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Abstract
Learning sensorimotor control policies from high-
dimensional images crucially relies on the quality
of the underlying visual representations. Prior
works show that structured latent space such as
visual keypoints often outperforms unstructured
representations for robotic control. However,
most of these representations, whether structured
or unstructured are learned in a 2D space even
though the control tasks are usually performed
in a 3D environment. In this work, we propose
a framework to learn such a 3D geometric
structure directly from images in an end-to-
end unsupervised manner. The input images
are embedded into latent 3D keypoints via
a differentiable encoder which is trained to
optimize both a multi-view consistency loss and
downstream task objective. These discovered
3D keypoints tend to meaningfully capture
robot joints as well as object movements in
a consistent manner across both time and 3D
space. The proposed approach outperforms
prior state-of-art methods across a variety of
reinforcement learning benchmarks. Code and
videos at https://buoyancy99.github.
io/unsup-3d-keypoints/.

1. Introduction
Learning to act from raw, high-dimensional observations
like images is arguably the only viable way to scale sen-
sorimotor control to complex real-world setups. However,
the main challenge lies in figuring out the representation of
these observations upon which the agent’s policy is to be
learned. The conventional wisdom today is to learn these
representations either via task supervision in an end-to-end
manner (Mnih et al., 2015a; Lillicrap et al., 2016) or via
auxiliary loss functions (Jaderberg et al., 2016; Pathak et al.,
2017; Laskin et al., 2020b). Although such representation
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Figure 1. We propose an end-to-end framework for unsupervised
learning of 3D keypoints from multi-view images. These keypoints
are discovered to jointly optimize both multi-view reconstruction
and downstream task performance. Our learned keypoints are
consistent across 3D space as well as time.

learning paradigms are successful in vision (Krizhevsky
et al., 2012), speech (Oord et al., 2016) or language (De-
vlin et al., 2018), they suffer from two key issues in case
of robot learning. First, the representations tend to become
specific to both the task and the visual environment, thus,
any change in the visual input affects the generalization of
the learned representations as well as policy. Second, these
latent features do not capture the fine-grained location and
orientation of objects or robot joints which is indispensable
for robotic control in complex scenarios. This is in contrast
to sensorimotor representations in humans which have ex-
plicit notions of objects, their relationships, 3D reasoning,
and geometry (Spelke & Kinzler, 2007).

Motivated by the need to capture fine-grained abstractions
from visual data, a popular approach is to use keypoint-
based representations. Keypoints are represented in Eu-
clidean coordinates and provide a natural way to represent
the kinematic structure of both the agent and the environ-
ment. Furthermore, keypoint- or particle-based representa-
tion provides an ideal way to represent deformable objects
like cloth for precise robotic manipulation (Clegg et al.,
2017; Sundaresan et al., 2020) but these keypoints are often
hand-selected by human labelers which is expensive and
hinders scalability. Some prior methods try to alleviate this
problem (Minderer et al., 2019; Kulkarni et al., 2019) by
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Figure 2. Overview of our Keypoint3D algorithm. (a) For each camera view, a fully convolutional neural network encodes the input image
into K heat maps and depth maps. (b) We then treat these heat maps as probabilities to compute expectation of spatial uv coordinates in
camera plane. These expected values and the saptial variances are used to resample final uv keypoint coordinates which adds noise that
prevents the decoder from cheating to hide the input information in the relative locations uv keypoints. We also take expectation of depth
coordinate, d, using the same probability distribution. These [u, v, d] coordinates are then unprojected into the world coordinate. (c) We
take attention-weighted average of keypoint estimations from different camera views to get a single prediction in the world coordinate. (d)
For decoding, we project predicted keypoints in world coordinate to [u, v, d] in each camera plane. (e) Each keypoint coordinate is mapped
to a gaussian map, where a 2D gussian is created with mean at [u, v] and std inversely proportional to d. For each camera, gaussian maps
are stacked together and passed into decoder to reconstruct observed pixels from the camera. (f) Together with reconstruction, we also
jointly train a task MLP policy on top of predicted world coordinates via reinforcement learning.

learning keypoints in an unsupervised and task-agnostic
manner, however, the keypoints are defined in the image
coordinate space in 2D. This limits the agent’s ability to per-
form 3D reasoning and occlusion handling which is vital in
partially observable or even fully observable environments
as the tasks are performed in a 3D world.

An alternative approach to capture 3D is to leverage struc-
ture from motion (Wei et al., 2020) to aggregate multi-view
information. Recent works (Manuelli et al., 2019; 2020)
learn keypoints by solving for 3D correspondence across
views via multi-view stereo but the keypoint discovery phase
is performed separately from control and not learned in an
end-to-end manner. However, different tasks may demand
different parts of the scene to be keypoints. For example, if
a robot is to pick up a cup, its handle would be a keypoint
but if something is to be poured into it, 3D keypoints should
capture its interior circumference. How can we have the
best of all worlds: fine-grained keypoints, 3D reasoning,
and unsupervised, end-to-end, joint training with control?

In this work, we propose an end-to-end framework for un-
supervised discovery of 3D keypoints from images that are

learned directly via the task performance, shown in Figure 1.
For such an approach to be general as well as successful,
it should satisfy three properties: (a) Consistency across
3D space: the learned keypoints should capture the same
3D location in the world coordinate from different views
of the same scene. (b) Consistency across time: the same
keypoint should track the corresponding entity consistently
across different timesteps of trajectory rollout. (c) Joint
learning with control: 3D keypoints should be learned
such that they are directly useful for the end-task perfor-
mance. We conceptually integrate these properties within a
common mathematical framework.

Given an input image from a camera view, we first predict
keypoint locations and depth in the image space. These
keypoints from different views of the same scene are then
aggregated using camera information to obtain a global
world coordinate of each keypoint via a differentiable unpro-
jection operation. The consistency across views is learned
via multi-view consistency loss that ensures the keypoint
from different view maps to common world coordinate. This
global coordinate is then projected back into the image plane
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of each camera view to reconstruct the original input image
of the same view. This setup creates a differentiable 3D
keypoint bottleneck upon which the agent’s control policy is
trained via reinforcement learning. The keypoint extraction
and agent’s policy are optimized jointly in an end-to-end
manner as shown in Figure 2. We refer to our unsupervised
algorithm as Keypoint3D in short.

We evaluate Keypoint3D across a variety of reinforcement
learning benchmark environments, and we perform the fol-
lowing analyses. We first investigate how well our Key-
point3D representations perform compared to other repre-
sentations for RL. Second, we test the scalability to higher
dimensional control problems. Third, we show that our Key-
point3D based policy is capable of manipulating deformable
objects as evident from results on a task where a robot
must put a scarf around a human mannequin. Finally, we
show that our Keypoint3D representations generalize across
tasks as well. Our method outperforms prior state-of-the-art
across almost all the environments and our ablation study
demonstrates its robustness across several design choices.

2. Unsupervised Learning of 3D Keypoints
We use a multi-view encoder-decoder architecture to learn
3D keypoints without supervision. Given N cameras from
different views of a same scene, we associate an encoder
and a decoder with each camera. We provide three dis-
tinct sources of unsupervised training signal for learning of
the Keypoint3D representation: (1) We force the predicted
keypoints across encoders to be geometrically consistent
in 3D by encouraging the different view-specific keypoint
coordinates to unproject to the same point in 3D space. (2)
We impose an image reconstruction loss, which penalizes
inaccurate reconstructions from the decoder. (3) We use
the reward incurred by the RL policy that takes as input
the learned keypoints, and backpropagate the reward signal
through the weights of the encoder.

2.1. Preliminaries

Let In ∈ RH×W×C be the image observation from camera
n ∈ 1...N with extrinsic matrix Vn and intrinsic matrix
Pn. Let K be the number of keypoints we intend to detect.
Keypoints are indexed with k = 1...K. For a 3D point
[x, y, z]> in world coordinate, we can use extrinsic matrix
Vn and perspective intrinsic matrix Pn to project it to camera
coordinate [u, v, d]> for camera n, where u, v ∈ [0, 1] is
a normalized coordinate on camera plane and d > 0 is
the depth value of that point from camera plane. Let the
operator Ωn : [x, y, z]> → [u, v, d]> denote this projection,
and let its inverse Ω−1n : [u, v, d]> → [x, y, z]> denote the
unprojection operator that maps a camera coordinate to a
world coordinate. Both Ωn and Ω−1n are differentiable and
can be expressed analytically.

2.2. Differentiable 3D Keypoint Bottleneck

We want to leverage the spatial inductive bias of our
fully convolutional auto-encoder yet ensure the latent
learned latent representation is in the form of xyz coordi-
nates rather than feature maps. To achieve this, we need
a differentiable keypoint bottleneck that maps from dense
maps to sparse coordinates. While a extraction for world co-
ordinates is not possible from encoded feature space directly,
(Jakab et al., 2018) offers a way to parameterize points in uv
coordinates on camera plane using spatial probability. We
can add depth prediction to the uv coordinate prediction and
extract world coordinate using projection geometry.

Keypoint Detector For each camera n, we pass In into
a fully convolutional encoder φn to get K confidence
maps Ckn ∈ RS×S , k = 1...K and depth maps Dk

n ∈
RS×S , k = 1...K. For each confidence map Ckn, we can
take a spatial softmax to compute a probability heatmapHk

n:

Hk
n(i, j) =

exp(Ck
n(i,j))∑S

p=1

∑S
q=1 exp(Ck

n(p,q))
. Each entry in heatmap

Hk
n ∈ RS×S represents the probability of a 3D keypoint

k to be at that position on the 2D image plane if viewed
from camera n. Each depth map Dk

n is a dense prediction
of distance from camera plane for 3D keypoint k being at
each position.

For each pair of heatmap Hk
n and depth map Dk

n, we can
extract the expected 3D position of the k-th keypoint in the
nth camera’s coordinate. We can calculate the expected
[u, v, d] camera coordinate over the probability map using
the following equations. Note that crucially, we are taking
an expectation over the map of coordinates, with weights
given by the predicted heatmap values.

E[ukn] =
1

S

∑
u,v

u ·Hk
n(u, v); E[vkn] =

1

S

∑
u,v

v ·Hk
n(u, v)

E[dkn] =
S∑
u=1

S∑
v=1

Dk
n(u, v) ·Hk

n(u, v)

Let [ûkn, v̂
k
n, d̂

k
n]> = [E[ukn],E[vkn],E[dkn]]>. We found one

way for the system to not capture meaningful 3D keypoints
is cheating to hide the information about input image in the
relative locations keypoint to each other. To avoid this issue,
we do not use the exact keypoint locations predicted by the
encoder but resample them from by assuming a gaussian dis-
tribution around the mean keypoint with standard deviation
computed via spatially across the heatmap. This adds some
stochasticity in the exact location of keypoint coordinates
preventing the collapse. More details of this resampling
process are in the appendix.

Attention After predicting keypoints in each of our n
camera coordinate frames, we need a way to combine the n
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coordinates into one. A naive approach is to simply average
the predictions from each view. However, certain keypoints
might be occluded from certain view points, and might
thus get predicted poorly. To address this, we repurpose our
predicted confidence maps in order to compute weights for a
weighted average. This allows us to ignore the less confident
keypoint estimations which may hurt the task performance.

Recall that the (i, j) entry of the confidence map Ckn de-
notes the predicted log likelihood of keypoint k appearing
at pixel (i, j) in the image from camera n. We then assign
a “confidence score” for the n-th encoder’s prediction for
keypoint k. This score is proportional to the mean of the
confidence map Ckn, and the scores of the k keypoints are
normalized to sum to 1 via a softmax:

Akn =
exp( 1

S2

∑S
p=1

∑S
q=1 C

k
n(p, q))∑K

i=1 exp( 1
S2

∑S
p=1

∑S
q=1 C

i
n(p, q))

Extracting world coordinates Given predicted key-
points [ûkn, v̂

k
n, d̂

k
n]>, n = 1...N, k = 1...K in camera co-

ordinats, we can then unproject them to world coordinates
using [x̂kn, ŷ

k
n, ẑ

k
n]> = Ω−1n ([ûkn, v̂

k
n, d̂

k
n]>). This is the pre-

dicted world coordinate of the kth keypoint conditioned on
the image from camera n. For each keypoint, we have N
independent predictions from N cameras. We then take an
average over these predictions for each keypoint weighted
with normalized confidence, that is

[x̄k, ȳk, z̄k]> =

N∑
n=1

Akn∑N
m=1A

k
m

· [x̂kn, ŷkn, ẑkn]>

Keypoint Decoder To also leverage spatial inductive bias
for the decoder, we need to give keypoint coordinates spatial
structure again before passing them into the decoder. This
can be achieved by reprojecting 3D keypoints to each image
view again and constructing a 2D gaussian for each keypoint
on the camera plane. We reproject all K keypoints in world
coordinate to theN camera planes to regain spatial structure
before decoding. Using the projection operator, for each
camera and keypoint we can get [ū, v̄, d̄]> = Ωn([x̄, ȳ, z̄]>).
To regain spatial structure, for each camera and keypoint we
create Gaussian maps Gkn ∈ RS×S . Each Gaussian map is a
2D gaussian with mean [ū, v̄]> and covariance matrix I2/d̄,
where I2 is the 2 × 2 identity matrix. This matrix makes
closer point have a larger spatial span in the gaussian map
corresponding to that camera. Let us define averaged atten-
tion across all views as Āk = 1

N

∑N
n=1A

k
n. The decoderψn

for each camera takes the stacked Gaussian maps Gn to pre-
dict In where Gn = K · stack([G1

nĀ
1
n, G

2
nĀ

2
n...G

K
n Ā

K
n ]).

The decoder ψn then decodes the stacked Gaussian maps to
reconstruct the observed image.

Algorithm 1 Keypoint3D: RL with 3D Keypoint Bottleneck

Bobs ← Ø
for update = 1, 2... do
Brollout ← Ø
for actor = 1, 2..., N do

Run policy πθold for T steps to get (s, a, r)1...T
Bobs ← s1...T ∪Bobs
Brollout ← (s, a, r)1...T ∪Brollout

end for
for i = 1, 2...p do

Optimize Lunsup with s ∼ Bobs wrt θae
end for
Compute advantage estimates Â1:N,1:T for Brollout
for epoch = 1, 2...q do

Optimize Lpolicy + Lunsup throughout Brollout
end for
θold ← θ

end for

2.3. Losses for Training 3D Keypoint Encoder

Our Keypoint3D approach jointly optimizes the multi-view
reconstruction via unsupervised learning and the task policy
via reinforcement learning. We backpropagate the sum
of unsupervised learning loss and policy loss to train the
Keypoint3D pipeline. The unsupervised losses have three
components as defined below.

Multi-view Auto Encoding Loss We encourage the key-
points to track important entities and structures. An Auto-
encoding loss has been shown to be useful for this, as
the architectural bottleneck forces the latent representation
to capture the most salient aspects of the scene: Lae =∑N
n=1 ||ψn(Gn)− In||2.

Multi-view Consistency Loss We enforce that for each
keypoint k, the camera-frame coordinates of the keypoint k
from each of the n encoders all have identical 3D world co-
ordinates. We use a multi-view consistency loss to penalize
disagreement between predictions from different views:

Lmulti =

K∑
k=1

N∑
i=1

N∑
j=1

||[x̂ki , ŷki , ẑki ]>−sg([x̂kj , ŷ
k
j , ẑ

k
j ]>)||2

where sg is the stop gradient operator.

Seperation Loss Finally, the keypoints should not col-
lapse together and should keep a distance from each other
to effectively track different objects in the scene:

Lsep =
1

K2

K∑
i=1

K∑
j=1

1

1 +M ∗ ||[x̄i, ȳi, z̄i]> − [x̄j , ȳj , z̄j ]>||22

where M is a positive value chosen to be 1000.
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Figure 3. Plots show the performance of Keypoint3D on 8 metaworld environments with varying difficulty compared to different
representation learning methods. Mean and standard error are shown across 4 random seeds for each environment. Our 3D keypoint
method outperforms the strongest baseline, RAD, on 5 out of the 8 environments while being similiar in the rest.

Finally, the total unsupervised learning loss is:

Lunsup = λae · Lae + λmulti · Lmulti + λsep · Lsep

2.4. Joint Learning of 3D Keypoints with Control

We integrate our 3D keypoint learning with PPO (Schulman
et al., 2017) so a control policy can be trained jointly on
top of learned keypoints. We keep an observation buffer for
all observed images. Before each policy gradient update,
we train unsupervised learning from observations sampled
from this buffer for several steps, updating encoder and de-
coder parameters θae with Lunsup. During policy gradient
update, we optimize all parameters with the sum of policy
loss Lpolicy and unsupervised learning loss Lunsup. The
policy is learned on top of keypoints represented in world
coordinates which can have arbitrary scaling and can hurt
the training process. To handle this, we renormalize the
values of predicted 3D keypoints before feeding them to
actor and critic network. Pseudo code for the method is
provided in Algorithm 1 with our addition in magenta color.

Temporal Consistency of 3D Keypoints In many pixel-
observation environments that requires temporal reasoning,
a common technique is stacking adjacent frames as obser-
vation (Mnih et al., 2015b). In our method, we use the
technique but also apply the same keypoint detector on each

frame independently with shared encoder weights. The re-
sult is thus stacked keypoints across frames. We compute
a difference vector indicating keypoint movements across
adjacent frames and concatenate it with latest keypoints
before feeding into fc layers of policy network. Note we
further add data augmentation which forces the keypoint to
be consistent across different appearances, thereby granting
consistency over time. We also tried adding a temporal pre-
diction loss but it didn’t help because of sufficient temporal
tracking signal from the data augmentations.

2.5. Data Augmentation as a Self-Supervisory Signal

Because the keypoint uv coordinates have explicit geo-
metric interpretations, we can leverage data augmenta-
tion (Krizhevsky et al., 2012) to provide additional self-
supervision. The core intuition is that, when the input image
is translated, the predicted keypoints, projected on camera
plane, should also get translated by the same amount. Be-
cause the random shift operator, f , effectively transforms
heatmap coordinates from the original unshifted image, we
apply a reverse transformation, f−1, on the E[ukn], E[vkn] be-
fore unprojection to world coordinate. Before constructing
gaussian maps, f is applied to reprojected keypoints again
to map them back to the shifted coordinate. The random
translation with shift offset plays a critical role in getting
high quality keypoints.
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3. Experimental Setup
We evaluate our method on a variety of 3D control tasks with
three-camera pixel observation. A reinforcement learning
policy is trained jointly with unsupervised 3D keypoint
learning as described in Section 2.4. We choose a set of
3D manipulation environments (Yu et al., 2019), a high-dof
3D locomotion environment (Coumans & Bai, 2016–2019),
a customized soft-body environment and a meta-learning
benchmark (Yu et al., 2019) to evaluate our method from
different perspectives. These environments are originally
developed for state based RL and are hard tasks for pixel
based RL. We setup three third-person-view cameras in the
scene such that most objects are visible from all three views.
More details in the appendix.

We compare Keypoint3D with a variety of visual reinforce-
ment learning algorithms. All the baselines, including Key-
point3D, are implemented on top of PPO (Schulman et al.,
2017) with the same CNN architecture and algorithm hyper-
parameters. We stack images from all three view as ob-
servation for the baselines: (1) RAD (Laskin et al., 2020a)
is the state-of-art method for pixel based reinforcement
learning. It achieves high sample efficiency through data
augmentation. (2) CURL (Laskin et al., 2020b) trains rein-
forcement learning on top of learned representation through
contrastive learning. (3) Vanilla PPO is the original PPO al-
gorithm (Schulman et al., 2017) with a CNN architecture to
take in image observations. (4) Keypoint 2D is PPO-based
implementation of (Minderer et al., 2019). We choose the
number of 2D keypoint to be 3/2 of that of 3D keypoints so
both methods have same number of coordinate bits.

4. Results and Analysis
We investigate following questions: a) How well does our
3D keypoint representation compare to other representations
for policy learning? b) How well does our 3D keypoint
method scale to high dimensional control from high dimen-
sional observations? c) How well does our method adapt to
deformable object manipulation where keypoints are more
desirable but harder to track? d) How well does our 3D
keypoint representation generalize to unseen setups?

4.1. Accuracy and Efficieny of 3D Keypoints

We select 8 tasks of varying difficulty from meta-world, each
featuring 50 random configurations. As shown in Figure 3,
our method out performs the state-of-art method RAD by a
margin in 5 out of the 8 environments while having similar
performance in rest of the environments.

CURL and vanilla PPO performed poorly on all 8 visual
metaworld environments. Vanilla PPO and RAD usually
perform well in easier tasks where a camera attached to end
effector will suffice. Such setups assume a strong inductive
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Figure 4. Benchmark reinforcement learning on Pybullet Ant
(Left), a highly dynamical environment where fine-grained un-
derstanding of movable joints and parts are essential. Colorless
Ant(Right) is a modified version without homogeneous limb colors
to evaluate our method in low-texture setting.

bias that a big change in task space, such as reward, is
associated with large pixel space change, such as an object
that occupies half of the camera image. In a third person
view setup such inductive bias is no longer true and a change
in task space can correspond to an insignificant change in
pixel space, if at a distance from camera. RAD mitigates this
problem by using data augmentation to let encoder focus
on a larger set of global features yet still doesn’t explicitly
distill structure of the scene. In contrast, our method uses
keypoints to distill the fine-grained movement of all moving
components in the scene. 2D Keypoint performs better
than CURL and Vanilla PPO but didn’t outperform our 3D
Keypoint method. This is likely because, in metaworld
environments, objects can get very close to camera and
show a large surface, which can be a problem for the 2D
Keypoint representation (Minderer et al., 2019) as it uses a
fixed spatial variance in Gaussian map. Our 3D Keypoint
method significantly mitigates the problem by assigning
large spatial variance in gaussian map for closer objects,
telling the decoder the presence of a potential large surface.

4.2. Scaling to High-Dimensional Control

To evaluate our method on high dimensional control, we
choose a highly dynamical 3D-locomotion environment,
Pybullet (Coumans & Bai, 2016–2019) Ant, where fine-
grained understanding of movable joints and parts are essen-
tial. As locomotion environments require temporal reason-
ing, we use a frame stack of 2. The original ant environment
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Figure 5. Left: Learning curve on scarf manipulation environment.
Our Keypoint3D approach outperforms all the prior works consis-
tently. Right: Scarf manipulation environment. The objective is to
wind the scarf around human neck for one and a half full circle.

in Pybullet assigns different colors to adjacent limbs. To fur-
ther show that our method is robust to low-textured objects,
we also benchmark on a colorless variant of ant.

As shown in Figure 4, our method significantly outper-
forms all baselines in both ant and its colorless variant.
Our method, in particular, avoids local minimum as it bet-
ter captures the structure of the robot as visualized in Fig-
ure 7, where the Keypoint3D captures the 3D movement of
the ant robot in world coordinates. The ant environment,
from pixels, requires the temporal knowledge of velocity
of body and limb to apply control effectively. We believe
the temporal consistency as described in Section 2.4 exactly
achieved this, estimating the movement vector and feeding
the mission-critical velocity information into our policy just
like in state-space. Superiority of keypoint-based method
is also reflected in the high performance of 2D keypoint
baseline on the environment. On the other hand, Vanilla-
RL, RAD and CURL lack explicit modeling of movement.
CURL’s contrastive learning will overly focus on pixels and
fails to capture the fine-grained joint positions or movements
that results in little pixel change.

4.3. Keypoints for Deformable Object Manipulation

We further evaluate our method on a customized 3D scarf
manipulation environment based on (Erickson et al., 2020).
In this environment, the objective is putting a scarf around
human neck. This task requires both 3D reasoning of oc-
clusion and understanding of the highly dynamical 3D soft
object. Figure 5 shows the result of Keypoint3D on scarf
manipulation is the best among all methods.

4.4. 3D Keypoints for Transfer Learning across Tasks

To test how well does our 3D keypoint representation gen-
eralize to unseen objects, we conduct a transfer learning
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Figure 6. Transfer Learning result on ML45 multi-tasking bench-
mark. Our 3D Keypoint method out performs others by a margin
in a training environment consist of 45 tasks. When finetuned on
a 5-task test environment, both representation learning methods,
CURL and 3D Keypoint, outperforms RAD.

experiment on the ml45 multi-task learning benchmark of
metaworld (Yu et al., 2019). We followed the train/test split
of the benchmark, first pre-train our method and baselines
on 45 training environments featuring distinct objects for
10M steps. We then conduct transfer learning on 5 unseen
test environments with the pre-trained weights for 2M steps.
For each method, we freeze the pre-trained encoder and
finetune the trained mlp part of the policy. We compare our
method against the transfer result of RAD as well as CURL
as shown in Figure 6. Our method outperforms all the base-
lines in the training environment for the same reason in the
single-task setting of metaworld. Both our 3D Keypoint
method and CURL shows great transfer result compared to
RAD, which fails because it does not have a representation
learning component.

4.5. Visualization of Discovered 3D Keypoints

To better understand how our 3D keypoint learning method
capture meaningful 3D structure of the tasks, we visualize
the learned keypoints by projecting them onto the camera
plane of each view. Keypoints of the same color across
different views correspond to the same keypoint in 3D space.
We can also filter out a portion of the keypoints with a
threshold of learned attention. Figure 7 illustrates that the
learned keypoints with most attention consistently follow
the movement of essential moving components in the scene.
In the colorless ant environment, keypoints track the 12
limbs and joints of the ant robot throughout time despite
being colorless. The same phenomenon can be observed
in the metaworld environments. More visualizations are
shown in the appendix.

5. Analysis and Ablation
In order to better understand the effect of different compo-
nents on the sample efficiency of our method, we conduct
ablative studies on two metaworld environments.
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Figure 7. Visualization of the learned keypoints on colorless ant (left), metaworld close door (middle), metaworld hammer (right)
environments. For the two metaworld environments, we filter keypoints with a threshold on learned keypoint attention. In colorless ant,
the keypoints consistently track the limbs. In door the pink point with highest confidence tracks the movement of the door consistently. In
hammer, the green point tracks hammer, while other points tracks the end-effector and sections of the arm respectively.
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Figure 8. Ablations of our Keypoint3D approach with respect to
different design choices. Variations include: remove camera offset
in the cropping data-augmentation, remove multi-view consistency
loss, map keypoints in 2D baseline to 3D space using triangulation.

Effects of crop offset Removing the random crop off-
set, described in the Section 2.5, significantly lowered our
performance on the open door environment as shown in
Figure 8. This is expected as the random shift of the in-
put image should result in a corresponding change in the
keypoint coordinate. When the crop offset is removed, ran-
domly shifted keypoints will be incorrectly unprojected as
we don’t change the camera matrix.

Effects of multi-view consistency The ablation results
for removing the multi-view consistency loss are shown
in Figure 8. No multi-view consistency severely hurts the
performance illustrating that 3D representation is indeed
a better representation. We also experiment with a variant
of Keypoint2D where we map all 3D keypoints to 3D co-
ordinates using multi-view triangulation. The performace
is even worse, indicating multi-view consistency is critical
even if we use triangulation instead of depth predictor.
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Figure 9. Analyzing the role of joint training of unsupervised key-
point learning with control policy. We compare to three different
variants of training policy disjointly where keypoint training data
is collected via random policy (2-stage w/ Random) and via expert
policy (2-stage w/ Expert). Third approach is to keep the same
pipeline as ours but stop backpropagation from policy branch. The
results show that joint training is crucial.

Effects of joint training To examine the benefit of train-
ing keypoint detection with policy jointly, we carry out three
ablations as follows: (a) First train unsupervised 3D key-
point learning on random exploration data. Then train the
policy with encoder weights frozen. (b) First train unsuper-
vised 3D keypoint learning on expert data. Then train the
policy with encoder weights frozen. c) We stop gradient of
policy from backpropagating into encoder. (a)(b) are both
2-stage variants with offline data while (c) examines the
effect of joint gradient with on-policy data. Our method
outperforms all these three ablations as shown in Figure 9,
showing joint training is important to achieve high sample
efficiency as well as performance.

Robustness under changing background All of the pre-
vious experiments have static background due to the multi-
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Figure 10. Ablation with respect to background changes in high-
dimensional control. We show that Keypoint3D is robust to
changes in the background unlike other methods because keypoints
focus on the agent.

view setup. To evaluate the effectiveness of Keypoint3D
under changing background, we run an ant environment
variant with checkerboard floor. As shown in Figure 10,
changing background of the environment makes the task
harder from pixels for all methods. But our method still
outperforms the strongest baseline, RAD.

6. Related Work
Representation Learning for RL Common approach in
RL is to learn image representations via end-to-end CNN
policy (Mnih et al., 2013; 2015b; 2016). Recent works en-
rich this representation via data augmentation (Kostrikov
et al., 2020; Laskin et al., 2020a). Alternative to data aug-
mentation is to learn representations via auxiliary losses like
inverse model (Pathak et al., 2017), pixel change (Jaderberg
et al., 2016), VAEs (Kingma & Welling, 2013; Burda et al.,
2019), or contrastive loss (Laskin et al., 2020b).

Unsupervised Keypoint Learning Keypoints has been
widely used as the representation of structure in image ani-
mation (Siarohin et al., 2020; 2019), video prediction (Kim
et al., 2019; Minderer et al., 2019) or control (Kulkarni et al.,
2019; Minderer et al., 2019). These works builds on a fully
differentiable keypoint bottlebeck (Jakab et al., 2018) that
can map a spatial probability map to images coordinates.
They achieve their goal of animating a human or robot in
source image by giving a target pose, represented by key-
points, before decoding. However, most of these works
learn 2D keypoints in image space. In 3D setting, an object
appearing to be a point at distance can be a large chunk
of pixels when moving closer to camera. These methods
would thus fail when the scene contains 3D movements.

3D Keypoints Learning Suwajanakorn et al. (2018) pro-
poses a method to learn category specific 3D keypoints
without supervision given a large dataset of rendered image
and camera matrix tuples from many different views of the

shapenet (Chang et al., 2015) dataset. The method learns
category specific 3D keypoints without direct supervision
through multi-view consistent pose prediction. It requires
this large data set of rendered images from many angles
centered around rigid objects. In reinforcement learning
setting, however, a scene is dynamic rather than a single
rigid object. Cameras are also usually fixed during training.
(Zhao et al., 2020) learns to discover geometrically consis-
tent 3D keypoints from pairs of images of object with rigid
body transformation information. Tang et al. (2019) learns
depth-aware keypoints through appearance and geometric
matching from videos for autonomous driving.

Keypoint Discovery for Control Florence et al. (2018)
propose to learn an object-centric dense correspondence
model through contrastive learning. The process involves
a dataset collected without supervision, by scanning target
object from a variety of angles using a robotic arm and do-
ing 3D reconstruction using the data. (Manuelli et al., 2020)
samples points from this dense correspondence model as
descriptor of an object and applies model predictive control
on such keypoint based descriptor. (Manuelli et al., 2019)
proposes to use semantic 3D keypoints as the object repre-
sentation for category-level pick and place tasks instead of
transformation from a fixed object template. This method,
however, requires manually labeled keypoint dataset. Gao
& Tedrake (2019) improves its result by combining these
keypoints with dense geometry of object. In contrast, we
learn 3D keypoints directly from policy learning loss in an
unsupervised and end-to-end manner.

7. Conclusion
In this work, we presented a framework to learn useful 3D
keypoints without supervision for continuous control. Our
key insight is to leverage multi-view consistency with a
world coordinate transform in the bottleneck layer for learn-
ing reliable keypoints. We jointly train unsupervised 3D
keypoint learning in conjunction with reinforcement learn-
ing to achieve significant sample efficiency improvement
in a variety of 3D control environments. The 3D keypoints
learned by our algorithm are consistent across space and
time. The keypoints offer several benefits as they make
the control policy less dependent on the visual input, and
hence, provide a great means for transfer learning even if
the visual distribution changes a lot, for instance, transfer
from simulation to real. We hope our method serves as a
bridge between pixel domain and 3D control tasks.
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