
Supplementary Material to: Integer Programming for Causal

Structure Learning in the Presence of Latent Variables

Heuristics for Separation at Fractional Solutions

The starting point of our heuristic is Karger’s random contraction algorithm for finding near-optimal
min-cuts in edge-weighted undirected graphs (with nonnegative weights). Given a weighted graph with
n nodes and optimal min-cut value t and a positive integer α ≥ 1, Karger’s algorithms runs in time
bounded by a polynomial function of nα and returns all cuts in the graph with weight ≤ αt. A weighted
edge is chosen at random (with probability proportional to the weight of the edge), and the edge is
contracted. When an edge ij is contracted where i and j are (pseudo-)nodes, let i′ be a new pseudo-
node representing {i, j}. Edges of the form ki or kj in the graph are removed and an edge ki′ with
weight wki′ = wki+wkj is added, where wki is the weight of the edge ki in the graph before contraction
and 0 if no such edge exists. This contraction procedure is repeated till there are 2α pseudo-nodes left,
and the min-cut value in the resulting graph is returned. The central idea of the algorithm is that high
weight edges are contracted resulting in the end-nodes of such edges being put in the same ’side’ of the
final cut.

We adapt the above idea. We first discuss how to find violated strengthened cluster inequalities.
Consider a subset S ⊆ V and a solution vector z̄ of the LP relaxation. Let µ(S) equal the left-hand
side of inequality where each z variable is set to the corresponding value in z̄. If we find a subset S ⊂ V
such that µ(S) < 1, then we have found a cluster inequality violated by the point z̄. However, as
there are exponentially many choices of the set S, it is not realistic to enumerate each S and compute
µ(S). Instead, we initially only consider the sets S = {i} consisting of individual nodes and note that
µ({i}) = 1 for each node i because of equation

∑
C:i∈DC

zC = 1. Let H0 be the undirected weighted
graph with the same set of nodes as G. We iteratively select and contract “high weight” edges and
create pseudonodes (that consist of the union of nodes associated with the two pseudonodes incident to
the edge), leading to a sequence of graphs H0, H1, . . ., where each graph has one less pseudonode than
the previous one. At the kth iteration we ensure that for each pseudonode i ∈ Hk, we have µk({i})
equal to the value of µ(S) where S is the set of nodes in H0 that correspond to the pseudonode i of
Hk.

Let the weight of an edge ij in H0 be calculated as follows. Define

wij :=
∑

W :j∈W

∑
C∈C:i∈DC ,WC,i=W

z̄C +
∑

W :i∈W

∑
C∈C:j∈DC ,WC,j=W

z̄C +
∑

C∈C:{i,j}⊆DC ,i/∈WC,j ,j /∈WC,i

z̄C .

Note that the following relationship holds:

µ({i, j}) = µ({i}) + µ({j})− wij . (1)

Step 1: If we apply the random contraction step in Karger’s algorithm to the weighted graph H0 to
obtain H1, then with high probability we will contract an edge ij with a high value of wij . This step
leads to an ij such that µ({i, j}) is approximately minimized (as µ({i}) = µ({j}) = 1 for all nodes i, j
of H0).

1



Step 2: We then create a pseudo-node {i, j} in H1 (labeled, say, by node i if i < j and by j otherwise).
Assuming the new psuedonode in H1 has label i, We let µ1({i}) = µ({i, j}) and µ1({k}) = µ({k}) for
all other nodes.
Step 3: We then recalculate wij values for edges in H1 in such a fashion that for every pair of pseudon-
odes in H1, the relationship in (1) holds. To do this, we first remove all c-component variables z̄C
where i ∈ DC and j ∈ WC,i or j ∈ DC and i ∈ WC,j . Next we replace all occurrences of j by i in the
remaining variables, and then recompute the weights wkl for edges kl.

If we repeat Steps 1-3 for H1 to obtain H2, H3, . . ., then it is not hard to see that we always maintain
the property in (1) with µ replaced by µk, and also the property that for any node i in Hk, the value
µk({i}) is equal to µ(S) where S is the set associated with the pseudonode i. We stop whenever we
find a pseudonode i in Hk (and associated S) such that µk({i}) = µ(S) < 1. We repeat this algorithm
multiple times while starting from different random seeds. Though this algorithm is not guaranteed to
find a set S such that µ(S) < 1, it works well in practice, and does not return spurious sets S.

To adapt the above algorithm to find violated strengthened bicluster inequalities, we proceed as
follows. Consider a specific bidirected edge ij such that Ī(i ↔ j) > 0 for a given fractional solution
z̄. We first contract ij in a special manner to obtain a graph H0. Assume i′ represents the resulting
pseudonode: for any c-component C such that i, j ∈ DC , we let WC,i and WC,j be replaced by a single
parent set W ′ = WC,i ∪WC,j of the new pseudonode i′. We also remove all c-component variables
zC such that DC ∩ {i, j} = 1. We subsequently define µ({k}) values for nodes k in H0, edge weights
wkl, perform a random contraction step and repeat this process till we find a pseudonode i in Hk such
that µk({i}) < I(i ↔ j). We ensure that µk({i}) always represents the left-hand side of strengthened
bicluster inequalities.

Performance of different methods when the number of latent
variables increases

We present in the following table the precise numbers (means of SHD, precision and recall) of the
results in Figure 6 of the main paper.

Table 1: Exact numbers for Figure 6

l SHD Precision (%) Recall (%)

AGIP M3HC FCI cFCI AGIP M3HC FCI cFCI AGIP M3HC FCI cFCI

2 12.6 26.4 30.8 24.8 80.3 54.1 29.6 50.0 78.7 49.3 26.2 44.1
4 22.4 27.3 31.6 24.4 63.0 57.7 36.9 52.6 63.1 52.7 34.9 48.9
6 28.8 32.8 35.9 31.3 57.8 49.9 33.6 46.0 53.1 44.5 29.7 39.8

2



Ground Truth AGs for Experiments in Section 4.3 of the main
paper

1
2

3

4

5
6

7

8

9

10

AG #1

1
2

3

4

5
6

7

8

9

10

AG #2

1
2

3

4

5
6

7

8

9

10

AG #3

1
2

3

4

5
6

7

8

9

10

AG #4

1
2

3

4

5
6

7

8

9

10

AG #5

3


