
Differentiable Spatial Planning using Transformers

A. Background: Transformers
The proposed spatial planning method is based on the Trans-
former model (Vaswani et al., 2017). A Transformer layer,
denoted by fTL, takes a tensor X 2 R

d⇥S as input, where
d is the embedding size and S is the size of the input. It
consists of two sublayers, a multi-head self-attention layer
(fSA) and a position-wise fully connected layer (fFC). There
is a residual connection around each sublayer, followed by
layer normalization (Ba et al., 2016) (LN):

R = LN(fSA(X) +X), Y = fTL(X) = LN(fFC(R) +R)

where R, Y 2 R
d⇥S are the intermediate and final repre-

sentations, respectively.

The multi-head self-attention (fSA) layer has h attention
heads, each computes a scaled dot-product attention over
queries Q, keys K and values V , which are all different
projections of the input X:
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where Q,K 2 R
dk⇥S , V 2 R

dv⇥S , i 2 1, 2, . . . , h dk

and dv are hyper-parameters and all W s are parameters.
The output of all attention heads, Zis, are concatenated and
projected to the same dimension as the input. Finally, the
position-wise fully connected (fFC) layer applies two linear
transformations to each position with a ReLU activation to
the output of the multi-head attention.

B. Dataset Details
We generate synthetic datasets for training the spatial plan-
ning models for both navigation and manipulation settings.
For the navigation setting, we perform experiments with
M ⇥M maps with two different map sizes, M 2 {15, 30}.
We randomly generate omin = 0 to omax = 5 obstacles
in each map, where each obstacle is an rectangle at a ran-
dom location with each side being a random length from
1 to M/2. All the rectangular obstacles are rotated in two
random orientations.

For the manipulation setting, we consider a reacher task
using a planar arm with 2 degrees of freedom. We use an
operational space of size P ⇥ P . Each link of the arm is
of size P/4. The arm is centered at the center of the opera-
tional space. Let the orientation of two links be denoted by
✓1 and ✓2. We assume both the links can freely rotate in a
plane, ✓1, ✓2 2 [0, 2⇡). For each environment, we generate
omin = 0 to omax = 5circular obstacles centered at a ran-
dom location 0.25P to 0.75P distance away from the center,
with a random radius between 0.05P and D�0.15P where
D is the distance of the center of the obstacle from the center

of the operational space. We convert each environment to a
configuration space map of size M ⇥M , where each cell
(i, j) denotes whether the arm will collide with an obstacle
when ✓1 = 2⇡i/M and ✓2 = 2⇡j/M . We experiment with
two map sizes, M 2 {18, 36}, corresponding to 20� and
10� bins for each link. The choice of P does not affect the
map as the collision check for each cell in the configura-
tion space is performed in the continuous operational space
where all distances are relative to P .

C. Navigation Mapper Architecture Details
The Navigation Mapper module predicts a single value be-
tween 0 and 1 for each image in o indicating whether the
cell in the front of the image is an obstacle or not. The
architecture of the Navigation mapper consists of ResNet18
convolutional layers followed by 3 fully-connected layers
of size 256, 128, and 1 as shown in Figure 8. Each cell can
have up to 4 predictions (from images corresponding to the
four neighboring cells facing the current cell), which are
aggregated using max-pooling to get a single prediction.

Figure 8. Navigation Mapper Architecture. Figure showing the
architecture of the Navigation Mapper.

D. Attention Visualization
We show the visualization of attention maps corresponding
to two different locations in Figure 9. Interestingly, we
noticed three consistent patterns: a) at least one of the at-
tention head out of eight captures obstacles (left), b) one of
the attention heads focuses on goal location (middle), and
c) some attention maps focus on nearby obstacles to get
accurate planning distance (right).

E. Examples
We show additional examples for navigation task for in-
distribution test set (in Figure 10), out-of-distribution More
Obstacles test set (in Figure 11) and Real-World test set (in
Figure 12) each with map size M = 30. Additional exam-
ples for manipulation task are shown for in-distribution test
set (in Figure 13) and for out-of-distribution More Obstacles
test set (in Figure 14).

We also visualize examples for the end-to-end mapping and
planning experiments for the manipulation task. We show
examples of map and action distance predictions using the
SPT model trained with dense and perfect supervision in
Figure 15 and with noisy and sparse supervision in Fig-
ure 16.
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Figure 9. Attention Visualization. Visualization of the attention heads learned by Spatial Planning Transformers. SPTs learn an attention
for each location in the map with respect to every other location.

Figure 10. Navigation in-distribution test set examples. Figure showing 3 examples of the input, the predictions using the proposed
SPT model and the baselines, and the ground truth for the Navigation in-distribution test set for map size M = 30.
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Figure 11. Navigation out-of-distribution More Obstacles test set examples. Figure showing 3 examples of the input, the predictions
using the proposed SPT model and the baselines, and the ground truth for the Navigation out-of-distribution More Obstacles test set for
map size M = 30.

Figure 12. Navigation out-of-distribution Real-World test set examples. Figure showing 3 examples of the input, the predictions using
the proposed SPT model and the baselines, and the ground truth for the Navigation out-of-distribution Real-World test set for map size
M = 30.
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Figure 13. Manipulation in-distribution test set examples. Figure showing 3 examples of the input, the predictions using the proposed
SPT model and the baselines, and the ground truth for the Manipulation in-distribution test set for map size M = 36.

Figure 14. Manipulation out-of-distribution More Obstacles test set examples. Figure showing 3 examples of the input, the predictions
using the proposed SPT model and the baselines, and the ground truth for the Manipulation out-of-distribution More Obstacles test set for
map size M = 36.
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Figure 15. Dense and Perfect Supervision. Figure showing examples of map and distance predictions using the SPT model trained with
dense and perfect action-level supervision.

Figure 16. Sparse and Noisy Supervision. Figure showing examples of map and distance predictions using the SPT model trained with
sparse and noisy action-level supervision.


