
Order Matters: Probabilistic Modeling of Node Sequence
for Graph Generation

Xiaohui Chen * 1 Xu Han * 1 Jiajing Hu 1 Francisco J. R. Ruiz2 Liping Liu 1

Abstract

A graph generative model de�nes a distribution
over graphs. One type of generative model is
constructed by autoregressive neural networks,
which sequentially add nodes and edges to gener-
ate a graph. However, the likelihood of a graph
under the autoregressive model is intractable, as
there are numerous sequences leading to the given
graph; this makes maximum likelihood estima-
tion challenging. Instead, in this work we derive
the exact joint probability over the graph and the
node ordering of the sequential process. From
the joint, we approximately marginalize out the
node orderings and compute a lower bound on
the log-likelihood using variational inference. We
train graph generative models by maximizing this
bound, without using the ad-hoc node orderings
of previous methods. Our experiments show that
the log-likelihood bound is signi�cantly tighter
than the bound of previous schemes. Moreover,
the models �tted with the proposed algorithm can
generate high-quality graphs that match the struc-
tures of target graphs not seen during training.

1. Introduction

Random graphs have been a prominent topic in statistics and
graph theory for decades. An early and in�uential model of
random graphs is the Erd�os–Rényi model (Erd�os & Rényi,
1960). Since then, various models have been proposed to
characterize different global statistics of graphs or networks
in the real world (Watts & Strogatz, 1998; Nowicki & Sni-
jders, 2001; Cai et al., 2016). However, these models are
usually not designed for capturing local structures of a graph,
such as bonds in a molecule graph.

Autoregressive generative models (You et al., 2018; Li et al.,

* Equal contribution1Department of Computer Science, Tufts
University, Medford, MA, USA.2DeepMind, London, UK. Corre-
spondence to: Xiaohui Chen <xiaohui.chen@tufts.edu>.

Proceedings of the38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

2018; Liao et al., 2019; Dai et al., 2020; Goyal et al., 2020;
Yuan et al., 2020; Shi et al., 2020) are designed to learn �ne
structures in graph data. These models generate a graph
by sequentially adding nodes and edges. Since a graph is
invariant to node permutations (Veitch & Roy, 2015), there
are multiple sequences of actions leading to the same graph.
When �tting an autoregressive model to data, a particular
node ordering� of the graphG (called “generation order”)
is used to pin down a single generation sequence ofG, such
as depth-�rst search (DFS) or breadth-�rst search (BFS)
ordering. The model is then �tted assuming the graph was
generated under such ordering� . Autoregressive models
of graphs typically use deep learning tools (Guo & Zhao,
2020), such as recurrent neural networks (RNNs), to learn
�exible and complex patterns from data.

Choosing a speci�c ordering� does not rigorously corre-
spond to maximum likelihood estimation (MLE). Indeed, to
�t the parameters of an autoregressive model via MLE, we
need the likelihood ofG under the model. One approach for
computingp(G) is to sum over all possible node orderings
� , p(G) =

P
� p(G; �). However, this approach presents

some challenges. First, a generation sequence ofG corre-
sponds to multiple node orderings whenG has non-trivial
automorphisms (You et al., 2018; Liao et al., 2019), which
require us to carefully derive the jointp(G; �) from the
model's distribution of generation sequences. Second, the
marginalization is intractable in practice due to the number
of terms in the sum. As a consequence,p(G) cannot be
easily obtained. This does not only make MLE intractable,
but also implies that generative models cannot be evaluated
in terms of log-likelihood. Instead, other evaluation met-
rics such as degree distribution are used, but these metrics
exhibit some issues for complex graphs (Liu et al., 2019).

In this work, we provide a method to estimate the marginal
log-likelihood, enabling standard statistical model checking
and comparison. It also opens the door for other learning
tasks that require the log-likelihood of graph data, such as
density-based anomaly detection.

We aim at consolidating the foundation of autoregressive
graph generative models. In particular, we examine two
types of models: one that generates a graph through an
evolving graph sequence and one that generates an adja-

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

cency matrix. Then we derive the jointp(G; �) from each
type. Our analysis reveals a relationship between graph
generation and graph automorphism.

To �t large graphs via MLE, we avoid the intractable
marginalization by performing approximate posterior in-
ference over the node ordering� . In particular, we use
variational inference (VI) and maximize a lower bound of
logp(G). We design a neural network that infers the prob-
ability over � for a given graphG. Thus, the generative
model is trained with node orderings that are likely to gen-
erateG, avoiding the need to de�ne ad-hoc orderings.

For evaluation, we estimate the graph log-likelihood via
importance sampling. Our empirical study indicates that the
variational lower bound is relatively tight. We also �nd that
generative models �tted with the proposed method perform
better than existing methods according to various metrics,
including log-likelihood. Models trained with our method
are able to generate new graphs with higher similarity to
training graphs than existing approaches.

Contributions. Our main contributions are as follows:

• we give a rigorous de�nition of the probability of node
orderings in autoregressive graph generative models;

• we analyze the relation between the calculation of
graph probabilities and graph automorphism;

• we introduce VI to infer node orderings; and
• our training method with VI improves the performance

of the model both quantitatively and qualitatively.

Related work. Autoregressive graph generation models
have gained attention due to both the quality of generated
graphs and their generation ef�ciency (You et al., 2018; Li
et al., 2018; Liao et al., 2019; Dai et al., 2020; Shi et al.,
2020). In these works,� is often decided by DFS or BFS,
or it can be a specially designed canonical order. Liao et al.
(2019) justify this approach by showing that these methods
optimize a variational bound onlogp(G). However, when
the node orderings� are either randomly sampled from a
uniform distribution or limited to a small range of canonical
orders, these bounds are likely to be loose.

One model that considers a single canonical node order-
ing � ? is GraphGEN (Goyal et al., 2020). That is, for a
given graphG, GraphGEN obtainsp(G) by considering
that the graph was generated according to� ?. However,
when generating a graph from the model, GraphGEN does
not guarantee the canonical order. This design raises a theo-
retical issue: the frequency of a generation sequence may
not converge to the model's probability of that sequence.

2. Autoregressive Graph Generation

In Section 2.1, we introduce the two formulations of an
autoregressive generative model—based on either a graph

sequence or an adjacency matrix. In Section 2.2, we provide
an explicit relationship between each formulation and the
node ordering� to obtain the exact jointp(G; �).

2.1. Problem de�nition

Let V = f 1; : : : ; ng andE be the node set and edge set of
a graphG = (V; E) with jV j = n nodes. A node ordering
� = (� 1; : : : ; � n) is a permutation of the elements inV .
We considerG is unlabeled: permuting the nodes does not
change the graph. The graph has a classA(G) of adjacency
matrices corresponding to different node orderings—for
each� , there is a unique adjacency matrixA 2 f 0; 1gn � n

that indicates which nodes are connected. We only consider
�nite graphs without self-loops and multi-edges, soA is
symmetric and its diagonal elements are zero. LetGdenote
the space of such graphs.

A generative model of unlabeled graphs de�nes a distri-
butionp(G) overG. The distribution must be invariant to
permutation of graph nodes. In this work, we focus on
autoregressive generative models. We next review two for-
mulations of autoregressive generative models.

The autoregressive model1 by You et al. (2018); Liao et al.
(2019); Shi et al. (2020); Goyal et al. (2020) operates with
the adjacency matrixA . In particular, the model generates
a lower triangular matrixL by sequentially generating each
row of L . After every row is generated, it may stop with a
special termination symbol, denoted by
 . Since an adja-
cency matrixA = L + L > , eachL uniquely determinesA
and vice-versa; thusp(A) = p(L) and

p(A) = p(
j L)
nY

t =2

p(L t; : jL 1:(t � 1)): (1)

Here,L 1:(t � 1) denotes the submatrix formed from the �rst
t � 1 rows ofL , andL t; : is thet-th row ofL . The probability
p(L 1;:) = 1 is left out here. The adjacency matrixA fully
de�nes a graphG.

The deep generative model of graphs (DeepGMG) (Li et al.,
2018) de�nes the sequential process as follows. It starts with
a graphG1 with one node, and at each stept = 2 ; 3; : : :,
it obtains a graphGt by adding a new node as well as
some edges connecting the new node to the previously
generated graphGt � 1. The probability of the sequence
G1:n = (G1; : : : ; Gn) is

p(G1:n) = p(
j Gn)
nY

t =2

p(Gt jGt � 1): (2)

1The formulation by Liao et al. (2019) generates graph nodes
in batches, but it can also be expressed as an autoregressive model
in this form. Similarly, GraphGEN (Goyal et al., 2020), which
generates the sparse form of each row ofL , is also in this form.

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

Figure 1.An overview of the relationship between the node ordering� and the adjacency matrixA or the graph sequenceG1:n . Given a
graphG (left), several node orderings� (middle) specify the same adjacency matrixA or graph sequenceG1:n , so we cannot uniquely
identify � from eitherA or G1:n . The node orderings that give the sameA give the sameG1:n , but not vice-versa. In the plot ofG1:n ,
for each subgraphGt , nodes in the same orbit are labeled with the same color.

The probabilityp(G1) = 1 is left out here as well. Note
that, aftern steps, the graphGn is the generated graphG.

A given graphG does not naturally have either a unique adja-
cency matrixA or a unique graph sequenceG1:n . Therefore,
when �tting these models, we need to specify a node order-
ing � to pin down a single adjacency matrixA or sequence
G1:n . We depart from these two formulations and consider
a formal treatment of the node ordering.

2.2. The generation order as a random variable

Here, we relate the sequential processes from Section 2.1
with the node ordering� . First, we consider the marginal
likelihood p(G). Under the �rst formulation, we obtain
p(G) by marginalizing over all adjacency matrices ofG,

p(G) =
X

A 2A (G)

p(A): (3)

Under the second formulation, the marginalization is over
all graph sequences that lead toG, i.e.,

p(G) =
X

G1: n : Gn = G

p(G1:n): (4)

In both cases, the likelihood is intractable because the
marginalization space is hard to specify—it involves �nd-
ing all unique adjacency matrices or graph sequences (Liao
et al., 2019). To obtainp(G), many works use instead the
node ordering� as the marginalization variable since the
space of� is easier to characterize than that ofA or G1:n

for a graphG. To obtainp(G; �), we need to clarify the
relationship betweenA or G1:n and� , as we discuss next.

The sequential process from Section 2.2 generates an ad-
jacency matrix or graph sequence; however in general we
cannot identify� from either of these variables. To see this,
consider �rst the relation betweenA and the node ordering
� . Given the graphG, � determinesA because thet-th
row of A correponds to node� t . However, the converse

is not necessarily true: a matrixA corresponds to multiple
node orderings ifG has non-trivial automorphism (Liao
et al., 2019). We provide an example in Figure 1, where
each of the �rst two node orderings (� = (1 ; 3; 5; 2; 4) and
� = (1 ; 2; 4; 3; 5)) determinesA , but we cannot uniquely
identify one of them fromA (in particular, we cannot dis-
tinguish the node pairs(2; 4) and(3; 5)). The same is true
for the graph sequenceG1:n : a node ordering� de�nes a
graph sequenceG1:n , but not vice-versa (see Figure 1).

Similarly, the relation betweenA andG1:n is not unique.
An adjacency matrixA determines a graph sequenceG1:n ,
but a graph sequence does not determine a uniqueA . As an
example, in Figure 1 all four node orderings generate the
sameG1:n , but the last two node orderings determine two
adjacency matrices different from the shown matrixA .

In summary,(G; �) determinesA , which determinesG1:n ,
but the reverse is not true in general. This implies that
an autoregressive generative model (which generatesA or
G1:n) does not specify a distribution over� .

We next make� a random variable and formally specify the
joint p(G; �). Given the graphG = (V; E), let � [A] be
the set of all possible node orderings� that give the same
adjacencyA ; similarly, let � [G1:n] be the set of all node
orderings that give the same graph sequenceG1:n , i.e.,

� [A] = f � : A � i ;� j = 1[(� i ; � j) 2 E]; 8i; j 2 Vg

� [G1:n] = f � : G[� 1:t] = Gt ; 8t = 1 ; : : : ; ng:

Here,1[�] is 1 or 0 depending on whether the condition
in the bracket is true or false, andG[� 1:t] is the induced
subgraph ofG from the �rst t nodes in the ordering� . Then
we let the conditional distributionp(� jA) be uniform, i.e.,

p(� jA) =
1�

� � [A]
�
� : (5)

The set� [A] turns out to be the set of automorphisms2 of

2A function f : V ! V is an automorphism ofG = (V; E) if
(u; v) 2 E () (f (u); f (v)) 2 E .

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

the graphG. This is because every node ordering� 2 � [A]
permutes rows and columns ofA but does not changeA ;
that is, each� creates an automorphism. Therefore, ob-
tainingp(� jA) amounts to �nding the number of automor-
phisms of a graph. Fortunately, this is a well-studied classic
problem in graph theory. The time complexity of com-
puting j� [A]j is exp

�
O(

p
n logn)

�
(Beals et al., 1999).

The Nauty package (McKay & Piperno, 2013) uses vari-
ous heuristics and can ef�ciently �nd this number for most
graphs. In practice, it can computej� [A]j for a graph with
thousands of nodes within10� 3 seconds.

For the formulation with graph sequences, the analysis is
more involved. We de�ne the conditionalp(� jG1:n) as a
uniform distribution,

p(� jG1:n) =
1�

� � [G1:n]
�
� : (6)

We discuss below how to obtainj� [G1:n]j in practice, but
�rst we formally specify the jointp(G; �) and the likelihood
p(G). The joint can be obtained fromp(A) or p(G1:n) as

p(G; �) =
1�

� � [A]
�
� p(A) =

1�
� � [G1:n]

�
� p(G1:n): (7)

(This expression assumes thatA 2 A (G) and thatGn =
G.) The marginal likelihoodp(G) of a graph can be ob-
tained by marginalizing out the node ordering� from Eq. 7,

p(G) =
X

�

p(G; �): (8)

Obtainingp(G) from Eq. 8 is easier than from Eq. 3 or Eq. 4
because the marginalization space is easier to characterize,
but it remains intractable because of the large number of
terms in the sum. In Section 3, we derive a variational bound
onp(G) by approximating the posterior distributionp(� jG),
for which we use the de�nition of the joint in Eq. 7.

Obtaining j� [G1:n]j. We now discuss the practical calcu-
lation of j� [G1:n]j. Like j� [A]j, it is also closely related
to graph automorphism. LetAut(G) denote the set of all
automorphisms ofG, then theorbit of a nodeu 2 V is
r (G; u) = f v 2 V : 9f 2 Aut(G); v = f (u)g (Godsil &
Royle, 2001). Intuitively, the orbit ofu contains all nodes
that are “symmetric” tou. In Figure 1, the orbit of node3 is
f 2; 3g, and the orbit of node5 is f 4; 5g. The theorem below
expressesj� [G1:n]j in terms of the cardinality of the orbits
produced during the sequential generative process.

Theorem 1. For a graph sequenceG1:n , we have

�
� � [G1:n]

�
� =

nY

t =1

�
� r (Gt ; � t)

�
� : (9)

We show an example before providing the proof. Suppose
thatGn is the complete graph withn nodes, then eachGt in

the sequence is a complete graph witht nodes. Applying the
theorem withr (Gt ; � t) = t givesj� [G1:n]j = n!, which
means that alln! permutations use the same graph sequence.

Proof. The proof of the theorem needs the following lemma,
whose proof is in Appendix A.2.

Lemma 1. Let G[Vnf ug] andG[Vnf vg] respectively de-
note the subgraphs induced byVnf ug andVnf vg, thenu
and v are in the same orbit if and only ifG[Vnf ug] and
G[Vnf vg] are isomorphic.

We prove Eq. 9 by induction. Let� 2 � [G1:n], and con-
sider the number of node orderings that give the same
graph sequence as� . When n = 1 , there is only
one node in the graph, and then the base case is true:
j� [G1]j = jr (G1; 1)j = 1 . Then, we show the induction
rule j� [G1:n]j = j� [G1:(n � 1)]j � j r (Gn ; � n)j. If a node
ordering� 0 of Gn gives the same graph sequenceG1:n as
� , then nodes� 0

n and� n must be in the same orbit by the
lemma. There arejr (Gn ; � n)j choices of� 0

n . Then, con-
sider the number of choices for� 0

1:(n � 1) . Since removing
� n and removing� 0

n give two isomorphic graphs,� 0
1:(n � 1)

can take any node ordering in� [G1:(n � 1)] and thus has
j� [G1:(n � 1)]j possible values. Together,� 0 hasj� [G1:n]j
possible values, which implies the induction rule.

To computer (Gt ; � t), we need to identify the orbit of
the node� t , which can be expensive for some graphs.
Thus, we resort instead to an approximation ofr (Gt ; � t)
that ultimately results in a lower bound ofp(G). The ap-
proximation is based on the color re�nement algorithm
(1-Weisfeiler-Lehman), which approximately obtains the
orbit of a node. The algorithm uses node colors to par-
tition nodes and always assigns the same color to nodes
in the same orbit (Arvind et al., 2017). Letc = CR(G)
be node colors from the color re�nement algorithm; then
r CR (G; u) = f v 2 V : cv = cu g � r (G; u) (the two sets
are equal for most cases since the color re�nement algo-
rithm is very effective in practice). Then, we can use the
result of the algorithm to obtain a bound of Eq. 9,

� (G1:n) ,
nY

t =1

jr CR (Gt ; � t)j �
�
� � [G1:n]

�
� : (10)

This implies a bound on the jointp(G; �) from Eq. 7,

bp(G; �) ,
1

� (G1:n)
p(G1:n) � p(G; �): (11)

This bound is tight in practice because of the effectiveness
of the color re�nement algorithm. In Section 3, we optimize
a variational bound on the marginal

P
� bp(G; �) � p(G),

but we writep(G) andp(G; �) for simplicity.

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

Can we avoid the marginalization by using a single gen-
eration order for a graph? GraphGEN (Goyal et al.,
2020) de�nes a single canonical node ordering� ? for a
given graphG. Then, there is only one adjacency matrix
A ? corresponding to� ?, and GraphGEN de�nesp(G) =
p(A ?), therefore avoiding the marginalization over� . How-
ever, GraphGEN does not restrict the generation order when
sampling from the model; in fact there is not a straightfor-
ward way to control the generation order because the canon-
ical order is computed retrospectively afterG is generated.
As a result, a sample from GraphGEN may be generated
with a node ordering that is different from the canonical or-
der of the resulting graph. Thus, the sampling probability of
G is likely to be inconsistent with the probabilityp(G) that
the model assigns toG. That is, the sampling frequency of
G will not converge to the model'sp(G), which is a severe
problem for a statistical model. To estimate how different
the sampling and the model probabilities are, we tested the
generation procedure of GraphGEN, and we found that only
9.1% of the generated graphs use the canonical order that is
used for the calculation ofp(G) during training.

3. Training a Generative Model using VI

Here we present a method to �t an autoregressive graph gen-
eration model that does not rely on any constraints on the
node ordering. We use the notationp� (G; �) to explicitly
indicate that the joint depends on the parameters� of the gen-
erative model—eitherp� (A) or p� (G1:n). For moderately
large graphs, the MLE of� is computationally intractable
because the marginalization of� from Eq. 8 involvesn!
terms; we sidestep this issue with a VI method (Blei et al.,
2017) that maximizes a lower bound onlogp� (G).

The variational lower boundL(�; �; G) � logp� (G) is

L (�; �; G)= Eq� (� jG) [logp� (G; �) � logq� (� jG)]: (12)

Hereq� (� jG) is a variational distribution to approximate
the posteriorp� (� jG). Its parameters are denoted by� . We
�t the model parameters� and the variational parameters�
by maximizing Eq. 12 w.r.t. both parameters. We discuss the
form of the variational distributionq� (� jG) in Section 3.1
and the optimization algorithm in Section 3.2.

3.1. The variational distribution

The variational distributionq� (� jG) approximates the in-
tractable posteriorp� (� jG). To obtain a good approxima-
tion, we letq� (� jG) incorporate both graph topological
information as well as the information from partially gener-
ated graphs according to the order� . We use a Recurrent
Ordering Structure (ROS) to specifyq� (� jG),

q� (� jG) =
nY

t =1

q� (� t jG; � 1:(t � 1)): (13)

Figure 2.Illustration of the sampling procedure from the varia-
tional distribution. (Left) To sample node� 3 = 5 given� 1 = 1
and� 2 = 3 , we �rst augment the initial node features with posi-
tional embeddings using Eq. 15. (Middle) The GNN obtains the
logits for each node using Eq. 16. (Right) We sample� 3 from the
categorical distribution (Eq. 14).

At each step, the distribution of thet-th node� t depends
on bothG and the partial order� 1:(t � 1) . In particular, the
conditionalq� (� t jG; � 1:(t � 1)) is a categorical distribution
over� t ; we denote its logits byf ` t

k g, then

q� (� t jG; � 1:(t � 1)) =
exp

�
` t

� t

	

P
k =2 � 1:(t � 1)

expf ` t
k g

; � t =2 � 1:(t � 1) :

(14)

The logits are functions of(G; � 1:(t � 1)). We use a graph
neural network (GNN) as the recurrent unit that outputs
the logitsf ` t

k g of the conditionalq� (� t jG; � 1:(t � 1)), since
GNNs are powerful tools to extract information from graphs.
The input of a GNN usually consists of the graphG and
its node features; in our case the input is� 1:(t � 1) and
G. To encode� 1:(t � 1) into an initial set of node fea-
turesf h t

1; :::; h t
n g, we use a positional embeddingPE(�)

(Vaswani et al., 2017), such that

h t
j =

(
h0 + PE(t); if j = � t 0 for t0 < t ,
h0; otherwise.

(15)

Here,h0 is a learnable vector used globally for all steps
and nodes. (If the graph data contains node features, we
can use these node features to replaceh0.) Then, the GNN
computes the logits for all nodes.

(` t
1; : : : ; ` t

n) = GNN � (G; (h t
1; : : : ; h t

n)) : (16)

Only logits for nodes not in� 1:(t � 1) are used for the cal-
culation of(14). Figure 2 illustrates the process to sample
from the conditionalq� (� t jG; � 1:(t � 1)).

The choice of the speci�c GNN is �exible. In our experi-
ments, the graph attention network (GAT) (Veli�cković et al.,
2017) performed better than the graph convolutional net-
work (GCN) (Wu et al., 2019) and the approximate person-
alized propagation of neural predictions (APPNP) (Klicpera
et al., 2018). All results in Section 4 use the GAT.

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

Algorithm 1 VI algorithm for training a graph model based
on the adjacency matrixA

Input: Dataset of graphsG = f G1; : : : ; Gn g, modelp� ,
variational distributionq� , sample sizeS
Output: Learned parameters� and�
repeat

for G 2 G do
Sample� (1) ; : : : ; � (S) iid� q� (� jG)
ObtainA (s) from (G; � (s))
Setp� (G; � (s)) = 1

j � [A (s)]j p� (A (s))
Computer � r � L(�; �; G)
Computer � r � L(�; �; G)
Update� , � using the gradientsr � , r �

end for
until convergence of the parameters (� , �)

3.2. Maximizing the variational lower bound

To maximize the lower boundL(�; �; G) in Eq. 12, we need
its gradients w.r.t. both� and� , which are intractable. We
obtain the gradient w.r.t.� via Monte Carlo estimation. We
obtain the gradient w.r.t.� using the score function estimator
(Williams, 1992; Carbonetto et al., 2009; Paisley et al., 2012;
Ranganath et al., 2014). The estimators are obtained withS
samples� (s) � q� (� jG) for s = 1 ; : : : ; S, yielding

r � L(�; �; G) �
1
S

SX

s=1

r � logp� (G; � (s)); (17)

r � L(�; �; G) �
1
S

SX

s=1

h
logp� (G; � (s)) (18)

� logq� (� (s) jG)
i
r � logq� (� (s) jG):

Eq. 17 shows that the parameters� of the model are opti-
mized under node sequences� sampled from the approxi-
mate posterior. That is, �tting the model does not require
to de�ne ad-hoc orderings� ; rather, the (approximately)
most likely node orderings are used. As a comparison, a
model trained with uniformly distributed random node order-
ings can be seen as using a uniform variational distribution,
which in turn corresponds to a looser log-likelihood bound.

Although the score function estimator may exhibit large
variance in general, in our experiments we found that this
does not represent an issue. In fact,S = 4 samples were
enough and allowed for stable optimization of the objective
(see Appendix A.1). We leave other gradient estimation
techniques (Mohamed et al., 2019) for future work.

We present the training procedure in Algorithm 1. The
algorithm can be applied to many autoregressive models
operating with the adjacency matrixA , such as GraphRNN
and GraphGEN. For models that operate with the graph

sequence instead, such as DeepGMG, we only need to ex-
tract the graph sequenceG(s)

1:n from each(G; � (s)) and set
p� (G; � (s)) = 1

j � [G (s)
1: n]j

p� (G(s)
1:n).

Running time. To form the gradient estimators, each of
theS Monte Carlo samples requiresn evaluations of the
GNN output, each takingO(jE j). For most graphs, the com-
plexity of the gradient computation is dominated by these
terms and is thereforeO(SnjE j). Counting automorphisms
only takes a small fraction of the running time in practice.
Similarly, the approximation ofj� [G1:n]j also takes a small
fraction of the running time. The resultingO(SnjE j) com-
plexity is a limitation of the proposed algorithm, and hence
it is hard to scale to large graphs. However, since it provides
better results than existing approaches (see Section 4), our
algorithm can still be preferable for applications that are not
sensitive to the training time. We leave for future work the
exploration of ways to improve the computational ef�ciency,
such as proposing the node ordering� in one shot.

4. Experiments

In this section, we design a set of experiments to investigate:
(i) the tightness of the variational lower bound, (ii) the per-
formance of a model �tted with the proposed method based
on VI, (iii) the quality of the approximate posterior learned
by the variational distribution, and (iv) the quality of graphs
generated with the �tted model.

4.1. Experimental setup

Datasets. We use 6 datasets: (1)Community-small: 500
community graphs with12 � j V j � 20. Each graph has
two communities generated by the model of Erd�os & Rényi
(1960). (2)Citeseer-small: 200 subgraphs with5 � j V j �
20, extracted from Citeseer network (Sen et al., 2008) us-
ing random walk. (3)Enzymes: 563 protein graphs from
BRENDA database (Schomburg et al., 2004) with10 �
jV j � 125. (4) Lung: 400 chemical graphs with6 � j V j �
50, sampled from Kim et al. (2018). (5)Yeast: 400 chemical
graphs with5 � j V j � 50, sampled from Kim et al. (2018).
(6) Cora: 400 subgraphs with9 � j V j � 97, extracted from
the Cora network (Sen et al., 2008) using random walk.

Methods. We choose three recent graph generative models,
DeepGMG (Li et al., 2018), GraphRNN (You et al., 2018),
and GraphGEN (Goyal et al., 2020). We use their original
training methods with default hyperparameters as baselines,
and compare them with the proposed VI method. For our
method, we use the Nauty package (McKay & Piperno,
2013) to computej� [A]j and the color re�nement algo-
rithm to approximatej� [G1:n]j, and we parameterize the
variational distribution with a GAT (Veli�cković et al., 2017)
with 3 layers, 6 attention heads, and residual connections.

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

Table 1.Approximate test log-likelihood and variational lower bound (ELBO) of different graph generation models. For each model, we
compare the default training algorithm with our method based on VI; the table shows that VI improves the model's predictive performance.
Moreover, the variational bound is relatively tight. We used pairedt-test to compare the results; the numbers in bold indicate that the
method is better at the5% signi�cance level.

Community-small Citeseer-small Enzymes Lung Yeast Cora
log-like/ELBO log-like/ELBO log-like/ELBO log-like/ELBO log-like/ELBO log-like/ELBO

DeepGMG uniform -206.2/-303.9 -60.9/-67 -281.9/-290.8 -146.7/-225.7 -115.1/128.9 -283.7/-295.2
VI [ours] -124.8/-131.8 -59.6/-65.6 -145.8/-156.2 -146.1/-224.6 -105.4/-115.7 -227/-247.2

GraphRNN uniform -154.6/-157.6 -101.9/-105.7 -340.3/-349.1 -232.4/ -242.2 -189.3/-200.1 -380.6/-401.8
VI [ours] -53.7/-59.9 -89.6/-93.2 -274.9/-282.8 -155.9/-175.8 -109.1/-133.7 -345.3/-358.3

GraphGEN DFS -263.74/NA -73.0/NA -574.2/NA -140.1/NA -66.46/NA -199.5/NA
VI [ours] -26.6/-35.0 -64.3/-71.1 -189.7/-213.8 -117.3/-125.5-64.98/-72.39 -143.6/-152.3

Ground Truth BFS uniform VI [ours]

Community-small

Enzymes

Figure 3.(Top) Graph samples from different models trained on Community-small and Enzymes. The model �tted with VI learns to
generate graphs with the same structural patterns as the real data. (Bottom) Averaged adjacency matrices for a graph with different
samples from the node ordering. Our VI approach uncovers the underlying structure of the graph.

4.2. Predictive performance in terms of log-likelihood

Here we compare the different methods in terms of the log-
likelihood on test data. We approximate the log-likelihood
using importance sampling (Murphy, 2012). We use the
variational distributionq� (� jG) as the proposal distribu-
tion and drawL samplesf � (l) g from it. The importance
sampling approximation oflogp(G) is

logp� (G) ' log
� 1

L

LX

l =1

p� (G; � (l)
l)

q� (� (l) jG)

�
: (19)

Here � (l) � q� (� jG) for l = 1 ; : : : ; L . The estimation
is unbiased only whenL approaches in�nity; nevertheless,
we found thatL = 1 ;000gives an accurate estimation (see

Appendix A.3).

For our method, we use the learnedq� (� jG) distribution
as the proposal in the importance sampling approximation.
For DeepGMG and GraphRNN, we use a uniform proposal
q� (� jG), because these methods are trained with node order-
ings sampled from the uniform distribution (as mentioned
before, this is equivalent to using a uniform variational dis-
tribution). We useL = 1 ;000samples for each graph in the
test set, except for GraphGEN, for which we only use the
canonical order� ? to estimate the log-likelihood.

The results are in Table 1. We compare the results from
each baseline and from our approach using a pairedt-test
at the5% signi�cance level. We see that the proposed

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

Table 2.Graph quality on the considered datasets (MMD on three metrics). Models �tted with VI tend to produce higher-quality samples.
Community-small Citeseer-small Enzymes

Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit

DeepGMG uniform 0.2 0.978 0.40 0.052 0.06 0.005 1.51 0.95 0.29
VI [ours] 0.178 0.921 0.338 0.028 0.014 0.005 1.01 0.48 0.27

GraphRNN
BFS 0.034 0.11 0.009 0.016 0.05 0.004 0.03 0.085 0.043

uniform 0.096 0.091 0.021 0.009 0.09 0.003 0.042 0.104 0.074
VI [ours] 0.018 0.01 0.008 0.08 0.05 0.002 0.015 0.067 0.02

GraphGEN DFS 0.695 0.931 0.178 0.047 0.032 0.017 0.716 0.456 0.078
VI [ours] 0.143 0.248 0.068 0.032 0.078 0.008 0.346 0.440 0.020

Lung Yeast Cora
Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit

DeepGMG uniform 0.206 0.023 0.224 0.547 0.242 0.470 0.35 0.27 0.11
VI [ours] 0.189 0.023 0.2 0.324 0.118 0.258 0.36 0.22 0.04

GraphRNN
BFS 0.103 0.301 0.043 0.512 0.153 0.026 1.125 1.002 0.427

uniform 1.213 0.002 0.081 0.746 0.351 0.070 0.188 0.206 0.200
VI [ours] 0.074 0.060 0.004 0.097 0.092 0.005 0.066 0.171 0.052

GraphGEN DFS 0.049 0.017 0.000 0.014 0.003 0.000 0.099 0.167 0.122
VI [ours] 0.022 0.008 0.000 0.012 0.003 0.000 0.056 0.103 0.069

VI method exhibits better predictive performance on most
datasets, and the improvements are often very signi�cant.
To assess the quality of the variational lower bound, we also
show its value in Table 1 (the bound was estimated with
1000samples fromq� (� jG)). We can see that the bound
is relatively tight for most cases. These results indicate
that our training procedure based on VI can signi�cantly
improve the performance of a graph generative model.

On the Yeast dataset, the result of the VI approach is very
close to the DeepGMG baseline. We checked the node
orderings sampled from the learned variational distribution
and observed that they are very similar to DFS orders. We
hypothesize that, for this dataset, the posteriorp� (� jG) is
higher for DFS orders, and thatq� (� jG) can �nd this. On
the Community-small dataset, the gap with the baseline is
much larger; this is because the graphs in this dataset have
a special structure that always connects two communities
with one edge. The variational distribution seems to be able
to exploit this structure to improve the model �tting. For the
Citeseer-small and Cora datasets, the gap is smaller—these
datasets are generated from random walks, so the graphs
have less structure for the VI algorithm to exploit.

4.3. Qualitative analysis

We now analyze qualitatively the graphs generated by each
approach. Here we focus on GraphRNN models. Figure 3
(top left) shows four graphs from the Community-small
dataset and four graphs from the Enzymes dataset. We
then show graphs generated by variants of GraphRNNs that
are trained with different node orderings (BFS, uniform,
and our VI approach); these samples are representative and
not cherry-picked. For Community-small, our method can
capture the speci�c graph pattern—only one edge exists
between two communities—with only one exception. The
model trained with BFS orderings learns to generate two

communities, but it does not generally use a single edge
to connect them. The model �tted with uniform orderings
fails to generate two communities. These results can be
explained by the plot of adjacency matrices in Figure 3
(bottom). In this �gure, we choose one graph, sample node
orderings from different distributions, and plot the average
of their corresponding adjacency matrices. On Community-
small, the BFS order produces an adjacency matrix whose
two anti-diagonal blocks are near zero. We hypothesize that
this pattern across all node orderings is easier for the model
to learn. The variational distribution discovers this pattern.

We perform the same analysis for the Enzymes dataset. In
Figure 3 (top), the samples from the VI training method are
more similar to the ground truth data than for the baseline
training methods—they have the shape of long strips, and
two of them contains large cycles. Figure 3 (bottom) shows
the averaged adjacency matrices; we can see that the vari-
ational distribution learns to form band matrices that have
most non-zeros around the diagonal. In contrast, BFS order-
ings scatter non-zeros to a wider range. In Appendix A.4,
we provide a similar analysis for DeepGMG (which is based
on graph sequences) on the Enzymes dataset.

4.4. Quality of generated graphs

Here we quantitatively assess the quality of generated
graphs. Following previous works (You et al., 2018; Liao
et al., 2019; Goyal et al., 2020), we measure the quality in
terms of their similarity to a test set using different metrics:
the degree distribution, clustering coef�cients and occur-
rences of 4-node orbits. Then, we measure the difference
between the test set and a set of generated graphs using the
maximum mean discrepancy (MMD) between their respec-
tive distributions (lower MMD indicates a better model).

Table 2 shows the MMD evaluation on the six datasets. The

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

VI training method improves the performance of the three
models in four datasets (Community-small, Enzymes, Yeast,
and Cora), with some minor performance drops on the other
two datasets. On Citeseer-small, the VI method exhibits a
performance drop on only one metric when it is applied on
GraphRNN or GraphGEN; this is somewhat consistent with
our previous results that the log-likelihood improvement on
this dataset is less signi�cant. Overall, the results indicate
that an autoregressive generative model trained with VI
produces higher-quality graphs.

5. Conclusion

In this paper, we analyze autoregressive graph generative
models that are based on either the adjacency matrix or
the graph sequence. We provide an in-depth discussion of
the automorphism issue that raises when calculating the
marginal likelihood of the graph. Using VI, we also address
the intractable marginalization over node orderings for �t-
ting a graph generative model. The experiment results show
that the variational distribution learns reasonable orderings
that improve the generative model's performance. Our vari-
ational lower bound is tighter than existing bounds on the
marginal log-likelihood. We evaluate models based on their
test log-likelihood and �nd that models �tted with our VI
approach exhibit better predictive performance and are able
to generate higher-quality graphs than previous methods.
The main limitation of our method is its scalability; thus it
is not designed for large graphs. We expect future work will
accelerate the algorithm to improve its scalability.

Acknowledgements

We thank Yujia Li for his insightful comments, and the
anonymous reviewers for their constructive feedback. The
work was supported by NSF 1850358 and NSF 1908617.
Xu Han was also supported by NSF 1934553.

References

Arvind, V., Köbler, J., Rattan, G., and Verbitsky, O. Graph
isomorphism, color re�nement, and compactness.com-
putational complexity, 26(3):627–685, 2017.

Beals, R., Chang, R., Gasarch, W., and Torán, J. On �nding
the number of graph automorphisms.Chicago J. Theor.
Comput. Sci, 1999.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians.Journal of
the American statistical Association, 112(518):859–877,
2017.

Cai, D., Campbell, T., and Broderick, T. Edge-exchangeable

graphs and sparsity. InAdvances in Neural Information
Processing Systems, pp. 4249–4257, 2016.

Carbonetto, P., King, M., and Hamze, F. A stochastic ap-
proximation method for inference in probabilistic graphi-
cal models. InAdvances in Neural Information Process-
ing Systems, 2009.

Dai, H., Nazi, A., Li, Y., Dai, B., and Schuurmans, D. Scal-
able deep generative modeling for sparse graphs.arXiv
preprint arXiv:2006.15502, 2020.

Erd�os, P. and Rényi, A. On the evolution of random graphs.
Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

Godsil, C. and Royle, G. F.Algebraic graph theory, volume
207. Springer Science & Business Media, 2001.

Goyal, N., Jain, H. V., and Ranu, S. GraphGEN: A scalable
approach to domain-agnostic labeled graph generation.
In Proceedings of The Web Conference 2020, pp. 1253–
1263, 2020.

Guo, X. and Zhao, L. A systematic survey on deep gen-
erative models for graph generation.arXiv preprint
arXiv:2007.06686, 2020.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He,
S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B.,
Zaslavsky, L., Zhang, J., and Bolton, E. E. PubChem
2019 update: improved access to chemical data.Nucleic
Acids Research, 47(D1):D1102–D1109, 10 2018.

Klicpera, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank.arXiv preprint arXiv:1810.05997, 2018.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs.arXiv
preprint arXiv:1803.03324, 2018.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Duve-
naud, D. K., Urtasun, R., and Zemel, R. Ef�cient graph
generation with graph recurrent attention networks. In
Advances in Neural Information Processing Systems, pp.
4255–4265, 2019.

Liu, C.-C., Chan, H., Luk, K., and Borealis, A. Auto-
regressive graph generation modeling with improved eval-
uation methods. InNeurIPS'2019 Workshop on Graph
Representation Learning, 2019.

McKay, B. D. and Piperno, A. Nauty and traces user's guide
(version 2.5).Computer Science Department, Australian
National University, Canberra, Australia, 2013.

Mohamed, S., Rosca, M., Figurnov, M., and Mnih, A.
Monte Carlo gradient estimation in machine learning.
arXiv preprint arXiv:1906.10652, 2019.

Order Matters: Probabilistic Modeling of Node Sequence for Graph Generation

Murphy, K. P.Machine learning: a probabilistic perspective.
MIT press, 2012.

Nowicki, K. and Snijders, T. A. B. Estimation and prediction
for stochastic blockstructures.Journal of the American
Statistical Association, 96(455):1077–1087, 2001.

Paisley, J. W., Blei, D. M., and Jordan, M. I. Variational
Bayesian inference with stochastic search. InInterna-
tional Conference on Machine Learning, 2012.

Ranganath, R., Gerrish, S., and Blei, D. M. Black box vari-
ational inference. InArti�cial Intelligence and Statistics,
2014.

Schomburg, I., Chang, A., Ebeling, C., Gremse, M., Heldt,
C., Huhn, G., and Schomburg, D. Brenda, the enzyme
database: updates and major new developments.Nucleic
acids research, 32(suppl_1):D431–D433, 2004.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classi�cation in network
data.AI magazine, 29(3):93–93, 2008.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang,
J. Graphaf: a �ow-based autoregressive model for molec-
ular graph generation.arXiv preprint arXiv:2001.09382,
2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need.arXiv preprint arXiv:1706.03762, 2017.

Veitch, V. and Roy, D. M. The class of random graphs aris-
ing from exchangeable random measures.arXiv preprint
arXiv:1512.03099, 2015.

Veli �cković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks.arXiv
preprint arXiv:1710.10903, 2017.

Watts, D. J. and Strogatz, S. H. Collective dynamics
of `small-world'networks.nature, 393(6684):440–442,
1998.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning.Machine
learning, 8(3-4):229–256, 1992.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks. In
International conference on machine learning, pp. 6861–
6871. PMLR, 2019.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec,
J. GraphRNN: Generating realistic graphs with deep
auto-regressive models.arXiv preprint arXiv:1802.08773,
2018.

Yuan, H., Tang, J., Hu, X., and Ji, S. Xgnn: Towards
model-level explanations of graph neural networks.arXiv
preprint arXiv:2006.02587, 2020.

