
Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

A. Background
This section supplements §3.1 with more background on algorithmic information theory and standard causality. For a
more thorough treatment on the foundational mathematics and formalism, please refer to Li et al. (2008) for algorithmic
information theory, to Pearl (2009) for standard causality, and to Janzing & Schölkopf (2010); Peters et al. (2017) for
algorithmic causality.

A.1. Notation

We denote with bolded uppercase monospace a computation graph at a single level of abstraction (e.g. the model of execution
G, the model of credit assignment C). We denote with blackboard bold (e.g. the algorithmic causal model of learning L) a
computation graph that represents multiple levels of abstraction.

We denote binary strings that represent the data nodes in L with lower case (e.g. x or f), where script (x) is used to
emphasize that the string typically represents a variable and monospace (f) is used to emphasize that the string typically
represents a function. We use bolded lower case (e.g. x, δ, f) to indicate a group of binary strings. We denote the function
nodes in L (e.g., APPLY, UPDATE) with uppercase.

We write f(x)→ y to mean “a program f that takes a string x as input and produces a string y as output.”

A.2. Background on algorithmic causality

The formalism of algorithmic causality derives from Janzing & Schölkopf (2010); Peters et al. (2017), which builds upon
algorithmic statistics (Gács et al., 2001). Here we directly restate or paraphrase additional relevant definitions, postulates,
and theorems from Janzing & Schölkopf (2010) and Gács et al. (2001).

A.2.1. ALGORITHMIC INFORMATION THEORY

Kolmogorov complexity Kolmogorov complexity (Solomonoff, 1960; 1964; Kolmogorov, 1965; Chaitin, 1966; 1975;
Li et al., 2008) is a function K : {0, 1}∗ → N from the binary strings {0, 1}∗ to the natural numbers N that represents the
amount of information contained in an object (represented by a binary string).

Definition 5 (Kolmogorov-complexity). Given a universal Turing machine and universal programming language as
reference, the Kolmogorov complexity K(s) is the length of the shortest program that generates s. The conditional
Kolmogorov complexity K(y | x) of a string y given another string x is the length of the shortest program that generates y
given x as input. Let the shortest program for string x be denoted as x∗. The joint Kolomogorov complexity K(x, y) is
defined as:

K (x, y)
+
= K (x) +K (x | y∗) +

= K (y) +K (y | x∗) .

The invariance theorem (Kolmogorov, 1965) states that the Kolmogorov complexities of two strings written in two different
universal languages differ only up to an additive constant. Therefore, we can assume any reference universal language for

defining K (e.g. Python) and work with equalities (+=) and inequalities (
+
≥,

+
≤) up to an additive constant.

Algorithmic mutual information Algorithmic mutual information I measures the amount of information two objects
have in common:

Definition 6 (algorithmic mutual information). The algorithmic mutual information of two binary strings x, y is

I (x : y)
+
= K (x) +K (y)−K (x, y) .

The conditional algorithmic mutual information of strings x, y given string z is

I (x : y | z) +
= K (x | z) +K (y | z)−K (x, y | z)

We can intuitively think of I(x : y | z) as, given z, the number of bits that can be saved when describing y knowing the
shortest program that generated x. Then algorithmic independence is the property of two strings that says that the description
of one cannot be further compressed given knowledge of the other.



Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Definition 7 (algorithmic conditional independence). Given three strings x, y, z, x is algorithmically conditionally
independent of y given z, denoted by x ⊥⊥ y | z, if the additional knowledge of y does not allow for stronger compression
of x, given z. That is:

x ⊥⊥ y | z ⇔ I (x : y | z) +
= 0.

We further define the joint conditional independence of strings x1, ..., xn given strings y1, ..., ym analogously:
Definition 8 (algorithmic joint conditional independence). Strings x1, ..., xn are algorithmically jointly conditionally
independent given strings y1, ..., ym if

I (x1, ..., xn | y1, ..., ym)
+
= 0, (5)

which means that

K (x1, ..., xn | y1, ..., ym)
+
=

n∑
i=1

K (xi | y1, ..., ym) , (6)

meaning that, conditioned on knowing y1, ..., ym, the length of the joint description of x1, ..., xn cannot be further com-
pressed than sum of the lengths of the descriptions of the individual strings xi. A proof of the equivalence between Eqs. 5
and 6 is given by the proof of Theorem 3 in Janzing & Schölkopf (2010).

We state as a lemma the following result from Gács et al. (2001, Corollary Π.8) that states the mutual information of strings
x and y cannot be increased by separately processing by functions f and g.
Lemma 6 (information non-increase). Let f and g be computable programs. Then

I (f(x) : g(y))
+
≤ I (x : y) +K(f) +K(g). (7)

This intuitively makes sense: if K(f) is constant with respect to x and K(g) is constant with respect to y (i.e. K(f)
+
= 0

and K(g)
+
= 0), then mutual information cannot increase between x and y separately with f and g. In particular, if x and y

were independent to begin with (i.e. I(x : y)
+
= 0), then I (f(x) : g(y))

+
= 0.

The following lemma states that the mutual information between two strings is constant if we condition on one of the strings.
Lemma 7 (self-conditioning). For two strings x and y,

I(x : y | y)
+
= 0.

Proof.

I(x : y | y)
+
= K(x | y) +K(y | y)−K(x, y | y)

+
= K(x | y) +K(y | y)− [K(x | y) +K(y | x∗, y)]

+
= K(x | y) + 0− [K(x | y) + 0]

+
= K(x | y)−K(x | y)

+
= 0.

Terminology In this paper, we regard the following statements about a program f(x)→ y as equivalent:

• “K(f)
+
= 0.”

• “f is an O(1)-length program.”

• “K(f) is constant with respect to x.”

Note that K(f)
+
= 0 implies that f and x are algorithmically independent (i.e. I(f : x)

+
= 0) because

0
+
≤ I (x : f)

+
= K (f)−K (f | x∗)

+
≤ K (f)

+
= 0.



Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

A.2.2. CAUSALITY

Before we review algorithmic causality, we first review some key concepts in standard causality: structural causal models
and d-separation.

The following definition defines standard causal models over random variables as Bayesian networks represented as directed
acyclic graphs (DAG), analogous to the algorithmic version we presented in Def. 1.

Definition 9 (structural-causal-model). A structural causal model (SCM) (Pearl, 1995; 2009) represents the assignment
of random variable X as the output of a function, denoted by lowercase monospace (e.g. f), that takes as input an
independent noise variable NX and the random variables {PAX} that represent the parents of X in a DAG:

X := f({PAX}, NX). (8)

Given the noise distributions P(NX) for all variables X in the DAG, SCM entails a joint distribution P over all the variables
in the DAG (Peters et al., 2017).

The graph-theoretic concept of d-separation is used for determining conditional independencies induced by a directed
acyclic graph (see point 3 in Thm. 8):

Definition 10 (d-separation). A path p in a DAG is said to be d-separated (or blocked) by a set of nodes Z if and only if

1. p contains a chain i→ m→ j or fork i← m→ j such that the middle node m is in Z, or

2. p contains an inverted fork (or collider) i → m ← j such that the middle node m is not in Z and such that no
descendant of m is in Z.

A set of nodes Z d-separates a set of nodes X from a set of nodes Y if and only if Z blocks every (possibly undirected) path
from a node in X to a node in Y .

A.2.3. ALGORITHMIC CAUSALITY

For convenience, we re-state the technical content from §3.1 here.

Definition 1 (computational graph). Define a computational graph G = (x,f) as a directed acyclic factor graph (DAG)
of variable nodes x = x1, ..., xN and function nodes f = f1, ...,fN . Let each xj be computed by a program fj with
length O(1) from its parents {paj} and possibly an additional noise input nj . Assume the noise nj are jointly independent:
nj ⊥⊥ {n 6=j}. Formally, xj := fj({paj}, nj), meaning that the Turing machine computes xj from the input {paj}, nj
using the additional program fj and halts.

Theorem 1 (algorithmic causal Markov condition). Let {paj} and {ndj} respectively represent concatenation of the
parents and non-descendants (except itself) of xj in a computational graph. Then ∀xj , xj ⊥⊥ {ndj} | {paj}.

Postulate 2 (faithfulness). Given sets S, T , R of nodes in a computational graph, I(S : T |R)
+
= 0 implies R d-separates

S and T .

The following theorem Janzing & Schölkopf (2010, Thm. 3) establishes the connection between the graph-theoretic concept
of d-separation with condition algorithmic independence of the nodes of the graph.

Theorem 8 (equivalence of algorithmic Markov conditions). Given the strings x1, ..., xn and a computational graph,
the following conditions are equivalent:

1. Recursive form: the joint complexity is given by the sum of complexities of each node xj , given the optimal compression
of its parents {paj}:

K(x1, ..., xn)
+
=

n∑
j=1

K(xj |{paj}∗).

2. Local Markov Condition: Every node xj is independent of its non-descendants {ndj}, given the optimal compression
of its parents {paj}:

I(xj : ndj |{paj}∗)
+
= 0.



Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

3. Global Markov Condition: Given three sets S, T , R of nodes

I(S : T |R∗) +
= 0

if R d-separates S and T .

Together, Thm. 1, Post. 2, and Thm. 8 imply that variable nodes in a computational graph are algorithmically independent if
and only if they are d-separated in the computational graph.

B. Assumptions
This section states our assumptions for the results that we prove in §D. This paper analyzes learning algorithms from the
perspective of algorithmic information theory, specifically algorithmic causality. To perform this analysis, we assume the
following, and state our justifications for such assumptions:

1. The learning algorithm is implemented in on a universal Turing machine with a universal programming language.

Justification: This is a standard assumption in machine learning research that the machine learning algorithm can
be implemented on a machine.

2. Each initial parameter of the learnable functions f is jointly algorithmically independent of the other initial parameters.

Justification: This is a standard assumption in machine learning research that the noise from the random number
generator is given background knowledge (Janzing & Schölkopf, 2010, §2.3), thus allowing us to ignore possible
dependencies among the parameters induced by the random number generator in developing our algorithms.

3. The function nodes of ACML – APPLY, UPDATE, and the internal function nodes of Π – are O(1)-length programs.

Justification: Assuming APPLY (which encompasses the transition and reward functions of the MDP, see §6.1)
is an O(1)-length program is reasonable because it is a standard assumption that they are fixed with respect to the
activations and parameters of the learning algorithm. Assuming UPDATE is an O(1)-length program is a standard
assumption in machine learning research that the source code that computes the update rule (e.g. a gradient descent
step) is agnostic to the feedback signals (e.g. gradients) it takes as input. Assuming the internal function nodes of Π
are O(1)-length programs is reasonable because these function nodes are operations in the programming language
like addition, multiplication, etc that are agnostic to the activations and parameters of the learning algorithm.

4. L is faithful. That is, any conditional independence among the data nodes (f, x, δ, and the internal variable nodes of
Π) in L is due to the causal structure of L rather than a non-generic setting of these data nodes.

Justification: Faithfulness has been justified for standard causal models (Meek, 1995). Deriving an algorithmic
analog has been the subject of ongoing work (Lemeire & Janzing, 2013; Lemeire, 2016). For our work, a violation
of faithfulness means that two nodes x, y in the computational graph have I(x : y)

+
= 0 but are not d-separated in

the computational graph. This would happen if x and y were tuned in such a way that makes one compressible given
the other. Given assumption (2) above, the source of a violation of faithfulness must be the data experienced by the
learning algorithm. Indeed, the data could be such that after learning certain parameters within f may be conditionally
independent given the training history, as suggested by Csordás et al. (2020); Filan et al. (2021); Watanabe (2019).
However, as our focus is on theoretical results that hold regardless of the data distribution the learning algorithm is
trained on, we consider the specific instances where the data does induce such faithfulness violations as “non-generic”
and thus out of scope of the paper.

C. Additional Theoretical Results
All modular credit assignment mechanisms must be factorized in the following way:
Theorem 9 (modular factorization). The credit assignment mechanism Π(τ ,f)→ δ is modular if and only if

K (δ | x,f)
+
=

T∑
t=1

K (δt | x,f) . (9)



Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

For modular credit assignment mechanisms, the complexity of computing feedback for the entire system is minimal because
all redundant information among the gradients has been “squeezed out.” This connection between simplicity and modularity
is another way of understanding why if a credit assignment mechanisms were not modular it would be impossible for Π to
modify a function without simultaneously modifying another, other than due to non-generic instances when δt has a simple
description, i.e. δt = 0, which, unless imposed, are not likely to hold over all iterations of learning.

D. Proofs
Given the assumptions stated in §B, we now provide the proofs for our theoretical results. We will prove Lemma 4 first.
Together with the faithfulness postulate (Post. 2) and the equivalence of algorithmic Markov conditions (Thm. 8) we can
prove algorithmic independence by inspecting the graph of L for d-separation.

D.1. Dynamic Modularity and the Algorithmic Causal Model of Learning

Lemma 4 (algorithmic causal model of learning). Given a model of execution E and of credit assignment C, define the
algorithmic causal model of learning (ACML) as a dynamic computational graph L of the learning process. We assume
Π has its own internal causal structure with internal variable and function nodes. The function nodes of L are APPLY,
UPDATE, and the internal function nodes of Π, all with length O(1). The variable nodes of L are x, f, δ, and internal
variable nodes of Π. Then these variable nodes satisfy the algorithmic causal Markov condition with respect to L for all
steps of credit assignment.

Proof. L is a well-defined computational graph and so by Thm. 1 it satisfies the algorithmic causal Markov condition.

Remark. By Lemma 6, if a set of data nodes in L are independent, then processing them separately with factor nodes of
L will maintain this independence. For example, given that the UPDATE operation is applied in separately for each pair
(fk,

∑
t δ
k
t ) to produce a corresponding fk′, then if (fk,

∑
t δ
k
t ) were independent of (fj ,

∑
t δ
j
t ) before applying UPDATE,

then fk′ would be independent of fj′ after applying UPDATE.

Theorem 3 (modular credit assignment). Dynamic modularity is enforced at learning iteration i if and only if static
modularity holds at iteration i = 0 and the credit assignment mechanism satisfies the modularity constraint.

Proof. We will prove by induction on i. The inductive step will make use of the equivalence between d-separation and
conditional independence.

Base case: i = 1. There is no training history, so static modularity is equivalent to dynamic modularity.

Inductive hypothesis: Assuming that dynamic modularity holds if and only if static modularity holds at i = 0 and modular
credit assignment holds for learning iteration i− 1, dynamic modularity holds if and only if static modularity and modular
credit assignment hold for learning iteration i.

Inductive step: The modularity constraint states

I (δ1, ..., δM | xi,fi)
+
= 0.

Dynamic modularity at iteration i− 1 states that

∀k 6= j, I
(
fk,i : fj,i

∣∣ xi−1,fi−1
) +

= 0.

These two above statements correspond to the computational graph in Fig. 8. Note that by Def. 8, disjoint subsets of
δ1, ..., δT also have have zero mutual information up to an additive constant. Letting these subsets be

∑
t δ
k
t where k is the

index of function fk in f, then

I

(∑
t

δ1t , ...,
∑
t

δNt

∣∣∣∣∣ xi,fi

)
+
= 0. (10)

Then, as we can see by direct inspection in Fig. 8, fki and fji are d-separated by (xi,fi), which is equivalent to saying that
dynamic modularity holds for iteration i.



Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Figure 8: This figure shows the computation graph of L across one credit assignment update. Inputs to the credit assignment mechanism
are shaded. A modular credit assignment mechanism (shown with blue edges) is equivalent to showing the gradients δt as conditionally
independent, as shown by the plate notation labeled with T . Dynamic modularity at iteration i − 1 is equivalent to showing that the
functions fk,i are inside the plate labeled with N . Then because the UPDATE operation, shown with yellow edges, operates only within
the plate labeled with N , the updated functions fk,i+1 are also conditionally independent given (x,f).

Theorem 5 (modularity criterion). If L is faithful, the modularity constraint holds if and only if for all i, outputs δt and
δ 6=t of Π are d-separated by its inputs x and f.

Proof. The forward direction holds by the equivalence of algorithmic causal Markov conditions (Thm. 8), and the backward
direction holds by the faithfulness assumption.

Theorem 9 (modular factorization). The credit assignment mechanism Π(τ ,f)→ δ is modular if and only if

K (δ | x,f)
+
=

T∑
t=1

K (δt | x,f) . (11)

Proof. The proof comes from the definition of algorithmic mutual information.

K (δ | x,f)
+
=

M∑
t=1

K (δt | x,f) (12)

M∑
t=1

K (δt | x,f)−K (δ | x,f)
+
= 0 (13)

I (δ1, ..., δM | x,f)
+
= 0. (14)

D.2. Modularity in Reinforcement Learning

In the following, we sometimes use bt instead of bs to reduce clutter.

Corollary 5.1 (policy gradient). All policy gradient methods do not satisfy the modularity criterion.

Proof. It suffices to identify a single shared hidden variable that renders δ1, ..., δT not d-separated. Computing the policy
gradient includes the log probability of the policy as one of its terms. Computing this log probability for any action
involves the same normalization constant

∑
k b

k. This normalization constant is a hidden variable that renders δ1, ..., δT not
d-separated, as shown in Fig. 9.



Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Figure 9: This figure shows part of the computational graph within Π for policy gradient methods. Conditioning on x implies we
condition on the lightly shaded nodes.

∑
k b

k
t is the shared hidden variable that renders δ1, ..., δT not d-separated.

Corollary 5.2 (n-step TD). All TD(n > 1) methods do not satisfy the modularity criterion.

Proof. It suffices to identify a single shared hidden variable that renders δ1, ..., δT not d-separated. TD(n > 1) methods
include a sum of estimated returns or advantages at different steps of the decision sequence that is shared among multiple
δt’s. This sum is the hidden variable that renders δ1, ..., δT not d-separated, as shown in Fig. 10.

Figure 10: This figure shows part of the computational graph within Π for TD(n > 1) methods. Conditioning on x implies we condition
on the lightly shaded nodes.

∑
t rt is the shared hidden variable that renders δ1, ..., δT not d-separated.

Corollary 5.3 (single-step TD). TD(0) methods satisfy the modularity criterion for acyclic x.

Proof. If the decision mechanism fk were selected (i.e. wkt = 1) at step i, TD(0) methods produce, for some function g,
gradients as δkt := g(bkt , st, st+1, rt,f). Otherwise, δkt := 0. The only hidden variable is [maxj b

j
st+1

], and for acyclic x
there is only one state st in x that transitions into st+1. Therefore the hidden variable is unique to each of δ1, ..., δt, so
δ1, ..., δt remain d-separated, as shown in Fig. 11.

Corollary 2.1 (tabular). In the tabular setting, Thm. 3 holds for Q-learning, SARSA, and CVS.

Proof. In the tabular setting, decision mechanisms are columns of the Q-table corresponding to each action. These columns
do not share parameters, so static modularity holds. Then because Q-learning, SARSA, and CVS are TD(0) methods, by
Corollary 5.3, their credit assignment mechanisms are modular. Therefore Thm. 3 holds.

Corollary 2.2 (function approximation). In the function approximation setting, Thm. 3 holds for TD(0) methods whose
decision mechanisms do not share parameters.

Proof. The decision mechanisms of CVS do not share weights, so static modularity holds. By Corollary 5.3 its credit
assignment mechanism is modular. Therefore Thm. 3 holds.



Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

Figure 11: This figure shows part of the computational graph within Π for on-policy and off-policy TD(0) methods. Conditioning on
(x,f) implies we condition on the lightly shaded nodes. For on-policy methods such as CVS and SARSA, the hidden variable would be
maxk b

k
t+1 for CVS and the bid corresponding to the decision mechanism that was sampled through ε-greedy for SARSA. The figure

shows maxk b
k
t+1 for concreteness. For off-policy methods such as Q-learning, the bids bt+1 are computed from st+1 and f, both of

which we condition on. In both cases, the hidden variable is only parent to one of the δt’s, and thus the δ1, ..., δT remain d-separated.

E. Simulation Details
We implemented our simulations using the PyTorch library (Paszke et al., 2019).

E.1. Implementation Details

The underlying PPO (Schulman et al., 2017) implementation used for CVS, PPO, and PPOF used a policy learning rate of
4× 10−5, a value function learning rate of 5× 10−3, a clipping ratio of 0.2, a GAE (Schulman et al., 2015) parameter of
0.95, a discount factor of 0.99, entropy coefficient of 0.1, and the Adam (Kingma & Ba, 2014) optimizer. For all algorithms,
the policy and value functions for our algorithms were implemented as fully connected neural networks that used two
hidden layers of dimension 20, with a ReLU activation. All algorithms performed a PPO update every 4096 samples with a
minibatch size of 256.

E.2. Training Details

All learning curves are plotted from ten random seeds, with a different learning algorithm represented by a different hue.
The dark line represents the mean over the seeds. The error bars represent one standard deviation above and below the mean.

Our protocol for transfer is as follows. A transfer problem is defined by a (training, transfer) task pair, where the initial
network parameters for the transfer task are the network parameters learned the training task for H samples. In our
simulations, we set H to 107 because that was about double the number of samples for all algorithms to visually converge
on the training task for all seeds. To calculate the relative sample efficiency of CVS over PPO and PPOF (e.g. 13.9x and
6.1x respectively in the bottom-up right corner of Fig. 5), we set the criterion of convergence as the number of samples after
which the return deviates by no more than ε = 0.01 from the optimal return for 30 epochs of training, where each epoch of
training trains on 4096 samples.

E.3. Environment Details

The environment for our experiments shown in Figs. 4 and 5 are represented as discrete-state, discrete-action MDPs. Each
state is represented by a binary-valued vector.

The structure of the MDP can best be explained via an analogy to a room navigation task, which we will explain in the
context of the A→ B → C task in the linear chain topology. In this task, there are four rooms, room 0, room 1, room 2,
and room 3. Room 0 has two doors, labeled A and F , that lead to room 1. Room 1 has two doors, labeled B and E, that lead
to room 2. Room 2 has two doors, labeled C and D. Doors are unlocked by keys. The state representation is a concatenation
of two one-hot vectors. The first one-hot vector is of length four; the “1” indicates the room id. The second one-hot vector is



Modularity in Reinforcement Learning via Algorithmic Independence in Credit Assignment

of length six; the “1” indicates the presence of a key for door A, B, C, D, E, or F . Only one key is present in a room at any
given time. If the agent goes through the door corresponding to the key present in the room, then the agent transitions into
the next room; otherwise the agent stays in the same room. In the last room, if the agent opens the door corresponding to the
key that is present in the room, then the agent receives a reward of 1. All other actions in every other state receive a reward
of 0. Therefore the agent only gets a positive reward if it opens the correct sequence of doors. For all of our experiments, the
optimal policy is acyclic, but a suboptimal decision sequence could contain cycles.

Therefore, for the training task in the linear chain topology where the optimal solution is A → B → C, the optimal
sequence of states are

[1, 0, 0, 0 ; 1, 0, 0, 0, 0, 0] # room 0 with key for A
[0, 1, 0, 0 ; 0, 1, 0, 0, 0, 0] # room 1 with key for B
[0, 0, 1, 0 ; 0, 0, 1, 0, 0, 0] # room 2 with key for C.

For the transfer task whose optimal solution is A→ B → D, the optimal sequence of states are

[1, 0, 0, 0 ; 1, 0, 0, 0, 0, 0] # room 0 with key for A
[0, 1, 0, 0 ; 0, 1, 0, 0, 0, 0] # room 1 with key for B
[0, 0, 1, 0 ; 0, 0, 0, 1, 0, 0] # room 2 with key for D.

Whereas for the linear chain topology the length of the optimal solution is three actions, for the common ancestor and
common descendant topologies this length is two actions. Common ancestor and common descendant are multi-task
problems. As a concrete example, the training task for common ancestor is a mixture of two tasks, one whose optimal
solution is A→ B and one whose optimal solution is A→ C. Following the analogy to room navigation, this task is set up
such that after having gone through door A, half the time there is a key for door B and half there is a key for door C.

E.4. Computing Details

For our experiments, we used the following machines:

• AWS: c5d.18xlarge instance

• Azure: Standard D64as v4 (64 vcpus, 256 GiB memory), 50GiB Standard SD attached.

The average runtime training on 107 samples was three hours for PPO and PPOF and 6 hours for CVS.


