
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

A. Appendix
A.1. Variance of the Gradient Estimators

We use the score function estimator (Williams, 1992) to
obtain the gradients. In some applications, this estimator
may suffer from high variance and make the training process
unstable. Here, we study the variance of the score function
estimator to make sure that it does not cause optimization
issues in our application. To show the behavior of the opti-
mizer, we plot the objective (the ELBO) in Figure 4(right)
and the variance of the gradient estimator in Figure 4(left);
both against training epochs. We can see that the objective
decreases smoothly throughout optimization, indicating that
the algorithm is stable. The three curves in the left plot show
the variance of the gradients for different number of Monte
Carlo samples; as expected, the variance decreases as the
number of samples increases. Moreover, the variance from
a relatively small sample size (S = 8) is already decently
low. This is because the variational distribution qφ(π|G)
tends to concentrate its probability mass to a small number
of node orders, which can be seen from our analysis of the
variational distribution (Figure 3 and Figure 5). Considering
the tradeoff between computation time and variance, we set
S = 8 in all our experiments.

0 8000 16000 24000
Iterations

12

10

8

6

4

Lo
g

Va
ria

nc
e

of

 G
ra

di
en

t E
st

im
at

es

0 8000 16000 24000
Iterations

20
40
60
80

100
120
140
160

-E
LB

O

sample_size = 1
sample_size = 8
sample_size = 16

Figure 4. (Left) Training objective (ELBO) against epochs for
GraphGEN on the Community-small dataset. The objective de-
creases smoothly throughout optimization. (Right) Log-variance
of the score function gradient estimator for different number of
Monte Carlo samples. Using S = 8 samples is enough to estimate
the gradient.

A.2. Proof of Lemma 1

Lemma 1. Let G[V \{u}] and G[V \{v}] respectively de-
note the subgraphs induced by V \{u} and V \{v}, then u
and v are in the same orbit if and only if G[V \{u}] and
G[V \{v}] are isomorphic.

Proof. Let ‘≡’ denote the isomorphic relation. Also denote
E\{u} = {(i, j) ∈ E : i 6= u, j 6= u} as the subset of
edges that do not incident u.

We first show the first direction: “u and v being in the
same orbit” indicates “G[V \{u}] ≡ G[V \{v}]”. If u and
v are in the same orbit, then ∃f ∈ Auto(G) : f(v) = u.
Then ∀i, j ∈ V \{u}, (i, j) ∈ E\{u} ⇐⇒ (f(i), f(j)) ∈

E\{v} because f is an automorphism. Then we restrict
f to V \{u} and get a injection f ′ : V \{u} → V \{v},
and f ′(i) = f(i) ∀i ∈ V \{u}. Then ∀i, j ∈ V \{u},
(i, j) ∈ E\{u} ⇐⇒ (f ′(i), f ′(j)) ∈ E\{v}. Therefore,
f ′ is an isomorphism between G[V \{u}] and G[V \{v}].

We then prove by induction the second direction:
“G[V \{u}] ≡ G[V \{v}]” indicates that “u and v being
in the same orbit” .

In the base case, we consider graphs with two nodes. Let
G be (V = {u, v}, E = ∅) or (V = {u, v}, E = (u, v)).
In either case, we always have G\{u} ≡ G\{u}. The two
nodes u and v are also in the same orbit in both cases. So
the second direction holds in the base case.

Then in the induction step, we assume the second direction
is true for any graph of size n, then we show that it is also
true for a graph of size n + 1. Let f ∈ Auto(G), and
f(u) = u′. There are three cases: u′ is v, u′ is u, or u′

is neither of them. If it is the first case, then we have the
conclusion directly: u and v are in the same orbit.

Then we check the third case. With the same argument
in the proof of the first direction, we restrict f to V \{u}
and get an isomorphism: G\{u} ≡ G\{u′}. By the con-
dition G\{u} ≡ G\{v}, we also have G\{u′} ≡ G\{v}.
We then remove u from both graphs and get G\{u, u′} ≡
G\{u, v}. With the induction rule, we have that u′ and v
in the same orbit in G\{u}. Let g(·) ∈ Auto(G\{u}) and
g(u′) = v. We extend g(·) to V and let g(u) = u, then
g ◦ f creates an automorphism on G, and (g ◦ f)(u) = v.
Therefore, u is in the same orbit as v.

Finally, we show how to construct an f(·) such that f(u) =
u′ 6= u. Since G[V \{v}] ≡ G[V \{u}], there is a isomor-
phism h : V \{v} → V \{u}, and h(u) = u′. Note that u′

cannot be u because u is not in the range of h. We extend
h to the domain V and let h(v) = u, so h is a permuta-
tion of V . For any i, j ∈ E\{v}, (i, j) ∈ E\{v} ⇐⇒
(h(i), h(j)) ∈ E\{u} because h is an isomorphism. It is
also true that (i, j) ∈ E ⇐⇒ (h(i), h(j)) ∈ E because
(i, j) does not incident v, and (f(i), f(j)) does not incident
u. Since h is a permutation, the composition of h forms
a group: {h0, h1, . . . , hK}. The inverse h−1 is the same
as hK . Let j ∈ V \{v}, and j = h−1(i), i ∈ V \{u},
then (h(v), h(j)) = (u, i). With the previous argument,
(u, i) ∈ E ⇐⇒ (h(u), h(i)) ∈ E. By the compisition
rule, we further have (h(u), h(i)) ∈ E ⇐⇒ . . . ⇐⇒
(hK(u), hK(i)) = (v, j) ∈ E. This works for any j ∈ V \v,
that is, ∀j ∈ V \{v}, (v, j) ∈ E =⇒ (h(v), h(j)) ∈ E,
then h is a non-trivial automorphism on G and h(u) 6=
u′.

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

64%

36%

41%

32%

20%

24%

22%

17%

20%

19%

11%

33%

30%

7%

29%

28%

16%

34%

30%

13%

27%

24%

18%

23%

17%

16%

36%

16%

15%

100%

G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Figure 5. Graph generative sequences sampled from qφ(π|G) for a graph from Community-small. The variational distribution prefers
sequences of connected graphs. Similary to the distribution indicated in Figure 3 (bottom left), it first generates a comunity and then adds
another one.

5 1000 2000 3000 4000
sampled permutations

29

28

av
er

ag
e

lo
g-

lik
el

ih
oo

d

Yeast

estimate
exact

5 1000 2000 3000 4000
37

36

Lung

estimate
exact

Figure 6. Comparison of estimated log-likelihood and exact log-
likelihood for small graphs (fewer than 10 nodes) in the Lung
and Yeast test sets. The estimation from S = 2200 importance
samples is very accurate.

A.3. The Accuracy of the Log-Likelihood Estimation

To make sure we give an accurate estimation of the log-
likelihood, we compare the estimated log-likelihood using
different number of importance samples against the true log-
likelihood. We compute the true log-likelihood of a graph
by enumerating all possible permutations. We conduct the
experiment on two datasets, Yeast and Lung. Since the cal-
culation of the true log-likelihood is only feasible on small
graphs, we keep graphs with fewer than 10 nodes in each of
the two datasets. We use GraphRNN trained by variational
inference as the model here, and the proposal distribution
is the learned qφ(π|G). Figure 6 shows the results on the
two datasets. We see that when the number of samples is
over 1000, the gap between the true log-likelihood and the
estimated log-likelihood becomes very small (less than 0.1).
When we increase the number of samples to 2200, the esti-
mation is very accurate for both datasets. We conclude that
the importance sampling estimator can be reliably used for
model selection and model comparison.

Algorithm 1 VI algorithm for training a graph model based
on the adjacency matrix A

Input: Dataset of graphs G = {G1, . . . , Gn}, model
pθ, variational distribution qφ, sample size S, transition
function γa(·)
Output: Learned parameters θ and φ
repeat

for G ∈ G do
Sample π(1), . . . , π(S) iid∼ qφ(π|G)
Obtain A(s) = γa(G, π

(s))
Set pθ(G, π(s)) = 1

|Π[A(s)]|pθ(A
(s))

Compute ∇φ ← ∇φL(θ, φ,G)
Compute ∇θ ← ∇θL(θ, φ,G)
Update φ, θ using the gradients∇φ,∇θ

end for
until convergence of the parameters (θ, φ)

A.4. Training Algorithm

We present the training procedure in Algorithm 1. We op-
timize the parameters using the score function estimator,
which is a standard choice in VI for non-conjugate models.
Algorithm 1 can be applied to many autoregressive models
operating with the adjacency matrix A, such as GraphRNN
and GraphGEN. For models that operate with the graph se-
quence instead, such as DeepGMG, we only need to replace
the surjection γa with γs to obtainG(s)

1:n from each (G, π(s)).
In this case, pθ(G, π(s)) = 1

|Π[G
(s)
1:n]|

pθ(G
(s)
1:n).

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

86%

14%

70%

19%

10%

42%

27%

8%

50%

37%

3%

49%

34%

5%

55%

38%

3%

54%

35%

5%

36%

36%

22%

100%

G2 G3 G4 G5 G6 G7 G8 G9 G10

Figure 7. Graph generative sequences sampled from qφ(π|G) for a graph from Enzymes. The variational distribution has a strong
preference for sequences of connected graphs.

A.5. Graph Sequence Pattern in DeepGMG

In Section 4, we have investigated the variational distribu-
tion when training GraphRNNs. Here we study the vari-
ational distribution when training DeepGMG. For this ex-
periment, we also consider the Community-small and the
Enzymes dataset in order to show how our model learns
a set of preferred orders. We choose the smallest graph
from each dataset (a graph with 12 nodes for Community-
small and a graph with 10 nodes for Enzymes). For each
graph, we sample 720 graph sequences from the trained vari-
ational distribution. We show the sampled graph sequences
in Figure 5 and Figure 7. Without any prior knowledge, the
variational distribution has strong preference for sequences
of connected graphs. In addition, in Community-small, just
like GraphRNN, the model prefers to generate communities
one by one.

