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A. Organization of appendix
In Appendix B, we give detailed proofs for Theorem 1, which is the result for the non-cheated setting. In Appendix C, we
describe the algorithm omitted in the main paper for the cheated setting as well as its proofs. Then in Appendix D, we
give detailed proofs for Theorem 3 and 4, which are the results for the reward-free exploration sub-algorithm. Finally, in
Appendix E, we give a justification on why efficient reward-free exploration methods proposed in Kaufmann et al. (2020)
and Ménard et al. (2020) are difficult to be used as sub-algorithms here.

B. Regret Analysis for Theorem 1 (the non-cheated case)
B.1. Notations

We use Em to denote the m-th epoch. Because the epoch will be restarted when there is an unfinished ESTALL as shown in
line 14 and 15, each Em can be decomposed into one or more sub-epochs, denoted as E1

m, E
2
m, . . . , E

Γm
m , each with length

Nm. In the last sub-epoch, either all the ESTALL are finished or the whole algorithm ends.

For convenience, we also define the following notations

• π̊ = argmaxπ∈Π1/T
V π∗ , V̊ = V π̊∗ and ∆̊π = V̊ − V π∗ ,

• πm∗ = argmaxπ∈Π1/T
{r̂m(π)− 1

16∆̂m−1
π }

• ñm,kj be the real number of times that policy set Πm
j interacting with environment inside Ekm

• ρm =
∑m
s=1

8λ1λ2(HCps+Crs )
16m−sNs

• ∆̊m
j = maxπ∈Πmj

∆̊π .

B.2. High Probability Events

We define the following events and show that these events occur with high probability.

Definition 1. Define an event Eoverall which implies that the actual length of all sub-algorithms is closed to their scheduled
time

Eoverall :=

{
∀m, ∀k ∈ [Γm],∀j ∈ [Sm] : ñm,kj ∈ [

1

2
nmj ,

3

2
nmj ]

}
(3)

Definition 2. Define an event Eest, which implies that, for all the completed sub-epochs, we can estimated all the policy
uniformly at the end of epoch

Eest :=

{
∀m,π : |r̂m(π)− V π∗ | ≤ 2λ1λ2

2(HCpm,k + Crm,k)

Nm
+

1

16
∆̂m−1
π

}

Definition 3. Define an event Eunfinished, which implies that, for all sub-epochs with unfinished sub-algorithm, we always
have large corruption as long as Eoverall holds,

Eunfinished :=

∀m,∀k ∈ [Γm] : Cpm,k ≥
1

4

√
ln(10T |Π1/T |/δoverall)

λ1λ2
Nm

 and Eoverall

Now we are going to prove that Prob[Eoverall ∩ Eest ∩ Eunfinished] ≥ 1− δoverall. We first show that with high probability,
Eoverall holds,

Lemma 1 (High Probability for Eoverall). Prob [Eoverall] ≥ 1− δoverall/4
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Proof. For any fixed Ekm and Πm
j , we use a Chernoff-Hoeffding bound on the r.v. ñm,kj . The expected value is E[ñmj ] =

nmj ≥ λ2 = 12 log(8T/δoverall), so

Prob
[
|ñm,kj − nmj | ≥

1

2
nmj

]
≤ 2 exp

(
−(

1

4
nmj )/3

)
≤ δoverall/4T log(T )

Because of the possible failure of a sub-algorithm, there will be at most T sub-epochs and log(T ) sub-policy sets. So by
taking the union bound over all the sub-epochs and sub-policy sets, we get the target result

Next, we are going to show with high probability we have Eoverall ∩ Eest. But before we actually prove those, we will
first prove the following lemma that gives an estimation on the total amount of corruptions that will be included in each
sub-algorithm.
Lemma 2. For any fixed sub-epoch Ekm and any fixed Πm

j , we have

Prob

 ∑
t∈Ekm

cpt1{πt ∈ Πm
j } ≥

2nmj
Nm

Cpm,k +H ln 4/δ and
∑
t∈Ekm

crt1{πt ∈ Πm
j } ≥

2nmj
Nm

Crm,k +H ln 4/δ

 ≤ δ

4

Proof. It follows a very similar proof of Eqn.3 in (Gupta et al., 2019). Let Y tj = 1{πt ∈ Πm
j } and Bmj =

∑
t∈Em Y

t
j c
rp
t .

Notice that Y tj is an independent Bernoulli variable with mean qtj . Consider the sequence of r.v.s X1, . . . , XNm defined by
Xt−T sm+1 = (Y tj − qtj)c

rp
t for t ∈ Em. Then it is a martingale difference sequence with predictable quadratic variation

V ar = qmj
∑
t∈Em c

rp
t . Then by applying the freedman inequality we get that, with probability at least 1− δ,

Bmj ≤ qmj
∑
t∈Ekm

crpt + (V ar/H +H ln 4/δ) ≤ 2qmj
∑
t∈Em

crpt +H ln 4/δ

By replacing qmj = nmj /Nm and
∑
t∈Ekm

crpt ≤ C
rp
m,k into that, we have Bmj ≤

2nmj
Nm

Crpm,k +H ln 4/δ

We now continue proving our claim:
Lemma 3 (High Probability for Eest). Prob [Eest] ≥ 1− δoverall/4

Proof. For any fixed m, j, suppose the ESTALLmj is completed. From Lemma 2, we know that, with high probability

1−δmj /4, there will be at most
(

2nmj
Nm

Crpm,k +H ln(4/δmj )
)

amount of corruptions included in the sub-algorithm ESTALLmj .
Then by Theorem 4 , we have that, with probability as least 1− δmj , for all π ∈ Πm

j∣∣r̂m(π)− V π∗
∣∣ ≤ 7εjest +

nmj
Fmj

(
2(HCpm,k + Crm,k)

Nm

)
+
H ln(4/δmj )

Fmj

≤ 7εjest + 2λ1λ2

(
2(HCpm,k + Crm,k)

Nm

)
+ εjest

≤ 1

16
εj + 2λ1λ2

(
2(HCpm,k + Crm,k)

Nm

)
Now by taking the union bound over at most log T epochs and at most log T sub-algorithms for each epoch, as well as
replacing the value of ∆̊m

j , we have that, with probability at least 1− δoverall/4, for all m, j and all π ∈ Πm
j

|r̂m(π)− V π∗ | ≤ εj/16 + 2λ1λ2

2(HCpm,k + Crm,k)

Nm

By the definition of ∆̂m
π and Πm

j , this can also be written as, for all m and all π ∈ Π, with probability at least 1− δoverall/4,

|r̂m(π)− V π∗ | ≤ ∆̂m
π /16 + 2λ1λ2

2(HCpm,k + Crm,k)

Nm
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Lemma 4 (High Probability for Eunfinished). Prob [Eunfinished] ≥ 1− δoverall/4

Proof. Given Eoverall, all the ESTALLm,kj will have more than ñmj ≥ λ1F
m
j ≥ 6|S||A|Fmj log(H|S||A|) number of

interactions with the environment. Then by Theorem 3 , we know that since ESTALLm,kj is unfinished, then with probability

at least 1− δmj , we will have more than εjest
2|S||A|H2F

m
j amount of corruptions being included in any fixed ESTALLm,kj .

Next by Lemma 2, we know that with probability at least 1− δmj /4,

2nmj
Nm

Cpm,k +H ln(4/δmj ) ≥ εjest
2|S||A|H2

Fmj

By replacing the values of 2nmj , F
m
j and εjest, we have for any fixed ESTALLm,kj ,

2λ1λ2

(
2Cpm,k
Nm

)
≥ εjest

(
1

2|S||A|H2
− εj

96|S||A|H2

)
≥ 1

4|S||A|H2
εjest

Rearranging the inequality we get

Cpm,k ≥
1

16|S||A|H2

Nm
λ1λ2

εjest ≥
Nmε

m
est

16|S||A|H2λ1λ2
≥ 1

4

√
ln(10T |Π1/T |/δoverall)

λ1λ2
Nm

where the third inequality comes from the fact that εmest ≥ 4H2|S||A|
√

λ1λ2 log(10T |Π1/T |/δoverall)
Nm

, which is an
rearrangement from the inequality in Lemma 5.

Finally, we know there are at most T number of sub-epochs. So by taking the union bound over all the sub-epochs and over
all the sub-policy set Πm

j inside each sub-epoch Ekm, we get the target result.

In what follows we assume events Eoverall.Eest and Eunfinished hold, since they do so with probability at least 1− δest.

B.3. Auxiliary Lemmas

Lemma 5. The length of Nm of epoch m satisfies

16 ∗ 1282λ1λ2|S|2H4|A|2 ln(10T |Π1/T |/δoverall)/(εm)2 ≤ Nm ≤ 64 ∗ 1282λ1λ2|S|2H4|A|210T log(2/δoverall)/(εm)2

Sometimes we will use the following

16λ1λ2|S|2H4|A|2 ln(10T |Π1/T |/δoverall)/(εmest)2 ≤ Nm ≤ 64λ1λ2|S|2H4|A|210T log(2/δoverall)/(ε
m
est)

2

Proof. Because r̂m∗ − r̂m(πm∗ ) ≤ 0, so it has ∆̂m
πm∗

= εm. This immediately implies the lower bound as

Nm ≥ min
j∈Sm

nmj ≥ 16 ∗ 1282λ1λ2|S|2H4|A|2 ln(10T |Π1/T |/δoverall)/(εm)2

We get the upper bound from the fact that

Nm =
∑
j∈Sm

nmj ≤ 64 ∗ 1282λ1λ2|S|2H4|A|2 ln(10T |Π1/T |/δoverall)/(εm)2
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B.4. Lemmas related to completed sub-algorithm

In the case that all the sub-algorithms are completed, the proof steps are the very similar to the ones in (Gupta et al., 2019).
Here we restate and refined related lemmas.

Lemma 6 (similar to Lemma 5 (Gupta et al., 2019)). Suppose that Eest occurs. Then for all epochs m,

−2λ1λ2
2(HCpm + Crm)

Nm
− 2

16
∆̂m−1
π̊ ≤ r̂m∗ − V̊ ≤ 2λ1λ2

2(HCpm + Crm)

Nm
.

Proof. For the upper bound, by the definition of r̂m∗ and the occurrence of Eest, we have

r̂m∗ = r̂m(πm∗ )− 1

16
∆̂m−1
πm∗

≤ V π
m
∗
∗ + 2λ1λ2H

2(HCpm + Crm)

Nm
+

1

16
∆̂m−1
πm∗

− 1

16
∆̂m−1
πm∗

≤ V̊ + 2λ1λ2
2(HCpm + Crm)

Nm
+

1

16
∆̂m−1
πm∗

− 1

16
∆̂m−1
πm∗

= V̊ + 2λ1λ2
2(HCpm + Crm)

Nm
.

For the lower bound, we have

r̂m∗ ≥ r̂m(̊π)− 1

16
∆̂m−1
π̊ ≥ V̊ − 2λ1λ2

2(HCpm + Crm)

Nm
− 2

1

16
∆̂m−1
π̊

Lemma 7 (similar to Lemma 6 (Gupta et al., 2019)). Suppose that Eest occurs. Then for all epoch m and all policies π

∆̂m
π ≤ 2

(
∆̊π + 2−m +

m∑
s=1

8λ1λ2(HCps + Crs )

16m−sNs

)

Proof. The proof is by induction on m. For m = 1, the claim is trivially true because ∆̂1
π ≤ 2 ∗ 2−1 = 1. Next, suppose

that the claim holds for m− 1. Using Lemma 6 and the definition of Eest, we write

r̂m∗ − r̂m(π) = (r̂m∗ − V̊ ) + (V̊ − V π∗ ) + (V π∗ − r̂m(π))

≤ 2λ1λ2
2(HCpm + Crm)

Nm
+ ∆̊π + 2λ1λ2

2(HCpm + Crm)

Nm
+

1

16
∆̂m−1
π

Now using the induction hypothesis, we have

r̂m∗ − r̂m(π) ≤ ∆̊π + 2λ1λ2
4(HCpm + Crm)

Nm
+

1

16

(
2∆̊π + 2 ∗ 2−(m−1) +

m−1∑
s=1

8λ1λ2(HCpm + Crm)

16m−1−sNs

)

≤ 2∆̊π + 2 ∗ 2−m +

m∑
s=1

8λ1λ2(HCps + Crs )

16m−sNs

Now by the definition of ∆̂m
π , if r̂m∗ − r̂m(π) ≤ 2−m, then we directly have ∆̂m

π < 2−m. Otherwise if r̂m∗ − r̂m(π) > 2−m,
then ∆̂m

π < r̂m∗ − r̂m(π)

Lemma 8 (similar to Lemma 7 (Gupta et al., 2019)). Suppose that Eest occurs. Then for all epochs m and all policies π

∆̂m
π ≥

1

4
∆̊π − 3

m∑
s=1

8λ1λ2(HCps + Crs )

16m−sNs
− 3

8
2−m :=

1

4
∆̊π − 3ρm −

3

8
2−m
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Proof.

∆̂m
π ≥

1

2
(r̂m∗ − r̂m(π))

≥

(
V̊

2
− λ1λ2

2(HCpm + Crm)

Nm
− 1

16
∆m−1
π̊

)
−
(
V π∗
2

+ λ1λ2
2(HCpm + Crm)

Nm
+

1

32
∆̊m−1
π

)

=
∆̊π

2
− λ1λ2

4Cm
Nm

− 3

32
∆̂m−1
π̊

≥ ∆̊π

2
− λ1λ2

4Cm
Nm

− 6

32

(
∆̊π + 2−(m−1) +

m−1∑
s=1

8λ1λ2(HCps + Crs )

16m−sNs

)

≥ 1

4
∆̊π − 3

m∑
s=1

8λ1λ2(HCps + Crs )

16m−sNs︸ ︷︷ ︸
ρm

−3

8
2−m

The first inequality is by the definition of ∆̂m
π . The first term of the second inequality comes from Lemma 6 and the second

term of the second inequality comes from the occurrence of Eest. And the third inequality comes from Lemma 7.

Corollary 1. Suppose that Eest occurs. Then for all epoch m and all policies π.

εj ≥
1

4
∆̊m
j − 3ρm−1 −

3

8
2−(m−1)

Proof. The above lemma 8 holds for all π ∈ Πm
j including the one leads to ∆m

j . Furthermore, we have εj = ∆̂m−1
π .

Therefore, we get the target result.

B.5. Lemmas related to unfinished sub-algorithms

Now we will show that, if the sub-algorithm is unfinished, then the number of repeated sub-epochs can be upper bounded in
terms of corruption.

Lemma 9. If Eunfinished occurs, then we have

Γm − 1 ≤ Cpmεm/(H2|S||A| ln(10T |Π1/T |/δoverall) ≤ Cpm/(H2|S||A| ln(10T |Π1/T |/δoverall)

Proof. Condition on Eunfinished, we have

Nm ≤
16λ1λ2

ln(10T |Π1/T |/δoverall)
min

k∈[Γm−1]
(Cpm,k)2

≤ 16λ1λ2

ln(10T |Π1/T |/δoverall)
(
Cpm − C

p
m,Γm

Γm − 1
)2

≤ 16λ1λ2

ln(10T |Π1/T |/δoverall)
(

Cpm
Γm − 1

)2

Also from Lemma 5, we know a lower bound on Nm. Therefore we have

16 ∗ 1282λ1λ2|S|2H4|A|2 ln(10T |Π1/T |/δoverall)/(εm)2 ≤ 16λ1λ2

ln(10T |Π1/T |/δoverall)
(

Cpm
Γm − 1

)2

Rearranging the above inequality we get

Γm − 1 ≤ Cpmεm/(128H2|S||A| ln(10T |Π1/T |/δoverall)
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B.6. Proof for main theorem

Proof. Assume Eoverall, Eest and Eunfinished occur. Now we decompose the regret into

Reg =

M∑
m=1

∑
π∈Π

Γm∑
k=1

∑
t∈Ekm

(V̊ − V π∗ )1{πt = π}+ T (V ∗ − V̊ )

≤
M∑
m=1

∑
j∈Sm

Γm∑
k=1

∆̊m
j ñ

m,k
j +O(H)

≤ 3

2

M∑
m=1

∑
j∈Sm

∆̊m
j n

m,Γm
j︸ ︷︷ ︸

NON-REPEAT TERM

+
3

2

M∑
m=1

Γm−1∑
k=1

∑
j∈Sm

∆̊m
j n

m,k
j︸ ︷︷ ︸

REPEAT TERM

+O(H)

where the last inequality comes from event Eoverall. For convenience, denote Rm,kj = ∆̊m
j n

m,k
j , β =

512
√
λ1λ2 ln(10T |Π1/T |/δoverall)|S||A|H2 and we know by definition that εj ≤ β

√
1/nmj .

We first give upper bounds on term Rm,kj for any fixed m, k. Notice that when the algorithm goes to epoch m,
it suggests that all the sub-algorithms ran before m are completed. Therefore, we will use lemmas stated in Section B.4 for
the following proof.

Case 1: ρm−1 < ∆̊m
j /64. In this case, if ∆̊m

j /2 ≥ 2−(m−1), given Eest , we can use Corollary 1 to get

εj ≥
1

4
∆̊m
j − 3ρm−1 −

3

8
2−(m−1) ≥

(
1

4
− 3

64
− 3

16

)
∆̊m
j =

∆̊m
j

64

If ∆̊m
j /2 < 2−(m−1), then εj ≥

∆̊m
j

64 trivially holds.

In turn, we have nmj ≤ β/ε2j according to the definition of nmj , from which follows

Rm,ki ≤ 64β
√
nmj

This can be also be written as

Rm,ki ≤ ∆̊m
j β/ε

2
j ≤ 642∆̊m

j β/(∆̊
m
j )2 = 642β/∆̊m

j ≤ 642β/ min
π∈Π1/T

∆̊π

Case 2: ρm−1 ≥ ∆̊m
j /64. We again use the upper bound of nmj ≤ β2/ε2m

Rm,ki ≤ 96β2ρm−1/ε
2
m = 96β2ρm−122m

By combining these two cases, we have

Rm,kj ≤ 64βmin

{√
nmj ,

64

minπ∈Π1/T
∆̊π

}
+ 96β2ρm−1/ε

2
m
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Secondly, we deal with the NON-REPEAT TERM. By summing Rm,kj over all policy sets for k = Γm, we get

M∑
m=1

∑
j∈Sm

∆̊m
j n

m,Γm
j

≤ 64β

M∑
m=1

min

{√
log TNm,

64 log T

minπ∈Π1/T
∆̊π

}
+ 96β2(log T )

M∑
m=1

ρm−122m

≤ 64β(log T ) min

{
√
T ,

64 log T

minπ∈Π1/T
∆̊π

}
+ 96β2(log T )

M∑
m=1

ρm−122m

≤ Õ

(
|S|2|A|3/2H2 min{H1/2, |S|1/2|A|1/2} ln(1/δoverall) min

{
√
T ,

1

minπ∈Π1/T
∆̊π

})
+ Õ (|S||A| ln(1/δoverall)(HC

p + Cr))

= Õ
(
|S|2|A|3/2H2 min{H1/2, |S|1/2|A|1/2} ln(1/δoverall) min

{√
T ,

1

minπ∈Π ∆π

})
+ Õ (|S||A| ln(1/δoverall)(HC

p + Cr))

The last equation comes from the fact that Π1/T is 1/T -net of policy and
√
T > 1

minπ∈Π1/T
∆̊π

when minπ∈Π1/T
∆̊π <

o(
√

1/T ).

Here the result of
∑M
m=1 ρm−122m comes from the following,

M∑
m=1

β2ρm−1/ε
2
m =

M∑
m=1

β2
m−1∑
s=1

4m
8λ1λ2(HCps + Crs )

16m−1−sNs

= 8λ1λ2β
2
M∑
s=1

(HCps + Crs )

M∑
m=s

4m
1

16m−1−sNs

≤ 8λ1λ2β
2
M∑
s=1

(HCps + Crs )

M∑
m=s

4m
4−s

16m−1−sβ2

= 32λ1λ2

M∑
s=1

(HCps + Crs )

M∑
m=s

4m−1−s

16m−1−s

= Õ (|S||A| ln(1/δoverall)(HC
p + Cr))

where the first equality use changing order of summation techniques and the second inequality comes from the lower bound
of Ns in Lemma 5.

Thirdly, we consider the REPEAT TERM. From the previous analysis, we have

M∑
m=1

Γm−1∑
k=1

∑
j∈Sm

∆̊m
j n

m,k
j ≤ 64β

M∑
m=1

Γm−1∑
k=1

√
(log T )Nm +

M∑
m=1

(Γm′ − 1)96β2(log T )ρm−122m

First, given Eunfinished, we can bound the first term by

64β

M∑
m=1

Γm−1∑
k=1

√
log TCpm,k

16
√
λ1λ2√

ln(10T |Π1/T |/δoverall)
≤ Õ

(
H2|S|2|A|2 ln(1/δoverall)C

p
)
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Then, by Lemma 9, we can bound the first term by bounding the Γm − 1 as below

β2(log T )

M∑
m=1

(Γm − 1)ρm−122m

≤ β2(log T )

M∑
m=1

Cpm
H2|S||A| ln(10T |Π1/T |/δoverall)

ρm−122m

≤ log T

H2|S||A| ln(10T |Π1/T |/δoverall)

(
M∑

m′=1

Cpm

)(
M∑
m=1

β2
∑
m′∈M

ρm−122m

)

≤ Cp(log T )2

H2|S||A| ln(10T |Π1/T |/δoverall)

(
β2

M∑
m=1

ρm−122m

)

≤ Õ
(

1

H2
Cp(HCp + Cr)

)
Combing all the upper bounds, we get the final result.

B.7. Relationship between PolicyGapComlexity and the GapCompelxity in Simchowitz & Jamieson (2019)

In the main paper, we assume a single starting states. Here, in order to make a comparison, we remove this assumption and
assume a starting distribution over all states. As stated in the Related Work section, the most common GapComplexity
used in reinforcement learning is in the following form. Note that to aid the exposition, we omit other states and actions
dependency below.

gaph(s, a) = V ∗h (s)−Q∗h(s, a),

GapComplexity =
1

mins,a,h gaph(s, a)

To get an intuition about its relation to policy gap ∆π, consider the optimal policy π∗ and the second optimal policy π′. If
there is a tie, we just arbitrarily choose two policies with closest behavior. Define

Hidentical = {h|∀h′ ∈ [0, h− 1],∀s ∈ Sh′ , π∗(s) = π′(s)}

where Sh = {s ∈ S|maxπ∈Π Prob (π visits s at h) > 0} and S0 = ∅. SoHidentical is a collection of steps, before which,
the optimal policy π∗ and the second optimal policy π′ are unidentifiable. Note that h = 1 is always included inHidentical.
Now we have

∆π′ = V ∗ − V π
′

∗

= max
h∈Hidentical

∑
s∈S

Prob (π∗ visits s at h)
(
V ∗h (s)−Qπ

′

∗,h(s, π′(s))
)

≥ max
h∈Hidentical

∑
s∈S

Prob (π∗ visits s at h) (V ∗h (s)−Q∗h(s, π′(s)))

≥ min
s,a,h

gaph(s, a) max
h∈Hidentical

∑
s∈S

Prob (π∗ visits s at h)1{π∗(s) 6= π′(s)}

It is easy to see that maxh∈Hidentical
∑
s∈S Prob (π∗ visits s at h)1{π∗(s) 6= π′(s)} is positive due to the definition of

Hidentical.

Recall the the PolicyGapComplexity is defined as 1
∆π′

, so we have

PolicyGapComplexity ≤ 1

maxh∈Hidentical
∑
s∈S Prob (π∗ visits s at h)1{π∗(s) 6= π′(s)}

1

mins,a,h gaph(s, a)

≤ GapComplexity
maxh∈Hidentical

∑
s∈S Prob (π∗ visits s at h)1{π∗(s) 6= π′(s)}
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Therefore, with respect to the gap term, the PolicyGapComplexity and the GapComplexity are close when
maxh∈Hidentical

∑
s∈S Prob (π∗ visits s at h)1{π∗(s) 6= π′(s)} is large.

Because step h = 1 is always included in Hidentical, so one nontrivial case satisfying the above condition is that
the starting states are uniformly chosen from some subset of states. It is easy to see that the single starting states is also
one of the special cases. Besides, there are also many other cases satisfying the above condition, for example, a MDP
that starts from various states and always concentrates on some states with equal chances in later steps included inHidentical.

Finally, whether the PolicyGapComplexity-dependent bound can also get some refined dependency on |S|, |A|, H
like the GapComplexity-dependent bound in Xu et al. (2021) in some special cases remains further investigation.

C. Meta-algorithm and Results for cheated Adversary

Algorithm 5 BRUTE-FORCE-POLICY-ELIMINATION-RL
1: Input: time horizon T , confidence δoverall
2: Construct a 1/T -net for non-stationary policies, denoted as Π1/T .
3: Initialize S1 = 0,Π1 = Π. And for j ∈ log T , initialize εj = 2−j .εjsim = εj/128
4: Set λ1 = 6|S||A|log(H2|S||A|/εsim) and λ2 = 12 ln(8T/δoverall)
5: for epoch m = 1, 2, . . . do
6: Set δm = δoverall/(5T )

7: Set Fm = 8|S|2H4|A|2 ln(2|Πm|/δm)
(εmsim)2

8: Set Nm = 2λ1λ2F
m and T sm = T sm−1 +Nm−1

9: Initialize a sub-algorithm ESTALLm = EstAll(εmsim,Π
m, δm, Fm)

10: for t = T sm, T
s
m + 1, . . . , T sm +Nm − 1 do

11: Play the policy according the awaiting ESTALLm.CONTINUE. Then continue running ESTALLm until the next
ROLLOUT is met. (If no more ROLLOUT needed, then just uniformly play one )

12: end for
13: if ESTALLm is unfinished then
14: Set T sm = T sm +Nm and repeat the whole process from line 9. . So each repeat is a sub-epoch.
15: else
16: Obtain r̂m(π) for all π.
17: end if
18: Update the active policy set

Πm+1 ← {π| max
π′∈Πm

r̂m(π′)− r̂m(π) ≤ 8λ1λ2H
2
√
|S||A| ln(10T |Π1/T |/δoverall)T/Nm +

1

8
εm}

19: end for

Theorem 5. The regret is upper bounded by

Reg ≤ Õ
(
|S|2|A|3/2H2 min{

√
H,
√
|S||A|} ln(1/δoverall)

√
T
)

+ Õ
(

(Cr)2

H3|S||A|
+H|S||A|(Cp)2

)

Remark In Section 2.2 in (Bogunovic et al., 2020), they proved that in order to get Õ(
√
HT ), the corruption terms can

go as low as Ω̃( C2

logC ) for the linear bandits. Therefore, we conjecture that Õ((Cr + Cp)2) term is also unavoidable in our
setting.
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C.1. Regret Analysis for Theorem 5

For convenience, we rearrange this upper bound a little bit. So now our target is to show the follows.

Reg ≤ Õ
(
|S|2|A|3/2H2 min{

√
H,
√
|S||A|} ln(1/δoverall)

√
T
)

+ Õ
(

(HCp + Cr)2

H3|S||A| ln(|Π1/T |)
+H

ln(1/δoverall)

ln(|Π1/T |/δoverall)
|S||A|(Cp)2

)

We only need to consider the case that Cr +HCp ≤ H2
√
|S||A| ln(|Π1/T |)T , otherwise we will get a trivial linear regret.

It easy to see that the following events sill holds with at least 1− δoverall probability,

Eoverall :=

{
∀m,∀k ∈ [Γm] : ñm,k ∈ [

1

2
nm,

3

2
nm]

}
Eest :=

{
∀m,π ∈ Πm : |r̂m(π)− V π∗ | ≤ 2λ1λ2

2(HCpm,Γm + Crm,Γm)

Nm
+

1

16
εm

}

Eunfinished :=

∀m,∀k ∈ [Γm] : Cpm,k ≥
1

4

√
ln(10T |Π|/δoverall)

λ1λ2
Nm

 and Eoverall

Notice here we will permanently eliminate a policy instead of maintaining different subset of policies, therefore, in Eest, all
the active policies have same levels of estimation. Next we show that given the above events, we will never eliminate the
best policy from the active policy set Πm+1.

Again we use the following notations π̊ = argmaxπ∈Π1/T
V π∗ , V̊ = V π̊∗ and ∆̊π = V̊ − V π∗ .

Lemma 10. For any epoch m, we always have π̊ ∈ Πm.

Proof. Given Eest, let π̂m = argmaxπ′∈Πm r̂m(π′), we know that

r̂m(π̂m)− r̂m(̊π) ≤ V π̂m∗ − V̊ + 4λ1λ2

2(HCpm,Γm + Crm,Γm)

Nm
+

1

8
εm

≤ 4λ1λ2

2(HCpm,Γm + Crm,Γm)

Nm
+

1

8
εm

≤ 8λ1λ2H
2
√
|S||A| ln(|Π1/T |)T/Nm +

1

8
εm∗

where the last inequality comes from the assumption that Cr +HCp ≤ H2
√
|S||A| ln(|Π1/T |)T . Now by the elimination

condition in Line 18 , we can get our target result.

Then we can upper bounded maxπ∈Πm ∆π as follows

Lemma 11. For any active policy set Πm, we have

max
π∈Πm

∆π ≤ Õ

(
|S|2|A|3/2H3/2(

1√
Nm

+

√
HT

Nm
)

)
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Proof. Let π′ = argmaxπ∈Πm+1∆π

∆̊π′ ≤ V̊ − V π
′

∗

≤ r̂m(̊π)− r̂m(π′) + 4λ1λ2

2(HCpm,Γm + Crm,Γm)

Nm
+

1

8
εm

≤ 8λ1λ2H
2
√
|S||A| ln(|Π1/T |)T/Nm +

1

4
εm+1

= Õ

|S||A| ln(1/δoverall)H
2
√
|S||A| ln(|Π1/T |)

√
T

Nm+1
+ |S|3/2|A|3/2H2

√
ln(1/δoverall) ln(10T |Π1/T |/δoverall)

Nm+1


≤ Õ

(
|S|3/2|A|3/2H2 ln(1/δoverall)

√
ln(|Π1/T |)(

√
T +

√
1

Nm+1
)

)

≤ Õ

(
|S|2|A|3/2H2 min{

√
H,
√
|S||A|} ln(1/δoverall)

(
√
T +

√
1

Nm+1

))
Here the second inequality comes from Lemma 10. The third inequality comes from the elimination condition in Line 18
and the assumption that the assumption that Cr +HCp ≤ H2

√
|S||A| ln(|Π1/T |)T . Replace the value of εm in the term

of Nm we get the target result.

Now given Eoverall, we again have regret that

Reg ≤ 3

2

M∑
m=1

( max
π∈Πm

∆π)Nm︸ ︷︷ ︸
NON-REPEAT TERM

+

M∑
m=1

Γm−1∑
k=1

Nm︸ ︷︷ ︸
REPEAT TERM

First, we deal with the NON-REPEAT TERM. By applying Lemma 11, we have

M∑
m=1

( max
π∈Πm

∆π)N ≤
M∑
m=1

Õ

(
|S|2|A|3/2H2 min{

√
H,
√
|S||A|} ln(1/δoverall)

(
√
T +

√
1

Nm+1

))
≤ Õ

(
|S|2|A|3/2H2 min{

√
H,
√
|S||A|} ln(1/δoverall)

√
T
)

Next, we deal with the REPEAT TERM. By Eunfinished, we have

M∑
m=1

( max
π∈Πm

∆π)Nm ≤ H
M∑
m=1

Γm−1∑
k=1

Nm ≤ H|A||S| ln(1/δoverall)

ln(10T |Π1/T |/δoverall)

M∑
m=1

Γm−1∑
k=1

(Cpm,k)2

≤ H|A||S|(Cp)2

D. Analysis for EstAll Sub-algorithm
D.1. Preliminaries

We define the set of episodes that the learner interacts with environment as Iest and the total corruption included these
episodes as Cr(p)est =

∑
t∈Iest c

r(p)
t .

D.2. Key results

Theorem 6 (Sample complexity restated here). Suppose F ≥ 8|S|2H4|A|2 ln(2|Π|/δest)
ε2est

and τ ≥ 6. Under the corruption

assumption Cpest ≤ εestF
2|S||A|H2 , with probability at least 1− δest, the algorithm interacts with environment at most

|S||A|Fτlog(H2|S||A|/εest)

times. Note, if the algorithm interacts with environment more than the above number of times, then with probability at least
1− δest, Cpest > εestF

2|S||A|H2
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Proof. By Lemma 14, we know that with probability at least 1 − δest, for any fixed state-action pair (s, a), Line 7 in
Algorithm 2 will fail at most log2(H2|S||A|/εest) times by doubling from εest

H|S||A| to H . So the maximum number
of policies that will be added into policy set ΠD is at most log2(H2|S||A|/εest)|S||A| . Now because for each policy
added into ΠD, we will greedily sample Fτ times according to Algorithm 4, so the total interaction time is at most
log2(H2|S||A|/εest)|S||A|Fτ times.

Theorem 7 (Estimation correctness restated here). Suppose F ≥ 8|S|2H4|A|2 ln(2|Π|/δest)
ε2est

and τ ≥ 6. Then for all π ∈ Π,
with probability at least 1− δest, ∣∣r̂(π)− V π(s1)

∣∣ ≤ (1 + τ)εest + (HCpest + Crest)/F

Proof. By definition, r̂(π) = 1
F

∑F
i=1 r(z

π
i ) and {r(zπi )}Fi=1 is a sequence of independent random variables. We

denote its expected value E[r(zπi )] as {V πi }Fi=1. Here Vi is not a real existing value function but an “average value
function” whose rewards and transition functions are the average of rewards and transition functions generated by the
MDPs under different times (so some are corrupted). Now we can use Hoeffding’s inequality to bound

∣∣r̂(π)− 1
F

∑F
i=1 V

π
i

∣∣.
For those π ∈ ΠD,

Prob

[∣∣r̂(π)− 1

F

F∑
i=1

V πi
∣∣ ≤ εest] ≥ 1− 2 exp(−2Fε2est/H

2) ≥ 1− δest/2|Π|

For those π /∈ ΠD, if none of then are failed, we again have

Prob

[∣∣r̂(π)− 1

F

F∑
i=1

V πi
∣∣ ≤ εest] ≥ 1− δest/2|Π|

Then because at each (s, a), the policy fails at most εestτF/H|S||A|, there will be at most τεestF/H trajectories with
Fails. Each failed trajectory will cause at most H rewards, therefore,

Prob

[∣∣r̂(π)− 1

F

F∑
i=1

V πi
∣∣ ≤ (1 + τ)εest

]
≥ 1− δest/2|Π|

Now we can decompose our target result into,

∣∣r̂(π)− V π
∣∣ ≤ ∣∣r̂(π)− 1

F

F∑
i=1

V πi
∣∣+
∣∣ 1

F

F∑
i=1

V πi − V π
∣∣

The first term can be upper bounded by the previous results. The second term can be upper bounded by lemma 16.
Finally, by taking a union bound over all policies in Π, we get our target result.

D.3. Detailed Analysis

D.4. Notations

For convenience, we write F instead of Fest in this section.

D.4.1. MAIN LEMMAS

Claim 1 For any fixed π, each of the trajectories in {zπi }i∈[F ] is independent to each other due to the property of MDP.

Definition 4. Define fπ(s, a) as the random variable which is the total number of times a trajectory induced by π visits
(s, a) with respect to the underlying MDPM and then define its expectation as

E[fπ(s, a)] = µπ(s, a)
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For any policy set Π, we define the following µΠ
max

µΠ
max(s, a) = max

π∈Π
µπ(s, a).

This can be leveraged to compute a lower bound on the expected number of times of visiting (s, a) after rolling out each π in
Π once.

Lemma 12. Under the assumption of Cpest ≤ εestF
2|S||A|H2 . For any fixed policy π, let ΠD be an exploration set of policies

before simulating π. Then when µπ(s, a) ∈
[

εest
|S||A|H , 2µ

ΠD
max(s, a)

]
, µΠD

max(s, a) ≥ εest
|S||A|H ,F ≥ 8|S|2H4|A|2 ln(2|Π|/δest)

ε2est

and τ ≥ 6, we have with probability at least 1− δest
|Π|

F∑
i=1

|{(s, a) or Fail(s, a, i) included in zπi }|︸ ︷︷ ︸
total number of times zπi visited (s, a)

< |Ds,a|+
τεest
|S||A|H

F

Proof. First, we are going to get the high probability lower bound on |Ds,a|. Denote∑H
h=1 1{π′′ visits (s, a) at layer h during the rollout j} as Xj , where π′′ = argmaxπ∈ΠDµ

π(s, a). We have

|Ds,a| =
Fτ∑
j=1

∑
π′∈ΠD

H∑
h=1

1{π′ visit (s, a) at layer h during the rollout j} ≥
Fτ∑
j=1

Xj .

Note that {Xj} is a sequence of independent random variable with each Xj ∈ [0, H]. We denote E[Xj ] as µπ
′′

j,rollout(s, a).
From the corruption assumption Cpest ≤ εestF

2|S||A|H2 and by corollary 15, we have

| 1

Fτ

Fτ∑
j=1

µπ
′′

j,rollout(s, a)− µΠD
max(s, a)| ≤ HCpest

Fτ
≤ εest

2|S||A|H
(4)

which, combined with µΠD
max(s, a) ≥ εest

|S||A|H , also leads to

1

Fτ

Fτ∑
j=1

µπ
′′

j,rollout(s, a) ≥ εest
2|S||A|H

Then by using the Hoeffding’s inequality, we get

Prob

 Fτ∑
j

Xj ≤
1

2

Fτ∑
j=1

µπ
′′

j,rollout(s, a)

 ≤ exp

(
−2F 2τ2

FτH2
(

εest
4|S||A|H

)2

)
≤ δest

2|Π|

Therefore, we get that with probability at least 1− δest
2|Π| , |Ds,a| > 1

2

∑Fτ
j=1 µ

π
j (s, a)

Second, we are going to get the high probability upper bound on
∑F
i=1 |{(s, a) or Fail(s, a, i) included in zπi }|.

Denote |{(s, a) or Fail(s, a, i) included in zπi }| as Yi ∈ [0, H] and its expectation E[Yi] = µπi,sim(s, a). By Claim 1, we
know that each trajectory in {zπi }i∈[F ] is independent to each other. Again from the corruption assumption Cpest ≤ εestF

2|S||A|H2

and by corollary 15, we have

| 1
F

F∑
i=1

µπi,sim(s, a)− µπ(s, a)| ≤ HCpest
F

≤ εest
2|S||A|H

(5)

which, combined with µπ(s, a) ≥ εest
|S||A|H , also leads to

1

F

F∑
j=1

µπi,sim(s, a) ≥ εest
2|S||A|H
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So by using the hoeffding inequality again, we get that with probability at least 1− δest
2|Π| ,

F∑
i=1

|{(s, a) or Fail(s, a, i) included in zπi }| <
3

2

F∑
i=1

µπi,sim(s, a)

Finally, combine the high probability upper bound and lower bound, we have that with probability at least 1− δest
|Π|

F∑
i=1

|{(s, a) or Fail(s, a, i) included in zπi }| − |Ds,a|

<
3

2

F∑
i=1

µπi,sim(s, a)− 1

2

Fτ∑
j=1

µπ
′′

j,rollout(s, a)

≤ 3

2
Fµπ(s, a)− 1

2
FτµΠD

max(s, a) +
εest

2|S||A|H
(F + Fτ)

≤ εest
2|S||A|H

(
3

2
F +

1

2
Fτ) <

εest
|S||A|H

Fτ

where the second inequality comes from eq. 4, 5 and the last inequality comes form the the assumption µπ(s, a) <
2µΠD

max(s, a), τ ≥ 6.

Lemma 13. Under the assumption of Cpest ≤ εestF
2|S||A|H2 . For any fixed policy π, let ΠD be an exploration set of policies

before simulating π. Then when µπ(s, a) < εest
|S||A|H ,F ≥ 8|S|2H4|A|2 ln(2|Π|/δest)

ε2est
and τ ≥ 6, we have with probability at

least 1− δest
|Π|

F∑
i=1

|{(s, a) or Fail(s, a, i) included in zπi }| < |Ds,a|+
εest
|S||A|H

Fτ

Proof. We just need to show that under this condition,
∑F
i=1 |{(s, a) or Fail(s, a, i) included in zπi }| < τεest

|S||A|HF . To
show this, we use the same method and notation used in the proof of Lemma 12 and get that with probability at least
1− δest

2|Π| ,

F∑
i=1

|{(s, a) or Fail(s, a, i) included in zπi }|

≤ 3

2
Fµπ(s, a) +

εest
2|S||A|H

F <
2εest
|S||A|H

F <
τεest
|S||A|H

F

Lemma 14. Let ΠD be the set of policies maintained before executing line 9 and let Π̂D be the set of policies maintained
after executing. Let (s, a) be the state action pair where the Fail occurs. Then we have, with probability at least 1− δest,

µΠ̂D
max(s, a) ≥ max{2µΠD

max(s, a),
εest
|S||A|H

}

Proof. If µΠD
max <

εest
|S||A|H , by Lemma 13, we know that with probability at least 1− δest

|Π| , we always have µΠ̂D
max ≥ εest

|S||A|H .

Otherwise, if we already have µΠD
max ≥ εest

|S||A|H , then by Lemma 12, we know that with probability at 1 − δest
|Π| , µ

Π̂D
max ≥

2µΠD
max. Finally, we take the union bound over all policies in Π to get the target result.
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D.4.2. AUXILIARY LEMMA

Definition 5. Define qπP (s, h) as the probability that policy π will visit s at step h given the underlying transition probability
P . Also define V πM (s1) as the value function that policy π will induce given the underlaying MDP M .

The change of the visiting probability and the value function for any fixed π can be upper bounded in terms of the change
of transition functions and expected rewards. Here we consider the most general case that the transition function and the
expected rewards is non-stationary between each layers. We want to remark that, although our underlying MDP is stationary
by assumption, our corruptions is allowed to be non-stationary. Also our algorithm will simulate a trajectory by the sample
collected from different times. Therefore, we prove the following lemma for the non-stationary case.

Lemma 15 (Corruption Effects on Visiting Probability ). For any step h′,∑
s∈S
|qπP1

(s, h′)− qπP2
(s, h′)|

≤ min{1,
h′−1∑
h=2

sup
s∈S,a∈A

‖P1(·|s, a, h)− P2(·|s, a, h)‖1 + sup
a∈A
‖P1(·|s0, a, 1)− P2(·|s0, a, 1)‖1}

Proof. We prove this by induction. First, we can easily get the base case that∑
s∈S
|qπP1

(s, 2)− qπP2
(s, 2)| ≤ sup

a∈A
‖P1(·|s0, a)− P2(·|s0, a)‖1}.

Then by assuming that, for any step h′ ≥ 3,∑
s∈S
|qπP1

(s, h′)− qπP2
(s, h′)|

≤
h′−1∑
h=2

sup
s∈S,a∈A

‖P1(·|s, a, h)− P2(·|s, a, h)‖1 + sup
a∈A
‖P1(·|s0, a, 1)− P2(·|s0, a, 1)‖1,

we have that, for any step h′ + 1,∑
s∈S
|qπP1

(s, h′ + 1)− qπP2
(s, h′ + 1)|

≤
∑
s∈S
|
∑
s′∈S

(
qπP1

(s′, h′)− qπP2
(s′, h′)

)
P1(s|s′, πh′(s′), h′)|

+
∑
s∈S
|
∑
s′∈S

qπP2
(s′, h′) (P1(s|s′, πh′(s′, h′, h′)− P2(s|s′, πh′(s′), h′)) |

≤
∑
s′∈S

∣∣qπP1
(s′, h′)− qπP2

(s′, h′)
∣∣∑
s∈S

P1(s|s′, πh′(s′)) +
∑
s′∈S

qπP2
(s′, h′)

∑
s∈S
|P1(s|s′, π(s′, h′)− P2(s|s′, πh′(s′))|

≤
∑
s′∈S

∣∣qπP1
(s′, h′)− qπP2

(s′.h′)
∣∣+ sup

s′∈S

∑
s∈S
|P1(s|s′, πh′(s′), h′)− P2(s|s′, πh′(s′), h′)|

≤
h′∑
h=2

sup
s∈S,a∈A

‖P1(·|s, a)− P2(·|s, a)‖1 + sup
a∈A
‖P1(·|s0, a, h

′)− P2(·|s0, a, h
′)‖1

Lemma 16 (Corruption effects on value function ).

|VM1,π − VM2,π| ≤ H
H∑
h=2

sup
s′∈S
‖P1(·|s′, π(s′), h)− P2(·|s′, π(s′), h)‖1 +

H∑
h=2

sup
s∈S
|µ1(s, π(s), )− µ2(s, π(s), h)|

+ ‖P1(·|s0, π(s0), 1)− P2(·|s0, π(s0), 1)‖1 + |µ1(s0, π(s0), 1)− µ2(s0, π(s0), 1)|
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Proof. For convenience, when I write
∑H
h=1

∑
s∈S in the following, I actually mean

∑H
h=2

∑
s∈S +

∑
s=s0

.

|VM1,π(s0)− VM2,π(s0)|

≤ |
H∑
h=1

∑
s∈S

(
qπP1

(s, h)− qπP2
(s, h)

)
µ1(s, π(s), h)|+ |

H∑
h=1

∑
s∈S

qπP2
(s, h) (µ1(s, π(s), h)− µ2(s, π(s), h)) |

≤ |
H∑
h=1

sup
s∈S

µ1(s, π1(s))
∑
s∈S

(
qπP1

(s, h)− qπP2
(s, h)

)
|+

H∑
h=1

sup
s∈S
|µ1(s, π(s), h)− µ2(s, π(s), h)|

≤

(
H∑
h=1

sup
s∈S

µ1(s, π1(s))

)(
H∑
h=1

sup
s∈S
‖P1(·|s, π(s), h)− P2(·|s, π(s), h)‖1

)

+

H∑
h=1

sup
s∈S
|µ1(s, π(s), h)− µ2(s, π(s), h)|

≤ H
H∑
h=1

sup
s∈Sh

‖P1(·|s, π(s), h)− P2(·|s, π(s), h)‖1 +

H∑
h=1

sup
s∈S
|µ1(s, π(s), h)− µ2(s, π(s), h)|

Here the third inequality comes from Lemma 15 and the last inequality comes from the assumption on the reward
function.

E. Discussion on Reward-free Exploration Algorithm under Corruptions
In the Related Work section, we mentioned that algorithms proposed in Kaufmann et al. (2020) and Ménard et al. (2020) can
efficiently achieve uniform ε-close estimations for all the polices with near-optimal sample complexity in the no-corruption
setting. Their main idea is to construct a computable estimator of Q-value estimation error for all the state-action pairs and
greedily play the action that maximize such estimator at every step until all the state-action pairs have sufficiently small
Q-value estimation errors. So a natural question to ask is,

Can we replace the ESTALL with this type of efficient algorithms ?

To be specific, firstly, in the non-corrupted setting, we want to find an efficient algorithm that can guarantee uniform
estimations on all the policies in any given policy set Π by only implementing polices inside Π. Secondly, we also want this
algorithm has corruption robustness at least not worse than the ESTALL.

For the first target, we can easily define an estimator Wt(π) =
∑H
h=1

∑
s∈S

p̂πt,h(s)

nth(s,π(s))
, where nth(s, π(s)) is the empirical

number of times state-action-step pair (s, π(s), h) has been visited before time t+ 1 and p̂πt,h(s) is the empirical probability
that the policy π reach state s at h before time t+ 1. Suppose we have an efficient oracle that can calculate the following in
the polynomial times,

argmaxπ∈ΠWt(π)

Then we can find an oracle-efficient algorithm by greedily sampling πt+1 = argmaxπ∈ΠWt(π) until all the Wt(π) are small
enough.

Unfortunately, in the presence of corruptions, we find it is hard to get a good robustness. Roughly speaking, suppose the
rewards are fixed, then the estimation error V̂ π for any policy π is upper bounded by

|V π − V̂ π| ≤ min
t∈I

CpIWt(πt+1) +
√
Wt(πt+1)

where I represents the whole time period this algorithm is running. Then from our perspective, when |I| = o(1/ε2), we can
only guarantee mint∈IWt(πt+1) ≤ Õ

(
poly(|S||A|H(ε2 + CpIε

2)
)
, which gives

|V π − V̂ π| ≤ Õ
(
poly(|S||A|H)((CpI)2ε2 +

√
CpIε)

)
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Note that ESTALL gives Õ
(
poly(|S||A|H((CpI)2ε2 + ε))

)
-close estimations when CpI ≤ 1/ε. Therefore, plug-in this

algorithm instead of ESTALL in BARBAR-RL will give worse dependence in T .

Whether we can find a better estimator in this type of reward-free sub-algorithms or whether we can find another
proper meta-algorithm for this type of sub-algorithms remains open.


