ .

Theorem 37 ((Ghazi et al., 2020d; Balle et al., 2020)). Let n and q be positive integers, and ⌫ > 0 be a real number. The
split-and-mix protocol of Ishai et al. (2006) (Algorithm 9) with n parties and inputs in Fq is ⌫-secure for f(x) =

P
n

i=1 xi

when m � O(1 +
⌫+log q

logn
).

We will also use the discrete Gaussian distribution from Canonne et al. (2020).

Definition 38 ((Canonne et al., 2020)). Let µ and � > 0 be real numbers. The discrete Gaussian distribution with location
µ and scale �, denoted by NZ(µ,�2

), is the discrete probability distribution supported on the integers and defined by

Pr
X⇠NZ(µ,�2)

[X = x] =
e
�(x�µ)2/(2�2)

P
y2Z e

�(y�µ)2/(2�2)
,

for all x 2 Z.

We will use the following well-known concentration inequality.

Definition 39 (Bernstein inequality). Let X1, . . . , Xn be independent zero-mean random variables. Suppose that |Xi|

Locally Private k-Means in One Round

M for all i 2 {1, . . . , n}, where M is a non-negative real number. Then, for any positive real number t, it holds that

Pr

"
nX

i=1

Xi � t

#
 exp

✓
� 0.5 · t2P

n

i=1 E[X2
i
] +

1
3Mt

◆
.

We will also need the following tail bounds for Gaussian random variables.

Proposition 40 (Tail bound for continuous Gaussians). For any positive real number x, it holds that

Pr
X⇠N (0,1)

[X � x] exp(�x2
/2)

x
p
2⇡

.

Proposition 41 (Tail bound for discrete Gaussians; Proposition 25 of (Canonne et al., 2020)). For any positive integer m
and any positive real number �, it holds that

Pr
X⇠NZ(0,�2)

[X � m] Pr
X⇠N (0,�2)

[X � m� 1].

We will moreover need the following upper bound on the variance of discrete Gaussians.

Proposition 42 (Proposition 21 of (Canonne et al., 2020)). For any positive real number �, it holds that

VarX⇠NZ(0,�2)[X] < �
2
.

Finally, we will use the following theorem quantifying the differential privacy property for the discrete Gaussian mecha-
nism.

Theorem 43 (Theorem 15 of (Canonne et al., 2020)). Let �1, . . . ,�d be positive real numbers. Let Y1, . . . , Yd be i.i.d.
random variables each drawn from NZ(0,�2

j
). Let M : Xn ! Zd be a randomized algorithm given by M(x) = q(x)+Y ,

where Y = (Y1, . . . , Yd). Then, M is (✏, �)-DP if and only if for all neighboring x,x0 2 Xn, it holds that

� � Pr[Z > ✏]� e
✏ · Pr[Z < �✏],

where

Z :=

dX

j=1

(q(x)j � q(x
0
)j)

2
+ 2 · (q(x)j � q(x

0
)j) · Yj

2�2
j

.

Using Theorem 43, we obtain the following:

Corollary 44. Let ✏ > 0 and � 2 (0, 1) be given real numbers. Let X denote the set of all vectors in Zd with `2-norm at
most C. Define the randomized algorithm M : X d ! Zd as M(x) = q(x) + Y , where Y = (Y1, . . . , Yd) with Y1, . . . , Yd

being i.i.d. random variables each drawn from NZ(0,�2
), and where q(x) =

P
n

i=1 xi is the vector sum. Then, there exists
� =

10C log(d/�)
✏

for which M is (✏, �)-DP.

Proof of Corollary 44. Let Z be defined as in Theorem 43. We will show that � � Pr[Z > ✏], which by Theorem 43
means that the algorithm is (✏, �)-DP. First, note that

E[Z] =
1

2�2

dX

j=1

(q(x)j � q(x
0
)j)

2
=
kq(x)� q(x

0
)k2

2�2
.

Moreover, using Proposition 42, we have that

Var[Z] 1

�2

dX

j=1

(q(x)j � q(x
0
)j)

2
=
kq(x)� q(x

0
)k2

�2
.

For each i 2 [d], define the event Ei that |Yi| M , where

M = 2 · � ·
p
2 ln(2d/�). (11)

Locally Private k-Means in One Round

Moreover, let E = \d
i=1Ei. Using the fact that Yi ⇠ NZ(0,�2

) with � � 1, and applying Propositions 40 and 41, we get
that Pr[Ei] � 1� �/(2d). By a union bound, we obtain

Pr[E] � 1� �/2. (12)

Henceforth, we condition on the event E . We next argue that conditioning on E leaves the expectation of Z unchanged,
and can only decrease its variance. Namely, since both the random variable Yj and the event Ej are symmetric around 0,
we have that E[Yj |Ej] = 0, and hence,

E[Z|E] =
dX

j=1

(q(x)j � q(x
0
)j)

2
+ 2 · (q(x)j � q(x

0
)j) · E[Yj |Ej]

2�2
j

=
kq(x)� q(x

0
)k2

2�2
= E[Z]. (13)

Moreover, we have that

Var[Z|E] =
dX

j=1

(q(x)j � q(x
0
)j)

2

�4
j

·Var[Yj |Ej]

=

dX

j=1

(q(x)j � q(x
0
)j)

2

�4
j

· E[Y 2
j
|Ej]

dX

j=1

(q(x)j � q(x
0
)j)

2

�4
j

· E[Y 2
j
] (14)

 kq(x)� q(x
0
)k2

�2
, (15)

where inequality (14) follows from the definition of the event Ej , and inequality (15) follows from Proposition 42. Applying
the Bernstein inequality (Theorem 38), we get that:

Pr[Z > ✏|E] exp

✓
� 0.5 · (✏� E[Z|E])2

Var[Z|E] + C ·M · (✏� E[Z|E])/(3�2)

◆
 �

2
, (16)

where the last inequality follows from plugging in (11), (13), and (15), and using a sufficiently large � =
10C log(d/�)

✏
.

Finally, combining (16) and (12), we deduce that Pr[Z > ✏] �.

We are now ready to prove Theorem 35.

Proof of Theorem 35. The pseudocode for the encoder and decoder of the protocol is given in Algorithms 10 and 11
respectively. Also, note that the number t of incoming messages in Algorithm 11 is equal to s ·m. We point out that the
sum in Algorithm 10 is in Fq . We set:

• ⌘ 1
n

.

• s 2·n
�

.

• � 20 log(sd/�)
✏

.

• p smallest prime larger than 2n
⌘

+ 20� log(sd/�).

• m O(1 +
log (2dp/�)

logn
).

Privacy Analysis. The analyst observes the output of the shuffler, which is the multiset [n
i=1Mi of messages sent by

all the users. This is equivalent to observing a vector a 2 Zs, where s is the number of buckets set in Algorithm 10. Let
⌫ = log(2d/�) and m = O(1 +

⌫+log p

logn
). Applying Theorem 37 along with a union bound, we get that the distribution

of a is (d · 2�⌫
)-close in statistical distance to the output of the central model protocol that computes the true vector sum

Locally Private k-Means in One Round

and then adds a NZ(0,�2
) noise random variable to each of the d coordinates. The latter protocol is (✏, �/(2s))-DP for

� =
20 log(sd/�)

✏
by Corollary 44.11 By a union bound, we thus conclude that the output of the shuffler is (✏, �)-DP.

Utility Analysis. First, since we pick s = 2n/�, the probability that a collision occurs between the hash value of a given
y 2 Y and the hash value of another bucket held by one of the users is at most n/s �/2. In other words, with probability
at least 1� �/2 there is no collision with the given y 2 Y .

Secondly, by Propositions 41 and 40, we have that with probability at least 1��/(2s), it holds that for a discrete Gaussian
added to each coordinate of each bucket during an execution of Algortihm 10, its absolute value is at most 10� · log(sd/�).
Thus, by a union bound, with probability 1 � �/2, it holds that the noise to each coordinate of each bucket is at most
10� · log(sd/�) in absolute value.

When the above two events hold, the error is the sum of four independent components: one due to quantization of the input
vectors, and the other due to the privacy noise.

To upper-bound the quantization error, note that the error in each coordinate of each input is at most ⌘. Thus, the error per
coordinate of the sum is at most ⌘ · n. Thus, the `2-error due to quantization in the vector sum of any bucket is at most
⌘ · n ·

p
d. This is at most O(

p
d) for any ⌘ = O(1/n).

From the second event, we immediately have that the `2-error due to the privacy noise is at most 10� · log(sd/�) ·
p
d.

Putting things together, a union bound implies that with probability at least 1 � �, the total `2-error is at most O(� ·
p
d ·

log(sd/�)) = O(

p
d

✏
· poly log(d/(��))).

Communication and Running Time. Each of the n users sends in total O
✓

n

�
· log(nd

�✏�
)

◆
messages each consisting

of at most log(nd

�✏�
) bits. Note that pairwise independence can be used to reduce the number of random bits of public

randomness, resulting in a total running time for the analyst which is poly(nd/�, log
⇣

|Y |
✏�

⌘
).

Algorithm 9 Encoder in Split-and-Mix Protocol
1: procedure SPLITANDMIXENCODER(xi, p,m)

2: Sample z1, . . . , zm�1 i.i.d. uniformly at random from Zp.
3: zm xi �

P
m�1
j=1 zj .

4: return the multiset {z1, . . . , zm}.

Algorithm 10 Encoder in Shuffle DP Protocol for Bucketized Vector Summation
1: procedure SHUFFLEBVSENCODER✏,�(x;Z, i, y, n, d,�, ⌘, s, p,m)

2: x bx/⌘c (i.e., xi is the quantization of xi up to precision ⌘).
3: M {}.
4: for (`, k) 2 {1, . . . , s}⇥ {1, . . . , d} :

5: if ` = Z1,y:
6: u` xk.
7: else
8: u` 0.
9: if i = 1:

10: u` u` +NZ(0,�2
).

11: M M [({`}⇥ {k}⇥ SplitAndMixEncoder(u`, p,m)).
12: return M

We end by remarking that in Algorithm 10 we let only the first user add the discrete Gaussian noise (Line 10). This is only
for simplicity of analysis; it is possible to split the noise between the users and achieve the same asymptotic guarantees

11A similar argument with Discrete Laplace, instead of Discrete Gaussian, noise was previously used in the proof of Lemma 4.1 of
Balle et al. (2020).

Locally Private k-Means in One Round

Algorithm 11 Decoder in Shuffle DP Protocol for Bucketized Vector Summation.
1: procedure SHUFFLEBVSDECODER((`1, k1, z1), . . . , (`t, kt, zt);Z, p, y)
2: for j = 1, . . . , d

3: vj
P

i2{1,...,t}:`i=Z1,y,ki=j
zi.

4: if vj > p/2 : then vj (vj � p)⌘.
5: else vj vj⌘.
6: return (v1, . . . , vd).

(see Kairouz et al. (2021)).

C.2. Proof of Theorem 2

Proof of Theorem 2. Let � = 0.1. From Theorem 12, there is an (⌘, 0.1�/NT)-accurate 0.5✏-DP algorithm for generalized
histogram in the shuffle model with

⌘ = O

✓
poly log

✓
|L1 [· · · [LT | · T ·NT

��

◆
/✏

◆
.

Since we set T = O(log n) (in Theorem 20), NT = k
O↵(1) · poly log n by our choice of parameters, and since |L1 [· · ·[

LT | exp(O(Td
0
)) by a volume argument, we get ⌘ = O(poly log(nd/�)/✏).

Since we set T = O(log n) (in Theorem 20) and NT = k
O↵(1) · poly log n from our choice of parameters, we get

⌘ = O(
p
d · poly log(nd/�)/✏).

Similarly, from Lemma 13, there is an (⌘̃, 0.1�/NT)-accurate 0.5✏-DP algorithm for generalized histogram with

⌘̃ = O

T
p
d

✏
· poly log(dT/(��))

!
,

which as before yields ⌘̃ = O(
p
d · poly log(nd/�)/✏). Plugging this into Theorem 22, we indeed arrive at a one-round

(✏, �)-shuffle DP ((1+↵), k
O↵(1) ·

p
d ·polylog(nd/�)/✏)-approximation algorithm for k-means (with failure probability

0.1). It is easy to verify that the encoder and the decoder run in time poly(n, d, k
O↵(1)

, log(1/�)).

D. Additional Experiment Details

Figure 2. Normalized k-means objective of the output clusters for varying r, the separation parameter of the synthetic dataset. Each set
of parameters is run 10 times; the average and the standard deviation of the normalized k-means objectives are included.

Parameter Settings. Our experiments show that bucketized vector summation oracles often contribute to the final objective
more than that of the histogram oracle; thus, we allocate more privacy budget to the former compared to the latter (0.9✏
and 0.1✏ respectively). We view the number of levels T and thresholds ⌧1, . . . , ⌧T to be hyperparameters and roughly tune

Locally Private k-Means in One Round

them. In the end, we find that T = dlog2(k)e+3 and only branching when the approximate frequency is at least 1.5bn/kc
give reasonably competitive objectives with little amount of tuning, and the results reported below are for these parameters.
Another heuristic we find to be helpful is to split the dataset, instead of the privacy budget ✏, over the number of levels of
the tree, i.e., randomly split the data into T partitions with only the users in the ith partition contributing to the frequency
oracle at level-i of the tree.

Effects of Separation of Gaussians. Recall that we use r to denote the ratio between the separation of a of each pair of
centers divided by its expected cluster size. While our plots in the main body use r = 100, we remark that such a large
ratio is often unnecessary. Specifically, when k = 8, we often observe that r � 8 already gives essentially as good a result
as r = 100; this is presented in Figure 2.

