
Integer Programming for Causal Structure Learning
in the Presence of Latent Variables

Rui Chen 1 Sanjeeb Dash 2 Tian Gao 2

Abstract
The problem of finding an ancestral acyclic di-
rected mixed graph (ADMG) that represents the
causal relationships between a set of variables
is an important area of research on causal infer-
ence. Most existing score-based structure learning
methods focus on learning directed acyclic graph
(DAG) models without latent variables. A num-
ber of score-based methods have recently been
proposed for the ADMG learning, yet they are
heuristic in nature and do not guarantee an op-
timal solution. We propose a novel exact score-
based method that solves an integer programming
(IP) formulation and returns a score-maximizing
ancestral ADMG for a set of continuous variables
that follow a multivariate Gaussian distribution.
We generalize the state-of-the-art IP model for
DAG learning problems and derive new classes
of valid inequalities to formulate an IP model
for ADMG learning. Empirically, our model can
be solved efficiently for medium-sized problems
and achieves better accuracy than state-of-the-
art score-based methods as well as benchmark
constraint-based methods.

1. Introduction
Causal graphs are graphical models representing dependen-
cies and causal relationships between a set of variables. One
class of the most common causal graphs, often known as
Bayesian networks (BNs), is modeled by directed acyclic
graphs (DAGs) in which a direct causal relationship be-
tween two nodes is indicated by a directed edge. However,
its structure learning problem is NP-hard (Chickering et al.,
2004). Many exact and approximate algorithms for learning
BN structures from data have been developed, including

1Department of Industrial and Systems Engineering, University
of Wisconsin-Madison, Madison, Wisconsin, USA 2IBM Research,
Yorktown Heights, New York, USA. Correspondence to: Rui Chen
<rchen234@wisc.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

score-based and constraint-based approaches. Score-based
methods use a score – such as Bayesian scores or Bayesian
information criterion (BIC) – to measure the goodness of
fit of different graphs over the data, and then use a search
procedure – such as hill-climbing (Heckerman et al., 1995;
Tsamardinos et al., 2006a; Gámez et al., 2011), forward-
backward search (Chickering, 2002), dynamic programming
(Singh & Moore, 2005; Silander & Myllymaki, 2006; Gao &
Wei, 2018), A* (Yuan & Malone, 2013) or integer program-
ming (Jaakkola et al., 2010; Cussens, 2011; Cussens et al.,
2016) – in order to find the best graph. On the other hand,
constraint-based structure learning algorithms use (condi-
tional) independence tests to decide on the existence of
edges between all pairs of variables. Popular algorithms in-
clude the SGS algorithm (Spirtes et al., 2000), PC algorithm
(Spirtes et al., 2000), and IC algorithm (Pearl, 2000).

Despite their wide application (Pearl, 2000), it is known that
DAG models are not closed under marginalization (Tsirlis
et al., 2018). This implies that DAGs cannot be used to
model structures involving latent variables which are the
most common cases in practice. For example, in healthcare
domains, there may be numerous unobserved factors such
as gene expression. Self-reported family history and diets
may also leave out some important information. Ancestral
graphs (AGs) were proposed as a generalization of DAGs
(Richardson & Spirtes, 2002). AG models include all DAG
models and are closed under marginalization and condi-
tioning. AGs capture the independence relations among
observed variables without explicitly including latent vari-
ables in the model. In this work, we assume no selection
biases (no undirected edges in AGs). Hence there are two
types of edges in the AGs: directed edges represent di-
rect or ancestral causal relationships between variables and
bidirected edges represent latent confounded relationships
between variables. A bidirected edge between two nodes
means that there exists at least one latent confounder that
causes both nodes, and neither node causes the other node.
AGs considered in this work are also called ancestral acyclic
directed mixed graphs (ADMGs) (Bhattacharya et al., 2020)
in the literature.

Causal structure learning algorithms for ancestral ADMGs
can also be divided into two main classes: constraint-based
and score-based methods. Constraint-based methods apply

IP for Causal Structure Learning in the Presence of Latent Variables

conditional independence tests on the data to infer graph
structures. Score-based methods search through possible
graph structures to optimize a criterion for model selection.
There are also hybrid methods that use both conditional in-
dependent tests and some scoring criterion that measures the
likelihood of the data. In the setting of learning DAGs from
observational data, score-based methods often achieve better
performance than constraint-based methods as score-based
methods are less sensitive to error propagation (Spirtes,
2010). For ADMG learning, existing methods are mostly
constraint-based, including the FCI algorithm (Spirtes et al.,
2000; Zhang, 2008) and the conservative FCI (cFCI) (Ram-
sey et al., 2012) to name a couple. Several score-based or
hybrid approaches have been proposed for ancestral ADMG
structure learning over continuous Gaussian variables in re-
cent years (Triantafillou & Tsamardinos, 2016; Tsirlis et al.,
2018; Bernstein et al., 2020; Chobtham & Constantinou,
2020) but are all greedy or local search algorithms. In this
paper, we close the gap and propose an exact score-based
solution method based on an integer programming (IP) for-
mulation for ancestral ADMG learning. Our method is
inspired by existing DAG learning IP formulations, and we
derive new classes of valid inequalities to restrict the learned
graph to be a valid ADMG. Empirical evaluation shows that
the proposed method outperforms existing score-based DAG
and ADMG structure learning algorithms.

The paper is organized as follows. In Section 2, we define
the ancestral ADMG learning problem. In Section 3, we
propose an integer programming formulation for obtaining
the score-maximizing ancestral ADMG. In Section 4, we
present experiments to compare our method with existing
baselines.

2. Ancestral ADMG Learning
2.1. Preliminaries

We briefly review some related concepts. DAGs are directed
graphs without directed cycles. A directed mixed graph
G = (V,Ed, Eb) consists of a set of nodes V , a set of
directed edges (→) Ed ⊆ {(i, j) : i, j ∈ V, i 6= j}, and
bidirected edges (↔) Eb ⊆ {{i, j} : i, j ∈ V, i 6= j}
between certain pairs of nodes. Given a directed edge a→ b,
b is the head node, and a the tail node. We call node a an
ancestor of node b in G if there is a directed path from a to
b in G or a = b. We call node a a spouse (resp., parent) of
node b in G if there is a bidirected edge between a and b
(resp., a directed edge from a to b) in G. We denote the set of
ancestors, the set of parents, and the set of spouses of node
a in G by anG(a), paG(a), and spG(a), respectively. For
i ∈ V and W ⊆ V , W → i denotes that W is the parent set
of i. A directed mixed graph G is called an ancestral ADMG
if the following condition holds for all pairs of nodes a and
b in G:

• If a 6= b and b ∈anG(a)∪spG(a), then a /∈anG(b).

In other words, G is an ancestral ADMG if it contains no
directed cycles (a → c → . . . → b → a) or almost di-
rected cycles. An almost directed cycle is of the form
a → c → . . . → b ↔ a; in other words, {a, b} ∈ Eb

is a bidirected edge, and a ∈ anG(b). Given a directed
mixed graph G, the districts define a set of equivalence
classes of nodes in G. The district for node a is defined as
the connected component of a in the subgraph of G induced
by all bidirected edges, i.e.,

{b : b↔ . . .↔ a in G or a = b}.

Given a district D of G, the directed mixed graph GD is
a subgraph of G defined as follows. The node set of GD
consists of all nodes in D and their parents. The bidirected
edges in GD are the bidirected edges in G that connect nodes
in D. The directed edges in GD are the directed edges in G
where the head nodes are contained in D. We say that GD is
the subgraph implied by D. In this paper, we call subgraph
C of G a c-component if C is a subgraph implied by some
district of G. Note that if a c-component has no bidirected
edges, then any district must consist of a single node, and
the c-component consists of a number of directed edges all
with the same head node. Some authors use c-component
as a synonym for district.

2.2. Calculating Graph Scores

We assume the ground truth data is modeled by the following
linear equations:

X = MX + ε.

Here M is a d × d matrix, X = (X1, . . . , Xd)T are vari-
ables of the model, and ε = (ε1, . . . , εd)T is the error vector
which follows a multivariate Gaussian distributionN(0,Σ)1.
Neither M nor Σ can be observed. Our goal is to find the
best-fitting ancestral ADMG G and an associated parame-
terization (M,Σ) satisfying Mij = 0 if i = j or j → i is
not in G and Σij = 0 if i ↔ j is not in G. A score of the
graph measures how well the graph structure represents the
data. We use BIC (Schwarz, 1978) scores for all graphs in
this paper. The BIC score for graph G is given by

BICG = 2 ln(LG(Σ̂))− ln(N)(2|V |+ |E|).

Here Σ̂ is the maximum likelihood estimate of Σ given the
graph representation G and ln(LG(Σ̂)) is the associated log-
likelihood while N denotes the number of samples, |V | and
|E| denote the number of nodes and the number of edges
in G, respectively. Given a fixed graph and the empirical

1We focus on the multivariate Gaussian case in this work as the
scoring function can be factorized, although our work may also
apply to discrete cases per different factorization rules (Richardson,
2009; Evans & Richardson, 2014).

IP for Causal Structure Learning in the Presence of Latent Variables

Figure 1: Decomposition of the BIC score for an ancestral
ADMG.

covariance matrix Q, the maximum likelihood estimate of
the parameters can be found by applying the residual iter-
ative conditional fitting algorithm in (Drton et al., 2009).
According to (Nowzohour et al., 2017), ln(LG(Σ̂)) can be
decomposed by c-components in G. Specifically, let D de-
note all districts of G. Then

ln(LG(Σ̂)) =

− N

2

∑
D∈D

[
|D| ln(2π) + log(

|Σ̂GD |∏
j∈paG(D) σ̂

2
Dj

)+

N − 1

N
tr(Σ̂−1

GDQD − |paG(D) \D|)
]
. (1)

Here paG(D) denotes the union of parent sets of nodes inD,
Σ̂GD is the maximum log-likelihood for subgraph GD and
σ̂2
Dj denotes diagonal entry of Σ̂GD corresponding to node
j. Note that the districts partition the nodes of G, and the
edges of G are partitioned by the subgraphs GD. The BIC
score for graph G can be expressed as a sum of local scores
of its c-components. For example, in Figure 1, the BIC
score of the ancestral ADMG is equal to the sum of local
scores of four c-components represented by different colors.
Nodes with the same color belong to the same district and
directed edges indicate their parents. When the graph is
a DAG, other decomposable scoring functions can also be
used (Silander et al., 2008).

Given the above decomposition property of BIC scores, one
can immediately formulate the ancestral ADMG learning
problem as an optimization problem, where one takes as in-
put the set C of all possible candidate c-components defined
on the input random variables, and considers each subset of
C where the union of edges in the c-components in the sub-
set form an ancestral ADMG. This is however impractical
as the size of C grows exponentially with increasing number
of nodes/random variables. In a similar fashion, the DAG
learning problem can be solved by considering candidate
c-components where each c-components is implied by a
single node district. Even with this restriction, the number
of c-components that need to be considered in DAG learn-
ing is exponential, and a common approach to deal with
this issue is to only consider c-components with a bounded
number of nodes. The model we propose for ADMG learn-
ing is defined over general c-components, although in our
computational experiments we restrict the set of candidate

c-components to allow our model to be solved within a rea-
sonable amount of time. In Section 2.3, we further consider
eliminating sub-optimal c-components, which significantly
reduces the size of the search space in some cases.

2.3. Pruning the list of candidate c-components

The set of ancestral ADMGs defined over a set of nodes
is closed under deletion of directed and bidirected edges.
Similarly, the operation of removing all parents of a node
and replacing all bidirected edges incident to the node with
outgoing directed edges transforms an ancestral ADMG
into another ancestral ADMG. Both of these operations also
result in the transformation of the c-components associated
with an ADMG. If the c-components resulting from apply-
ing the above transformation to another c-component have a
higher combined score than the original c-component, then
we can assert that the original c-component need never be
considered in an optimal solution of the ADMG learning
problem. We use the above ideas and their hybrids to define
two ways of pruning C in our implementation. Firstly, if
removing one or more edges from a c-component results
in a set of c-components with a higher combined score,
we prune the original c-component. For example, the c-
component {A} → B ↔ C ← {D} can be pruned if it
has a lower score than the sum of the scores of B ← {A}
and C ← {D}. Similarly, we prune a c-component if
the second operation above leads to c-components with
a higher combined score. For example, we can prune
{A} → B ↔ C ← {D} if it has a score lower than
the sum of the scores of B ← ∅ and C ← {B,D}. A hy-
brid of the previous two pruning ideas is also implemented.
For example, we can combine both operations to transform
{A} → B ↔ C ← {D} into the c-components B ← ∅ and
C ← {B}.

3. An Integer Programming Formulation
Integer programming (IP) is a mathematical optimization
tool for modeling and solving optimization problems in-
volving variables that are restricted to discrete values. For
any c-component C implied by a district, let DC denote
the implying district, let EC denote the pairs of nodes in
DC that are connected by a bidirected edge, and for each
node i ∈ DC , let WC,i denote the parent set of node i in
c-component C. Given a set of c-components C, finding
a score-maximizing ancestral ADMG with all its district-
implied subgraphs in C can be straightforwardly formulated
as an integer program as follows:

max
z∈{0,1}C

∑
C∈C sCzC (2)

s.t.
∑

C:i∈DC
zC = 1, i ∈ {1, . . . , d} (3)

G(z) is acyclic and ancestral. (4)

IP for Causal Structure Learning in the Presence of Latent Variables

A

B C

D

Figure 2: Depiction of the cluster inequality for S =
{A,B,C,D}.

Here zC is a binary variable indicating if the c-component
C is chosen, sC is the local score of c-component C and
G(z) is the directed mixed graph whose district-implied sub-
graphs are exactly the c-components C with zC = 1. Con-
straints (3) enforce the condition each node i is contained in
a single district (that implies a chosen c-component). Con-
straint (4) implies that the resulting directed mixed graph
G(z) contains no directed or almost directed cycles. Stan-
dard IP solvers can only deal with linear inequality con-
straints, and we next discuss how to represent constraint (4)
by a set of linear inequality constraints.

3.1. Avoiding Directed Cycles

Several (mixed-)integer programming (MIP) formulations
exist for constraining a graph to be acyclic. A description
and a comparison of some of these different anti-cycle for-
mulations for the DAG learning problem with continuous
data, including the linear ordering formulation (Grötschel
et al., 1985), the topological ordering formulation (Park &
Klabjan, 2017), and the cycle elimination formulation, are
given in (Manzour et al., 2020). A new layered network
formulation was also proposed in (Manzour et al., 2020).
One particular class of anti-cycle constraints called cluster
inequalities/constraints was introduced in (Jaakkola et al.,
2010) and often performs better than the other methods
above and results in a very tight integer programming for-
mulation for DAG learning problems. Let I(·) be a variable
indicating whether or not the substructure described be-
tween the parentheses is present in the graph. Specifically,
I(W → i) indicates whether or not paG(z)(i) = W . Cluster
constraints have the following form:∑

i∈S

∑
W :W∩S=∅

I(W → i) ≥ 1, ∀S ⊆ {1, 2, . . . , d}. (5)

Inequalities (5) encode the constraint that for a set S of
nodes in an acyclic graph, there must exist at least one node
in S whose parent set has no intersection with S. In Figure 2,
there is a directed cycle connecting nodes {A,B,C,D},
and it violates the cluster inequality for S = {A,B,C,D},

which would be satisfied if nodeD has all its parents outside
S. The generation of cluster constraints is essential for the
state-of-the-art IP-based DAG learning solver GOBNILP
(Bartlett & Cussens, 2017). The same inequalities can be ap-
plied to ancestral ADMG learning by introducing auxiliary
variables I(W → i) defined as

I(W → i) :=
∑

C∈C:i∈DC ,WC,i=W

zC . (6)

In our case, inequalities (5) can be further strengthened as
some of the original variables zC may be double counted
when they are present in multiple auxiliary variables of the
form I(W → i). We propose the following strengthened
cluster constraints for ancestral ADMG learning:∑

i∈S

∑
C∈C:i∈DC ,WC,i∩S=∅

zC ≥ 1, ∀S ⊆ {1, 2, . . . , d}.

(7)

Proposition 1. Inequalities (7) are satisfied by all solutions
of the integer program (2)-(4). If z ∈ {0, 1}d satisfies (3)
and (7), then z corresponds to an ADMG, i.e., G(z) contains
no directed cycles.

Proof. We first show the validity of (7). Let z̄ be a feasi-
ble solution of the integer program (2)-(4). Assume that
inequality (7) with S set to S̄ is violated by z̄, i.e.,∑

i∈S̄

∑
C∈C:i∈DC ,WC,i∩S̄=∅

z̄C = 0. (8)

By constraint (3), for each i ∈ {1, . . . , d}, there exists Ci

satisfying i ∈ DCi such that z̄Ci = 1. By (8), we have
WCi,i ∩ S̄ 6= ∅ for each i ∈ S̄. It follows that each node i in
S̄ has a parent in S̄ in G(z̄), which contradicts the feasibility
of z̄ since G(z̄) contains a directed cycle with nodes in S̄.

Next we show that G(z) is an ADMG if z satisfies (3) and
(7). Constraints (3) imply that G(z) is a valid directed mixed
graph as exactly one c-component having i in its implying
district is active. We only need to show that G(z) contains no
directed cycles. Assume for contradiction that G(z) contains
a directed cycle i0 → i1 → . . . → iK → i0. Let S′ =
{i0, i1, . . . , iK}. By constraint (3), for each i ∈ {1, . . . , d},
there exists exactly one Ci satisfying i ∈ DCi

such that
zCi

= 1. The directed cycle i0 → i1 → . . . → iK → i0
implies that WCi,i ∩ S′ 6= ∅ for each i ∈ S′. Therefore,
by constraint (3),

∑
C∈C:i∈DC ,WC,i∩S′=∅ zC = 0 for each

i ∈ S′, which contradicts inequality (7) with S = S′.

3.2. Avoiding Almost Directed Cycles

Ancestral ADMGs are ADMGs without almost directed
cycles. To encode the constraint that the graph contains
no almost directed cycles, we define auxiliary variables

IP for Causal Structure Learning in the Presence of Latent Variables

A

B C

Figure 3: Depiction of the bicluster inequality for S =
{A,B,C} and (i, j) = (B,C).

I(W 1 → i,W 2 → j, i ↔ j) and I(i ↔ j) in a manner
similar to (6), and give the following inequalities for all
S ⊆ {1, 2, . . . , d} with i, j ∈ S and i < j:∑

W 1:W 1∩S=∅

∑
W 2:W 2∩S=∅

I(W 1 → i,W 2 → j, i↔ j)+

∑
v∈S\{i,j}

∑
W :W∩S=∅

I(W → v) ≥ I(i↔ j). (9)

We refer to inequalities (9) as the bicluster inequali-
ties/constraints. Bicluster inequalities encode the constraint
that if a bidirected edge i↔ j is present in some ancestral
ADMG, then, for any set of nodes S containing i and j,
either some node v ∈ S \ {i, j} has all its parents outside
of S or both parent sets of i and j have no intersection
with S. As shown in Figure 3, where B and C are con-
nected by a bidirected edge, either the parents of A must
lie outside S = {A,B,C}, or the parents of both B and C
must lie outside S. Similar to cluster inequalities, bicluster
inequalities can also be strengthened when written in the
original z variable space as some c-component variables
are double-counted on the left-hand side of (9). Also some
c-component variables might be contradicting the presence
of the bidirected edge i↔ j, and therefore cannot be active
when I(i ↔ j) is active and should be removed from the
left-hand side.
Proposition 2. The following inequalities are valid for the
integer program (2)-(4):∑

C∈C(S;{i,j})

zC ≥ I(i↔ j), ∀S ⊆ {1, 2, . . . , d}

with i ∈ S, j ∈ S, i < j (10)

where

C(S; {i, j}) =

{C ∈ C : {i, j} ∈ EC , (WC,i ∪WC,j) ∩ S = ∅}∪
{C ∈ C : |{i, j} ∩DC | 6= 1,∃v ∈ DC ∩ S \ {i, j}

s.t. WC,v ∩ S = ∅}.

Any z ∈ {0, 1}d satisfying (3), (7) and (10) corresponds to
an ancestral ADMG.

Proof. We first show validity of (10). Let z̄ be a feasible
solution of (2)-(4). Assume for contradiction that inequality
(10) with S = S̄ and (i, j) = (̄i, j̄) is violated by z̄. Note
that the right-hand side value of (10) can only be binary
and (10) cannot be violated if the right hand side is 0 since
z is binary. Then there exists a bidirected edge between ī
and j̄ in G(z̄). Since z = z̄ violates (10) with S = S̄ and
(i, j) = (̄i, j̄), z̄C = 0 for each C ∈ C(S̄; {̄i, j̄}). Next
we construct an almost directed cycle in G(z̄). Because
variable I (̄i ↔ j̄) is active, there exists Cīj̄ ∈ C such
that {̄i, j̄} ∈ ECīj̄

and z̄Cīj̄
= 1. Since z̄C = 0 for each

C ∈ C(S̄; {̄i, j̄}), we have (WCīj̄ ,̄i
∪ WCīj̄ ,j̄

) ∩ S̄ 6= ∅.
Without loss of generality, assume WCīj̄ ,̄i

∩ S̄ 6= ∅. Let
i0 = ī. We recursively define ik as follows:

• Let ik be a parent of ik−1 such that ik ∈ S̄.

Then this sequence either finds a directed cycle because of
the finiteness of the number of nodes, which contradicts
the feasibility of z̄, or ends up with some node iK that has
no parent in S̄. If it is the second case, we next show that
iK can only be j which implies an almost directed cycle
iK → iK−1 → . . .→ i0 ↔ iK in G(z̄). First of all, i0 = ī
has a parent in S̄ since WCīj̄ ,̄i

∩ S̄ 6= ∅. Let C̄ ∈ C be such
that iK ∈ DC̄ and zC̄ = 1. Assume for contradiction that
iK 6= j. Then iK ∈ DC̄ ∩ S \ {i, j} and WC̄,iK ∩ S̄ = ∅.
Also note that either {i, j} ∩DC̄ = ∅ or {i, j} ⊆ DC̄ since
otherwise it contradicts the activeness of I(i ↔ j). This
implies that C̄ ∈ C(S̄; {̄i, j̄}) which contradicts the fact that
z̄C = 0 for each C ∈ C(S̄; {̄i, j̄}).

We next show that G(z) is an ancestral ADMG if z satisfies
(3), (7) and (10). By Proposition 1, G(z) is an ADMG. We
only need to show that G(z) contains no almost directed
cycles. Assume for contradiction that G(z) contains an
almost directed cycle i0 → i1 → . . . → iK ↔ i0. Let
S′ = {i0, i1, . . . , iK}. We can then easily verify that zC =
0 for any C ∈ C(S′; {i0, iK}) which contradicts (10) with
S = S′, i = min{i0, iK} and j = max{i0, iK}.

We provide a simple example of a strengthened bicluster
inequality when the problem contains only 3 variables.

Example 1. Let d = 3 and C be the collection of all possible
c-components on three nodes. Consider S = {1, 2, 3},
i = 2 and j = 3. Then the asociated strengthened bicluster
inequality (after simplification) is

z∅→1 ≥ z{1}→2↔3←{1} + z∅→2↔3←{1} + z{1}→2↔3←∅.
(11)

Note that at most one of the c-components on the right-hand
side of (11) ({1} → 2 ↔ 3 ← {1}, ∅ → 2 ↔ 3 ← {1}

IP for Causal Structure Learning in the Presence of Latent Variables

and {1} → 2↔ 3← ∅) can be active due to (3). Inequality
(11) enforces the constraint that c-component ∅ → 1 must
be active when one of the three c-components on the right-
hand side of (11) is active.

So far we have given an integer programming formulation
of the ancestral ADMG learning problem. However, solving
this integer program efficiently is nontrivial. The first step to
solve an integer program is often solving some polyhedral
relaxation of the problem. Directly solving the relaxed
problem over the polyhedron defined by (3), (7) and (10)
is computationally infeasible because of the exponential
number of constraints. A common practice for solving such
problems with exponentially many constraints is to further
relax the polyhedral relaxation to be the polyhedron defined
by only some of these constraints, find an optimal solution,
solve a corresponding separation problem, and add violated
constraints to the relaxation if they exist. The separation
problem finds constraints that are violated by the current
solution and this process is repeated until convergence. If
the optimal solution of the relaxed problem is integral, such
a separation problem translates to just finding a directed
or almost directed cycle in a directed mixed graph which
can easily be accomplished by depth-first search. However,
the separation problem can be much harder to solve when
the solution is fractional. We provide separation heuristics
based on variants of Karger’s random contraction algorithm
(Karger, 1993) in the supplement.

4. Empirical Evaluation
We conduct a set of experiments to compare our IP model,
AGIP, with existing state-of-the-art baselines. We use
DAGIP to represent existing DAG IP models such as the
one in GOBNILP (Bartlett & Cussens, 2017), which is the
same IP model as AGIP when all candidate c-components
are implied by single-node districts. The solution obtained
from DAGIP is equivalent to any exact score-based method
for generating DAG solutions. We also compare with non-
IP-based approaches, namely M3HC (Tsirlis et al., 2018),
FCI (Spirtes et al., 2000; Zhang, 2008), and cFCI (Ramsey
et al., 2012).

To measure solution quality, we use a few different metrics.
When comparing against score-based methods, our opti-
mization model objective is to maximize a score, such as the
BIC score (Schwarz, 1978) for model selection, and the met-
ric is the solution score. To compare with constraint-based
methods which do not have objective scores, the solution
graph is converted to a partial ancestral graph (PAG), which
characterizes a class of Markov equivalent AG solutions,
and then compared with the ground truth PAG. We use struc-
tural Hamming distance (SHD) (Tsamardinos et al., 2006b),
which is the number of edge operations (addition or dele-
tion of an undirected edge, addition, removal or reversion

of the orientation of an edge) between the predicted graph
and the ground truth graph. Finally, precision and recall
(Tillman & Spirtes, 2011) are also compared. They are the
number of correct edges with correct orientations in the pre-
dicted graph divided by the number of edges in the predicted
graph and by the number of edges in the ground truth graph,
respectively.

All experiments are run on a Windows laptop with 16GB
RAM and an Intel Core i7-7660U processor running at
2.5GHz. Integer programs are solved using the optimization
solver Gurobi 9.0.3.

4.1. Experiment 1: Exact Graph Recovery

3

1
0

2

4 3

1 2

4 3

1 2

4

Figure 4: Ground truth DAG (left), AG (middle), and PAG
(right) of the four-node graph.

We first test on a four-node example, where the data (10000
data points) is simulated from a five-node DAG model (see
Figure 4) with node 0 being unobserved. The purpose of
this experiment is to show that for small graphs, where we
can practically enumerate and use all possible c-component
variables, and with enough samples, exact graph recovery
is possible with AGIP. We test score-based methods AGIP,
DAGIP and M3HC on this example. In AGIP, we consider
all possible c-components with arbitrary sizes. In DAGIP,
we consider all possible c-components implied by single-
node districts.

3

1 2

4 3

1 2

4 3

1 2

4

Figure 5: Solutions obtained from AGIP (left), DAGIP
(middle) and M3HC (right).

These three methods generate three different solutions.
Comparing the scores of the solutions, we observe that
score(AGIP) > score(DAGIP) > score(M3HC) in this ex-
ample. Both AGIP and M3HC correctly capture the skele-
ton (presence of edges between each pair of nodes) of the
ground truth AG. Only the AGIP solution is Markov equiva-
lent to the ground truth AG, i.e., the AGIP solution encodes

IP for Causal Structure Learning in the Presence of Latent Variables

the same set of conditional independence relationships as
the ground truth AG. This result shows that our method is
consistent for large samples and finds the exact solution.

4.2. Experiment 2: Random Graphs

We further experiment on a set of randomly generated AD-
MGs following the procedure described in (Triantafillou &
Tsamardinos, 2016). For each instance, a random permuta-
tion is applied to d+ l variables in a DAG as the ordering
of the variables. For each variable i, a set of up to 3 vari-
ables that have higher ordering than i is randomly chosen
as the parent set of i. The resulting DAG is then assigned a
randomly generated conditional linear Gaussian parameteri-
zation. Within the d+ l variables in the DAG, l of them are
randomly chosen as latent variables and marginalized which
result in an AG over the observed d variables. For each such
graphical model, a sample of N ∈ {1000, 10000} realiza-
tions of the observed variables is simulated to create the
instance. For fixed (d, l,N), 10 instances with parameters
d, l, and N are generated.

4.2.1. COMPARISON BETWEEN AGIP, DAGIP AND
M3HC SOLUTIONS

To guarantee efficiency, we restrict the sizes of c-
components considered in the AGIP and DAGIP methods.
AGIP considers c-components implied by a single-node dis-
trict with up to 3 parents or a two-node district with up to
1 parent per node, while DAGIP considers c-components
implied by a single-node district with up to 3 parents.

We want to emphasize that ADMG learning can be much
harder than DAG learning. In the state-of-the-art DAG
learning IP model (Bartlett & Cussens, 2017), assuming n
variables and parent sets with maximum size k, there are
at least n

(
n−1
k

)
= Θ(nk+1) IP variables in total for fixed k

but increasing n (before pruning). For the ADMG learning
problem, assuming a maximum district size of p nodes, the
number of IP variables in our IP model (AGIP) is at least(
n
p

)(
n−p
k

)p
= Θ(np(k+1)) for fixed k, p but increasing n

(before pruning). When p = 2 (the minimum required
to model bidirected edges), AGIP has the square of the
number of IP variables in DAGIP. With our setting of the
experiments, AGIP has roughly double the IP variables of
DAGIP. One possible way to deal with this explosive growth
is to add a collection of potentially good c-components with
large-districts to AGIP rather than all possible ones.

In these experiments, we fix d + l = 20 with varying l ∈
{2, 4, 6}. We first show the tightness of our IP formulation.
For each combination of (d, l,N), we report in Table 1 the
average number of binary variables before and after pruning,
average pruning time, average integrality gap at the root
node, and average IP solution time for the AGIP model
over the 10 instances. We observe that the solution time

decreases as l increases. On the other hand, the solution
time increases when the number of samples N increases,
since fewer c-component variables can be pruned during the
pruning phase. For all cases, the IP formulation has a pretty
small gap at the root node which is always below 1% on
average.

We next compare the qualities of solutions obtained from
AGIP, DAGIP, and M3HC in terms of the scores. Since
the feasible region of the AGIP model is strictly larger than
DAGIP, the optimal score obtained from AGIP is guaranteed
to be at least as good as the optimal score obtained from
DAGIP. In Table 2, we report the average difference (im-
provement) in score compared with M3HC and the number
of instances where AGIP improves the score over DAGIP
for each combination of (d, l,N). Both AGIP and DAGIP
produce solutions better than the greedy algorithm M3HC,
although M3HC in principle searches over a larger space of
graph structures. In fact, M3HC finds slightly better solu-
tions for only 4 of the 60 instances we tested and performed
strictly worse than AGIP on the other 53 instances. There-
fore, we can conclude that the exact methods DAGIP and
AGIP are better at obtaining solutions with higher scores
than the greedy method M3HC on randomly generated in-
stances. We also observe that AGIP improves over DAGIP
on 13 of 60 instances. There are two particular explana-
tions for this. Firstly, the implied ground truth AG might
be Markov equivalent to a DAG in which case the DAG
solution can be optimal. Secondly, the “non-DAG” can-
didate c-components are limited as AGIP only considers
additionally c-components implied by a two-node district
with up to 1 parent each node compared with DAGIP.

4.2.2. COMPARISON BETWEEN SCORE-BASED
METHODS AND CONSTRAINT-BASED METHODS

We compare score-based methods AGIP and M3HC with
constraint-based methods FCI and cFCI in Table 3. All
methods have better precision and recall values when the
sample size N increases. FCI seems to perform worse than
the other 3 methods, and on average, AGIP has the best
SHD, precision, and recall.

We observe that AGIP has a better recall in 5 out of 6 settings.
AGIP has significantly better performance than the other
methods when (d, l,N) = (18, 2, 10000).

To see the impact of latent variables on the performance
of these methods, we also regenerate instances with fixed
d = 18 and N = 10000 but varying l ∈ {2, 4, 6}. For each
l, we plot on Figure 6 the mean (± standard deviation) of
SHD, precision, and recall of estimated graphs from each
method over 10 instances (see the supplement for detailed
results). The performance of each method tends to drop as
the number of latent variables increases. The drop is most
significant for AGIP, presumably due to the restriction on the

IP for Causal Structure Learning in the Presence of Latent Variables

Table 1: Tightness of the AGIP formulation.

(d, l,N)
Avg # bin vars Avg # bin vars Avg pruning Avg root Avg solution
before pruning after pruning time (s) gap (%) time (s)

(18, 2, 1000) 59229 4116 19.1 0.65 60.4
(16, 4, 1000) 39816 3590 13.6 0.43 41.0
(14, 6, 1000) 20671 1788 3.9 0.54 8.9
(18, 2, 10000) 59229 9038 33.0 0.67 323.2
(16, 4, 10000) 39816 7378 21.4 0.53 215.4
(14, 6, 10000) 20671 3786 6.4 0.56 47.2

Table 2: Comparing scores of AGIP, DAGIP, and M3HC.

(d, l,N)
Avg improvement in score # instances where AGIP

compared with M3HC improves over DAGIP in score

AGIP DAGIP

(18, 2, 1000) 82.75 82.32 3/10
(16, 4, 1000) 90.03 89.33 5/10
(14, 6, 1000) 34.84 34.68 3/10
(18, 2, 10000) 373.44 373.44 0/10
(16, 4, 10000) 147.96 147.54 1/10
(14, 6, 10000) 150.52 150.44 1/10

Table 3: Comparison between AGIP, M3HC, FCI, and cFCI for ancestral ADMG Learning.

(d, l,N) SHD Precision (%) Recall (%)

AGIP M3HC FCI cFCI AGIP M3HC FCI cFCI AGIP M3HC FCI cFCI

(18, 2, 1000) 36.0 32.0 32.9 25.9 41.7 37.6 30.9 49.5 41.9 30.8 24.7 38.5
(16, 4, 1000) 23.4 32.1 34.9 29.7 58.0 35.9 27.6 41.0 56.6 29.3 22.8 32.5
(14, 6, 1000) 30.1 34.7 34.1 30.6 43.2 36.0 26.3 42.0 37.0 24.8 18.7 30.0
(18, 2, 10000) 12.6 26.4 30.8 24.8 80.3 54.1 29.6 50.0 78.7 49.3 26.2 44.1
(16, 4, 10000) 24.6 23.9 26.7 23.1 60.6 56.3 43.7 51.1 58.4 51.6 38.5 45.6
(14, 6, 10000) 26.5 23.5 27.7 23.3 47.7 54.2 38.6 53.1 44.5 46.5 33.2 44.4

overall 25.5 28.8 31.2 26.2 55.3 45.7 32.8 47.8 52.8 38.7 27.4 39.2

c-component size. The ground truth graphs associated with
our randomly generated instances can have c-components
with large parental sizes and district sizes, especially in
cases with more latent variables.

4.3. Experiment 3: Non-DAG ADMGs

Although AGIP generates a solution with the same or bet-
ter score than DAGIP, it returns a strictly better score than
DAGIP on a small fraction (13/60) of instances in Experi-
ment 2. One possibility is that all ground-truth graphs are
DAGs. We next compare AGIP and DAGIP on graphs that

are not ”DAG-representable”, i.e., the ground truth AG is
not Markov-equivalent to any DAG. We randomly generate
AGs with (d, l) = (10, 10) following the scheme described
in Section 4.2. We pick the first 5 AGs that have at least one
bidirected edge in the corresponding PAGs (which implies
they are not DAG-representable). All of these 5 AGs are
provided in the supplement. For each of the 5 AGs, we
generate 10 instances of 10000 realizations of the model,
each with a different randomly generated conditional linear
Gaussian parametrization. In addition to the original can-
didate c-components, we consider in AGIP c-components
that are implied by three-node districts with up to 1 parent

IP for Causal Structure Learning in the Presence of Latent Variables

Figure 6: Performance of different methods when the number of latent variables increases.

Table 4: Comparison between AGIP and DAGIP on graphs that are not DAG-representable.

Graph index Avg SHD Avg precision (%) Avg recall (%) # instances where AGIP
improves over DAGIP in score

AGIP DAGIP AGIP DAGIP AGIP DAGIP

1 6.7 6.6 63.7 59.5 64.4 60.0 10/10
2 9.2 10.5 59.4 50.5 63.0 52.0 7/10
3 8.0 8.8 67.3 64.8 63.8 60.0 5/10
4 29.8 29.8 27.4 29.2 17.6 19.0 4/10
5 21.7 23.0 30.0 27.6 27.3 24.7 2/10

overall 15.1 15.7 49.6 46.3 47.2 43.1 28/50

for each node. Table 4 contains SHD, precision, and recall
values of DAGIP and AGIP solutions.

AGIP has a strictly better score than DAGIP in 28 out of
the 50 instances we considered. Note that if the scores for
optimal AGIP and DAGIP solutions are identical (as in 22
instances), then it is not possible to predict which solution
will perform better on metrics such as SHD, precision, or
recall. AGIP performs better than DAGIP in precision and
recall on the 1st, 2nd, 3rd, and 5th AGs, and performs better
in SHD on the 2nd, 3rd, and 5th AGs. AGIP performs
slightly worse than DAGIP on the 4th AG, which has a very
large c-component containing 7 nodes in the district. All
of the five AGs contain at least one c-component that is not
covered by AGIP (nor by DAGIP). But considering more
c-components does help improve the solution quality on the
average, which illustrates the advantage of AGIP.

5. Conclusions and Future Work
We presented an integer-programming based approach for
learning ancestral ADMGs from observational data. Our

main contributions are: 1) an IP formulation for the an-
cestral ADMG learning problem; 2) new classes of valid
inequalities for efficient solution of the IP model; 3) nu-
merical experiments to compare our model with existing
methods. Empirical evaluation shows that our method has
promising performance and can generate solutions with bet-
ter accuracy than existing state-of-the-art learning methods.
To our knowledge, this is the first exact score-based method
for solving such problems in the presence of latent variables.
For future work, extending the current approach to allow
efficient solution with more c-components could further im-
prove the solution quality of the proposed method. Adding
other classes of valid inequalities to strengthen the current
IP formulation is another direction worth exploring.

Acknowledgements
We thank Dr. James Luedtke for discussion on the prob-
lem formulation. We thank anonymous reviewers for their
insightful comments.

IP for Causal Structure Learning in the Presence of Latent Variables

References
Bartlett, M. and Cussens, J. Integer linear programming for

the bayesian network structure learning problem. Artifi-
cial Intelligence, 244:258–271, 2017.

Bernstein, D., Saeed, B., Squires, C., and Uhler, C.
Ordering-based causal structure learning in the presence
of latent variables. In International Conference on Artifi-
cial Intelligence and Statistics, pp. 4098–4108, 2020.

Bhattacharya, R., Nagarajan, T., Malinsky, D., and Shpitser,
I. Differentiable causal discovery under unmeasured con-
founding. arXiv preprint arXiv:2010.06978, 2020.

Chickering, D. M. Optimal structure identification with
greedy search. Journal of machine learning research, 3:
507–554, 2002.

Chickering, D. M., Heckerman, D., and Meek, C. Large-
sample learning of Bayesian networks is NP-hard. Jour-
nal of Machine Learning Research, 5:1287–1330, 2004.

Chobtham, K. and Constantinou, A. C. Bayesian network
structure learning with causal effects in the presence of
latent variables. arXiv preprint arXiv:2005.14381, 2020.

Cussens, J. Bayesian network learning with cutting planes.
In Conference on Uncertainty in Artificial Intelligence,
pp. 153–160, 2011.

Cussens, J., Haws, D., and Studenỳ, M. Polyhedral as-
pects of score equivalence in Bayesian network structure
learning. Mathematical Programming, pp. 1–40, 2016.

Drton, M., Eichler, M., and Richardson, T. Computing
maximum likelihood estimates in recursive linear models
with correlated errors. Journal of Machine Learning
Research, 10(10):2329–2348, 2009.

Evans, R. J. and Richardson, T. Markovian acyclic directed
mixed graphs for discrete data. The Annals of Statistics,
pp. 1452–1482, 2014.

Gao, T. and Wei, D. Parallel bayesian network structure
learning. In International Conference on Machine Learn-
ing, pp. 1671–1680, 2018.

Grötschel, M., Jünger, M., and Reinelt, G. On the acyclic
subgraph polytope. Mathematical Programming, 33(1):
28–42, 1985.

Gámez, J., Mateo, J., and Puerta, J. Learning Bayesian
networks by hill climbing: efficient methods based on
progressive restriction of the neighborhood. Data Mining
and Knowledge Discovery, 22(1-2):106–148, 2011.

Heckerman, D., Geiger, D., and Chickering, D. M. Learning
Bayesian networks: The combination of knowledge and
statistical data. Machine learning, 20(3):197–243, 1995.

Jaakkola, T., Sontag, D., Globerson, A., and Meila, M.
Learning bayesian network structure using lp relaxations.
In International Conference on Artificial Intelligence and
Statistics, pp. 358–365, 2010.

Karger, D. R. Global min-cuts in rnc, and other ramifications
of a simple min-cut algorithm. In Annual ACM-SIAM
Symposium on Discrete Algorithms, volume 93, pp. 21–
30, 1993.

Manzour, H., Küçükyavuz, S., Wu, H.-H., and Shojaie,
A. Integer programming for learning directed acyclic
graphs from continuous data. INFORMS Journal on
Optimization, pp. ijoo–2019, 2020.

Nowzohour, C., Maathuis, M. H., Evans, R. J., and
Bühlmann, P. Distributional equivalence and structure
learning for bow-free acyclic path diagrams. Electronic
Journal of Statistics, 11(2):5342–5374, 2017.

Park, Y. W. and Klabjan, D. Bayesian network learning
via topological order. The Journal of Machine Learning
Research, 18(1):3451–3482, 2017.

Pearl, J. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2000.

Ramsey, J., Zhang, J., and Spirtes, P. L. Adjacency-
faithfulness and conservative causal inference. arXiv
preprint arXiv:1206.6843, 2012.

Richardson, T. A factorization criterion for acyclic directed
mixed graphs. In Conference on Uncertainty in Artificial
Intelligence, pp. 462–470, 2009.

Richardson, T. and Spirtes, P. Ancestral graph markov
models. The Annals of Statistics, 30(4):962–1030, 2002.

Schwarz, G. Estimating the dimension of a model. The
annals of statistics, 6(2):461–464, 1978.

Silander, T. and Myllymaki, P. A simple approach for find-
ing the globally optimal Bayesian network structure. In
Conference on Uncertainty in Artificial Intelligence, pp.
445–452, 2006.

Silander, T., Roos, T., Kontkanen, P., and Myllymäki, P.
Factorized normalized maximum likelihood criterion for
learning bayesian network structures. In Proceedings of
the 4th European Workshop on Probabilistic Graphical
Models, pp. 257–264, 2008.

Singh, A. P. and Moore, A. W. Finding optimal Bayesian
networks by dynamic programming. Technical report,
Carnegie Mellon University, 2005.

Spirtes, P. Introduction to causal inference. Journal of
Machine Learning Research, 11(5), 2010.

IP for Causal Structure Learning in the Presence of Latent Variables

Spirtes, P., Glymour, C. N., Scheines, R., and Heckerman,
D. Causation, prediction, and search. MIT press, 2000.

Tillman, R. and Spirtes, P. Learning equivalence classes of
acyclic models with latent and selection variables from
multiple datasets with overlapping variables. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 3–15, 2011.

Triantafillou, S. and Tsamardinos, I. Score-based vs
constraint-based causal learning in the presence of con-
founders. In UAI Workshop on Causation: Foundation to
Application, pp. 59–67, 2016.

Tsamardinos, I., Brown, L., and Aliferis, C. The max-
min hill-climbing Bayesian network structure learning
algorithm. Machine Learning, 65(1):31–78, 2006a.

Tsamardinos, I., Brown, L. E., and Aliferis, C. F. The max-
min hill-climbing bayesian network structure learning
algorithm. Machine learning, 65(1):31–78, 2006b.

Tsirlis, K., Lagani, V., Triantafillou, S., and Tsamardinos,
I. On scoring maximal ancestral graphs with the max–
min hill climbing algorithm. International Journal of
Approximate Reasoning, 102:74–85, 2018.

Yuan, C. and Malone, B. Learning optimal bayesian net-
works: A shortest path perspective. Journal of Artificial
Intelligence Research, 48:23–65, 2013.

Zhang, J. On the completeness of orientation rules for
causal discovery in the presence of latent confounders
and selection bias. Artificial Intelligence, 172(16-17):
1873–1896, 2008.

