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A. Limitation of global shape matching error
We further clarify the inherent limitation of the global shape
distance metric for measuring the shape deformation quality
in the presence of inconsistencies in topology or semantics
between the source and the target shapes.

The global metrics assign a low error, when the two shapes
overlap significantly, even if this implies an unnatural fit-
ting. Figure 1 is a characteristic example. With our feature
matching, the source arms can only find the closest points
on the seat or the back of the target chair, leading to a larger
global fitting error; while, with cross-fitting, the arms are
forced very close to the seat and the back in an unnatural
and distorted manner, which, however, reduces the whole
shape error. By contrast, part-level metrics do not count
such errors with inconsistent semantics, which makes more
sense when shapes differ significantly.
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Figure 1. Limitation of global shape error metrics. Mesh deformed
from source (blue) to target (green). The appearance-fitting result,
generated with MeshODE (Huang et al., 2020), has a lower global
matching error from the target shape at the arms (e.g. Chamfer
distance), with an unnatural fitting.

B. Interpolating mesh deformation
Some additional visual results are provided in Figure 2 for
chairs and Figure 3 for shapes in other categories, with
deformed shapes from intermediate time steps. We show
smooth and meaningful interpolated shapes as our method
transfers the vertices of the shape mesh continuously.
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C. Implementation Details
Analysis and mesh deformation (§4.1 and §4.2). Our
implementation is based on IM-Net or IM-AE from Chen
& Zhang 2019 with the codebase available at https:
//github.com/czq142857/IM-NET-pytorch,
which is an improved implementation from the authors. We
use the preprocessed ShapeNet dataset (Chang et al., 2015)
available with the codebase. For evaluation of part-aware
measures in Table 1 in the main paper, we take semantic
part segmentation annotation from ShapeNetPart (Yi et al.,
2016) dataset preprocessed by Chen et al. 2019 (available
at https://github.com/czq142857/BAE-NET).
For each of the shape categories we take the first 200 shapes
from the test split, and deform the first shape to the second,
the third to the fourth, until the 199th shape to the 200th.

The implicit decoder is 7-layer MLP with Leaky-Relu ac-
tivation except that the last layer to the output is linear.
The negative slope set for Leaky-Relu is -0.02. There are
no batch normalization or other normalization layers. The
widths of each layers {wl} from input to output are 259-
1024-1024-1024-512-256-128-1. Note, w0 = 259 is for
the 3-dim input coordinates concatenated with 256-dim la-
tent code. The encoder is a 5-layer 3D ConvNet that takes
voxels of shapes as input. Each conv layer is followed by
an instance normalization and Leaky-Relu activation (with
negative slope -0.02). The widths are 1-32-64-128-256-256
and so the output is a 256-dim latent code.

We train one network per shape category with the same
architecture, following the coarse-to-fine progressive train-
ing scheme from Chen & Zhang 2019 with the resolutions
at 163, 323, 643 respectively for 100, 200 and 800 epochs.
The batch size is 32. Adam optimizer is used with learning
rate 0.00005. The supervised `1 loss is used for training.
Training of each model takes around 30 hours on one single
Nvidia Geforce 1080 Ti.

The optimisation for feature matching uses the following
settings: we use dt = 0.02 for a total of 50 intermediate
steps with latent code interpolation. We use N = 3 New-
ton’s iterations at each time step. The regularisation factor
λ is set as 0.01. The entire feature matching process from
one source mesh with 3000 vertices to a target shape takes
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around 60 seconds. The bottleneck of runtime is mostly at
the calculation of Jacobian, which requires iterating over
the dimension in the hidden layer feature wl in modern deep
learning frameworks PyTorch or TensorFlow.

Inherent correspondence evaluation (§4.3). We
use the released code from OccFlow (Niemeyer
et al., 2019) available at https://github.com/
autonomousvision/occupancy_flow for the
preprocessed D-FAUST dataset (Bogo et al., 2017), the
evaluation of the `2 error of the correspondence as well as
the implementation of OccNet (Mescheder et al., 2019).
The velocity network component is not used.

The implicit function OccNet contains sequentially 5 resid-
ual blocks. Each block is with two fully-connected layers
followed by ReLU activation, with residual connection from
the input to the output of the block. In total, the implicit de-
coder as 10 fully-connected layers. All hidden layer widths
are 256. The input has 259 dimensions and the output is a
scalar occupancy probability. The encoder is a PointNet (Qi
et al., 2017) that takes point coordinate inputs and output
a 256-dim latent code. Following the original setup from
Niemeyer et al. 2019 in this evaluation, all vertices of the
human shape are taken as the point inputs.

We train the OccNet to reconstruct human shapes with all
poses from all training sequences, unlike Niemeyer et al.
2019 that trains the reconstruction network with only the
poses in the first frame of each sequence. Other training
details follow the original implementation. The batch size
is 16. Adam optimizer is used with learning rate 0.0001.
Training uses cross-entropy classification loss on the binary
occupancy probability and takes around 5 days for 3000
epochs.

We match the last hidden layer implicit feature from Occ-
Net as it outcomes points that are most close to the target
shape surface, and find the nearest point on the target shape
surface for correspondence. We use a total of 8 intermediate
steps with latent code interpolation. The `2 error of the cor-
respondence is evaluated on the test split with the author’s
code. For the number of Newton’s iterations at each time
step we use N = 4. The regularisation factor λ is set as
0.001.

More architectural and training details can be referred to the
original implementations, since the architecture and train-
ing processes highly rely on the existing standard implicit
function methods.
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Figure 2. Mesh deformation interpolation over time, chairs. Every two rows are a group of examples. The blue mesh is the source shape
and the green mesh is the target shape. The odd row shows interpolation from source to target (left to right), and the even row from target
to source (right to left).
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Figure 3. Mesh deformation interpolation over time, other categories. Every two rows are a group of examples. The blue mesh is the
source shape and the green mesh is the target shape. The odd row shows interpolation from source to target (left to right), and the even
row from target to source (right to left).


