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Abstract

A graph generative model de nes a distribution
over graphs. One type of generative model is
constructed by autoregressive neural networks,
which sequentially add nodes and edges to gener-
ate a graph. However, the likelihood of a graph
under the autoregressive model is intractable, as
there are numerous sequences leading to the given
graph; this makes maximum likelihood estima-
tion challenging. Instead, in this work we derive
the exact joint probability over the graph and the
node ordering of the sequential process. From
the joint, we approximately marginalize out the
node orderings and compute a lower bound on
the log-likelihood using variational inference. We
train graph generative models by maximizing this
bound, without using the ad-hoc node orderings
of previous methods. Our experiments show that
the log-likelihood bound is signi cantly tighter
than the bound of previous schemes. Moreover,
the models tted with the proposed algorithm can
generate high-quality graphs that match the struc-
tures of target graphs not seen during training.

2018; Liao et al., 2019; Dai et al., 2020; Goyal et al., 2020;
Yuan et al., 2020; Shi et al., 2020) are designed to learn ne
structures in graph data. These models generate a graph
by sequentially adding nodes and edges. Since a graph is
invariant to node permutations (Veitch & Raoy, 2015), there
are multiple sequences of actions leading to the same graph.
When tting an autoregressive model to data, a particular
node ordering of the graphG (called “generation order”)

is used to pin down a single generation sequendg,afuch

as depth- rst search (DFS) or breadth- rst search (BFS)
ordering. The model is then tted assuming the graph was
generated under such ordering Autoregressive models

of graphs typically use deep learning tools (Guo & Zhao,
2020), such as recurrent neural networks (RNNSs), to learn
exible and complex patterns from data.

Choosing a speci c ordering does not rigorously corre-
spond to maximum likelihood estimation (MLE). Indeed, to
t the parameters of an autoregressive model via MLE, we
need the likelihood o6 under the model. One approach for
computing@(G) is to sum over all possible node orderings
, p(G) = p(G; ). However, this approach presents
some challenges. First, a generation sequen€e arre-
sponds to multiple node orderings wh@rhas non-trivial
automorphisms (You et al., 2018; Liao et al., 2019), which
require us to carefully derive the joip(G; ) from the

model's distribution of generation sequences. Second, the
marginalization is intractable in practice due to the number
Random graphs have been a prominent topic in statistics anef terms in the sum. As a consequenpg) cannot be
graph theory for decades. An early and in uential model of easily obtained. This does not only make MLE intractable,
random graphs is the Epd—Rényi model (Emb & Rényi,  but also implies that generative models cannot be evaluated
1960). Since then, various models have been proposed o terms of log-likelihood. Instead, other evaluation met-
characterize different global statistics of graphs or networkgics such as degree distribution are used, but these metrics
in the real world (Watts & Strogatz, 1998; Nowicki & Sni- exhibit some issues for complex graphs (Liu et al., 2019).

iders, 2001; Cai et al., 2016). However, these models art) this work, we provide a method to estimate the marginal

usuﬁ"y ngt d(ejsgned fo: caplturlng Iﬁcal structures ofa graprht)g-likelihood, enabling standard statistical model checking
such as bonds ih a molecule grapn. and comparison. It also opens the door for other learning

Autoregressive generative models (You et al., 2018; Li et altasks that require the log-likelihood of graph data, such as
density-based anomaly detection.

1. Introduction

“Equal contribution'Department of Computer Science, Tufts
University, Medford, MA, USA?DeepMind, London, UK. Corre- \We aim at consolidating the foundation of autoregressive
spondence to: Xiaohui Chen <xiaohui.chen@tufts.edu>. graph generative models. In particular, we examine two
types of models: one that generates a graph through an
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cency matrix. Then we derive the joip{G; ) from each sequence or an adjacency matrix. In Section 2.2, we provide
type. Our analysis reveals a relationship between graphn explicit relationship between each formulation and the
generation and graph automorphism. node ordering to obtain the exact joind(G; ).

To t large graphs via MLE, we avoid the intractable

marginalization by performing approximate posterior in-z'l' Problem de nition

ference over the node ordering In particular, we use |etV = f1;:::;ngandE be the node set and edge set of
variational inference (VI) and maximize a lower bound of 3 graphG = ( V; E) with jVj = n nodes. A node ordering
logp(G). We design a neural network that infers the prob- = ( ;::::: ) is a permutation of the elementsVh

ability over for a given graphG. Thus, the generative e consideG is unlabeled: permuting the nodes does not
model is trained with node orderings that are likely to genchange the graph. The graph has a cf68) of adjacency
erateG, avoiding the need to de ne ad-hoc orderings. matrices corresponding to different node orderings—for

For evaluation, we estimate the graph log-likelihood viaach  there is a unique adjacency matix2 f 0;1g" *
importance sampling. Our empirical study indicates that thdnat indicates which nodes are connected. We only consider
variational lower bound is relatively tight. We also nd that "it€ graphs without self-loops and multi-edges, &ois
generative models tted with the proposed method performSyMmMetric and its diagonal elements are zero.Gédenote
better than existing methods according to various metricdn€ space of such graphs.

including log-likelihood. Models trained with our method A generative model of unlabeled graphs de nes a distri-
are able to generate new graphs with higher similarity tohutionp(G) overG. The distribution must be invariant to
training graphs than existing approaches. permutation of graph nodes. In this work, we focus on
autoregressive generative models. We next review two for-
mulations of autoregressive generative models.

Contributions. Our main contributions are as follows:

* we give a rigorous de nition of the probability of node ) a o
orderings in autoregressive graph generative models;] N€ autoregressive modaly You et al. (2018); Liao et al.

. we analyze the relation between the calculation oft2019); Shi etal. (2020); Goyal et al. (2020) operates with
graph probabilities and graph automorphism: the adjacency matrik . In particular, the model generates

« we introduce VI to infer node orderings: and a lower triangular matrix. by sequentially generating each

« our training method with VI improves the performance 'OW Of L. After every row is generated, it may stop with a

of the model both quantitatively and qualitatively. ~ SPecial termination symbol, denoted by Since an adja-
cency matrixA = L + L~ , eachL uniquely determineé
Related work. Autoregressive graph generation modelsand vice-versa; thus(A) = p(L) and

have gained attention due to both the quality of generated

graphs and their generation ef ciency (You et al., 2018; Li 'Y
et al., 2018; Liao et al., 2019; Dai et al., 2020; Shi et al., pP(A)=p(j L)  p(Le:jlie p): 1)
2020). In these works, is often decided by DFS or BFS, t=2

or it can be a specially designed canonical order. Liao et al. _

(2019) justify this approach by showing that these method$'€"&L1.(¢ 1) denotes the submatrix formed from the rst
optimize a variational bound dogp(G). However, when t 1rows of.L, andL . is thet-th row_ofL. The probability
the node orderings are either randomly sampled from a P(L1:) =1 is left out here. The adjacency matAxfully
uniform distribution or limited to a small range of canonical 9€ Nes a grapfG.

orders, these bounds are likely to be loose. The deep generative model of graphs (DeepGMG) (Li et al.,

One model that considers a single canonical node ordef018) de nes_the sequential process as follows. It starts with
ing ? is GraphGEN (Goyal et al., 2020). That is, for a & 9raPhG1 with one node, and at each steg 2;3;:::,
given graphG, GraphGEN obtaing(G) by considering it obtains a graptG py adding a new node as weII. as
that the graph was generated according o However, SOM€ edges connecting the new 'n.ode to the previously
when generating a graph from the model, GraphGEN doeg§€nerated grapts; ;. The probability of the sequence

not guarantee the canonical order. This design raises a thegin = (G1::::Gn) is
retical issue: the frequency of a generation sequence may
not converge to the model's probability of that sequence. — Y ; .
P(Gin) = p(j Gn)  P(GGt 1): )

t=2
2. Autoregresswe Graph Generation The formulation by Liao et al. (2019) generates graph nodes
In Section 2.1. we introduce the two formulations of an?” batches, but it can also be expressed as an autoregressive model

. . . in_this form. Similarly, GraphGEN (Goyal et al., 2020), which
autoregressive generative model—based on either a gra%nerates the sparse form of each row ofs also in this form.
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Figure 1.An overview of the relationship between the node orderirand the adjacency matri or the graph sequenc&;., . Given a
graphG (left), several node orderings(middle) specify the same adjacency matkixor graph sequend8i:,,, SO we cannot uniquely
identify from eitherA or Gi.,. The node orderings that give the saf@ive the samé&;.,,, but not vice-versa. In the plot &1.n,
for each subgrap®®:, nodes in the same orbit are labeled with the same color.

The probabilityp(G;) = 1 is left out here as well. Note is not necessarily true: a matix corresponds to multiple
that, aftem steps, the grap&, is the generated grafb. node orderings if5 has non-trivial automorphism (Liao

A given graphG does not naturally have either a unique adja-et al,, 2019). We provide an example in Figure 1, where

cency matrixA or a unique graph sequen@eg.,. Therefore, each of the rst two node orderings (= (1,3, 5,2, 4) and

. k = (1;2;4;3;5)) determines;A, but we cannot uniquely
when tting these models, we need to specify a node order- ; ; . .
) ; : ; identify one of them fronA (in particular, we cannot dis-
ing to pin down a single adjacency matéx or sequence

G1.n. We depart from these two formulations and considertInguISh the node pair; 4) and(3; 5)). The same is true

a formal treatment of the node ordering. for the graph sequend@;.,: a hode ordering _de nes a
graph sequend8;.,,, but not vice-versa (see Figure 1).

2.2. The generation order as a random variable Similarly, the relation betweeA andG;., is not unique.

. . An adjacency matriA determines a graph sequer@e,,
H_ere, we relate the_seque_ntlal processes from Sect_lon 2okt a graph sequence does not determine a umques an
with the node ordering. First, we consider the marginal example, in Figure 1 all four node orderings generate the

likelihood p(G). Under the rst formulation, we obtain - gamei, . but the last two node orderings determine two
p(G) by marginalizing over all adjacency matrices®f adjacency matrices different from the shown makix

X
p(G) = p(A): (3) In summary(G; ) determinedA, which determine&;.,,
A2A (G) but the reverse is not true in general. This implies that

an autoregressive generative model (which generates
Under the second formulation, the marginalization is overG,.,) does not specify a distribution over

all graph sequences that leadGoi.e., . .
We next make arandom variable and formally specify the

p(G) = X p(Gin): 4) joint p(G; ). Given the grapl = (V;E), let [A] be
Gin:GL=G ' the set of all possible node orderingshat give the same
' adjacencyA ; similarly, let [Gi.,] be the set of all node

In both cases, the likelihood is intractable because th@'derings thatgive the same graph sequéagg, i.e.,
marglilnalizationdspace is hard to specify;itinvolves ?d— Al=f A, =1[(i; j)2E]8i;j 2Vg
ing all unique adjacency matrices or graph sequences (Liao _ . e Qf — e .

etal., 2019). To obtaip(G), many works use instead the [Gn]= 1 Gl 1] = GiBL=15::00ng:

node ordering as the marginalization variable since the Here,1[ ] is 1 or 0 depending on whether the condition
space of is easier to characterize than thattofor Gy.,  in the bracket is true or false, a®[ 1.] is the induced
for a graphG. To obtainp(G; ), we need to clarify the subgraph oG from the rstt nodes in the ordering. Then
relationship betweeA or Gi., and , as we discuss next. We let the conditional distributiop( jA) be uniform, i.e.,

The sequential process from Section 2.2 generates an ad- p( jA) = 1 : (5)
jacency matrix or graph sequence; however in general we [A]
cannot identify from either of these variables. To see this,
consider rst the relation betweeh and the node ordering

. Given the graptG, determinesA because thé-th 2A functionf : V!V is an automorphism d& = ( V;E) if
row of A correponds to node;. However, the converse (u;v) 2 E ( (f(u);f(v)) 2 E.

The set [A]turns out to be the set of automorphigno$
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the graphG. This is because every node ordering@ [A] the sequence is a complete graph vittodes. Applying the
permutes rows and columns Af but does not chang&;  theorem withr (G¢; () = t givesj [Gi1:n]j = n!, which

that is, each creates an automorphism. Therefore, obimeans that alh! permutations use the same graph sequence.
tainingp( jA) amounts to nding the number of automor-

phisms of a graph. Fortunately, this is a well-studied classigyoof, The proof of the theorem needs the following lemma,
problem in graph theorﬁ. The time complexity of com-\yhose proof is in Appendix A.2.

putingj [A]jisexp O( nlogn) (Beals et al., 1999).

The Nauty package (McKay & Piperno, 2013) uses variLemma 1. Let G[V nfug] and G[V nfvg] respectively de-
ous heuristics and can ef ciently nd this number for most note the subgraphs induced Wyfug andV nfvg, thenu
graphs. In practice, it can compyte[A]j for a graph with ~ andv are in the same orbit if and only [V nfug] and
thousands of nodes withitD 2 seconds. G[V nfvg] are isomorphic.

For the formulation with graph sequences, the analysis is

more involved. We de ne the conditiong( jGi.,) as a Wg pror\]/e Ea. %by ir;duc;ion. Id_et_2 [E“‘]’_ andhcon-
uniform distribution, sider the number of node orderings that give the same

graph sequence as. Whenn = 1, there is only
p( jGin) = 1 . ©6) one node in the graph, and then the base case is true:
Ln [Gin] i [Gi]i = jr(G1;1)j = 1. Then, we show the induction

) i B ) rulej [Gunli =] [Gupn nli jr(Ga; n)j. If anode
We discuss below how to obtajn [G1.,]j in practice, but ordering ogf Gn gives thne same graz)h gequemﬁn as

rst we formally specify the jointp(G; ) and the likelihood , then nodes © and , must be in the same orbit by the
P(G). The joint can be obtained frop(A) orp(Gu:n) @ |emma. There arfr (Gn; n)j choices of 2. Then, con-
1 1 sider the number of choices fo[f:(n 1)- Since removing
p(G; )= TD(A) = WD(GM): (@) » and removing 7 give two isomorphic graphs?, , 4,
_ _ can take any node ordering in[Gy.(, 1)] and thus has
(This expression assumes that2 A (G) and thatG, = j [Gi(n 1li possible values. Togetherhasj [Gin]j

G.) The marginal likelihoodp(G) of a graph can be ob- possible values, which implies the induction rule. O
tained by marginalizing out the node orderingrom Eq. 7,

p(G) = X n(G; ): ®) To computer (Gy; ), we need to identify the orbit of

the node {, which can be expensive for some graphs.

Thus, we resort instead to an approximatiorr @&;; ;)
Obtainingp(G) from Eq. 8 is easier than from Eq. 3 or Eq.. 4 that ultimately results in a lower bound pfG). The ap-
because the marginalization space is easier to characterizoximation is based on the color re nement algorithm
but it remains intractable because of the large number qf1-weisfeiler-Lehman), which approximately obtains the
terms in the sum. In Section 3, we derive a variational bOUanrbit of a node. The a|gorithm uses node colors to par-
onp(G) by approximating the posterior distributipf jG),  tition nodes and always assigns the same color to nodes
for which we use the de nition of the joint in Eq. 7. in the same orbit (Arvind et al., 2017). Let= CR(G)

Obtainingj [Gin]j. We now discuss the practical calcu- be node colors from the color re nement algorithm; then
lation of] [Gin]j. Like] [Al]],itis also closely related Tcr(Giu) = fv2 Ve =cg r(G;u) (the two sets

to graph automorphism. Létut( G) denote the set of all &€ equal for most cases since the color re nement algo-
automorphisms 06, then theorbit of a nodeu 2 V is rithm is very effective in practice). Then, we can use the

r(G:u)= fv2 V:9f 2 Aut(G);v = f (u)g (Godsil & result of the algorithm to obtain a bound of Eq. 9,
Royle, 2001). Intuitively, the orbit af contains all nodes

that are “symmetrip” tal. In F_igure 1, the orbit of nod8 s (G1n) , v ircr (Gt; 1)j [G1n] : (10)
f 2; 3g, and the orbit of nodé& is f 4; 59. The theorem below t=1
expresses [Gi.n]j in terms of the cardinality of the orbits S o
produced during the sequential generative process. This implies a bound on the joip(G; ) from Eq. 7,
Theorem 1. For a graph sequenc@&i.,,, we have 1
G, ), ———p(Gy G; ): 11
; MG ). —g—PGun) PG ) (1)
[Gin] = rGe; o) - )
t=1 This bound is tight in practice because of the effectiveness

of the color re nement algorithm. InPSection 3, we optimize
We show an example before providing the proof. Suppose variational bound on the marginal p(G; ) p(G),
thatGp, is the complete graph with nodes, then eadB; in but we writep(G) andp(G; ) for simplicity.
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Can we avoid the marginalization by using a single gen-
eration order for a graph? GraphGEN (Goyal et al.,
2020) de nes a single canonical node orderingfor a
given graphG. Then, there is only one adjacency matrix
A7 corresponding to ?, and GraphGEN de nep(G) =
p(A?), therefore avoiding the marginalization overHow-
ever, GraphGEN does not restrict the generation order when
sampling from the mode; in fa.Ct there is not a Str‘fjllghtfor_Figure 2 lllustration of the sampling procedure from the varia-
ward way to control the generation order because the cano

ical . vel : Bonal distribution. (Left) To sample node; = 5 given 1 = 1
ical order is computed retrospectively afteiis generated. and » = 3, we rstaugment the initial node features with posi-

As aresult, a sample from GraphGEN may be generateflonal embeddings using Eq. 15. (Middle) The GNN obtains the
with a node Orderlng that is different from the canonical Or-logits for each node using Eq. 16. (Right) We sampjdrom the

der of the resulting graph. Thus, the sampling probability ofcategorical distribution (Eq. 14).

G is likely to be inconsistent with the probabilip(G) that

the model assigns 6. That is, the sampling frequency of

G will not converge to the model(G), which is a severe At each step, the distribution of tieth node  depends
problem for a statistical model. To estimate how differenton bothG and the partial order,.; 1y. In particular, the
the sampling and the model probabilities are, we tested theonditionalg ( jG; 1.: 1)) is a categorical distribution
generation procedure of GraphGEN, and we found that onlpver ; we denote its logits b} g, then

9.1% of the generated graphs use the canonical order that is

used for the calculation gf{G) during training. exp 't _
ke 1 ,SXPTLO’
3. Training a Generative Model using VI (14)

q(dG; ¢ )= P tZ 1t 1)-

Here we present a method to t an autoregressive graph 9€R1e logits are functions dfG:
eration model that does not rely on any constraints on th !
node ordering. We use the notatipn(G; ) to explicitly
indicate that the joint depends on the paramet&fsthe gen-
erative model—eithep (A) orp (Gi.n). For moderately
large graphs, the MLE of is computationally intractable
because the marginalization offrom Eq. 8 involves!
terms; we sidestep this issue with a VI method (Blei et al.
2017) that maximizes a lower bound lmg p (G).

1(t 1)) We use a graph
Reural network (GNN) as the recurrent unit that outputs
the logitsf " g of the conditionaly ( jG; 1.+ 1)), since
GNNs are powerful tools to extract information from graphs.
The input of a GNN usually consists of the graphand

its node features; in our case the input is; 1) and

G. To encode 1,; ;) into an initial set of node fea-
turesfhl;:::; ht g, we use a positional embeddiiE( )
(Vaswani et al., 2017), such that

The variational lower bound( ; ;G ) logp (G) is

L(::G )=Eq (je)[logp (G; ) logq ( jG)]: (12) hf =
Hereq ( jG) is a variational distribution to approximate
the posteriop ( jG). Its parameters are denoted byWe o1 1y is a learnable vector used globally for all steps

t the model parameters and the variational parameters and nodes. (If the graph data contains node features, we

by maximizing Eq. 12 w.r.t. both parameters. We discuss the.o - | se these node features to reptagd Then, the GNN
form of the variational distributioq ( jG) in Section 3.1 computes the logits for all nodes.

and the optimization algorithm in Section 3.2.

ho + PE(t); ifj = wfort®<t,

. (15)
ho; otherwise.

i) =GNN (G (hsiihh): 16
3.1. The variational distribution ! n) (G n)) (16)

The variational distribution ( jG) approximates the in- Only logits for nodes not iny; 1) are used for the cal-
tractable posteriop ( jG). To obtain a good approxima- culation of(14). Figure 2 illustrates the process to sample

tion, we letq ( jG) incorporate both graph topological from the conditionaly (' jG; 1t 1))
information as well as the information from partially gener-The choice of the speci c GNN is exible. In our experi-
ated graphs according to the orderWe use a Recurrent ments, the graph attention network (GAT) (\é&vic et al.,

Ordering Structure (ROS) to specify( jG), 2017) performed better than the graph convolutional net-
'L work (GCN) (Wu et al., 2019) and the approximate person-
g(ijG)= q (dG; 1 1): (13)  alized propagation of neural predictions (APPNP) (Klicpera

t=1 et al., 2018). All results in Section 4 use the GAT.
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Algorithm 1 VI algorithm for training a graph model based sequence instead, such as DeepGMG, we only need to ex-

on the adjacency matrik tract the graph sequen@s®, from each(G; (9) and set
Input: Dataset of graph& = fGy;:::;Gng, modelp ,  p (G; )= —L__p (G9).
variational distributiorg , sample siz& Gl
Output: Learned parametersand Running time. To form the gradient estimators, each of
repeat the S Monte Carlo samples requir@sevaluations of the
for G2 Gdo GNN output, each takin@(jEj). For most graphs, the com-
Sample @ ::::; (S) iid q ( jG) plexity of the gradient computation is dominated by these
ObtainA ® from (G; () terms and is therefor® (SnjEj). Counting automorphisms
Setp (G; )= ﬁp (A ) ohly takes a small fractign 01_‘ the runl_ﬂing time in practice.
Computer roL(;:G) S|m|I_arIy, the appro?<|mqt|on gf [Ginli glso take; a small
Computer r L(;:G) fractllon' of the.rur?mng time. The resultm@(SmED com-
Update , using the gradients ,r plexity is a limitation of the proposed algorithm, and hence
end for it is hard to scale to large graphs. However, since it provides
until convergence of the parameters () better results than existing approaches (see Section 4), our

algorithm can still be preferable for applications that are not

sensitive to the training time. We leave for future work the

3.2. Maximizing the variational lower bound exploration of ways to improve the _cqmputational ef ciency,
such as proposing the node orderini one shot.

To maximize the lower bound( ; ;G ) in Eq. 12, we need

its gradients w.r.t. both and , which are intractable. We 4 Experiments

obtain the gradient w.r.t. via Monte Carlo estimation. We

obtain the gradient w.r.t. using the score function estimator In this section, we design a set of experiments to investigate:

(Williams, 1992; Carbonetto et al., 2009; Paisley et al., 2012(i) the tightness of the variational lower bound, (ii) the per-

Ranganath et al., 2014). The estimators are obtainedSvith formance of a model tted with the proposed method based

samples (© g ( jG)fors=1;:::;S, yielding on VI, (iii) the quality of the approximate posterior learned

by the variational distribution, and (iv) the quality of graphs

1% generated with the tted model.
rL(:G) g 1 ologp (G ); 17)
;:Sl H 4.1. Experimental setup
r L(;;G) 1 logp (G; ©®) (18) Datasets. We use 6 datasets: (Qommunity-small500
S s=1 . community graphs witli2 j Vj 20. Each graph has

two communities generated by the model of &3& Rényi
(1960). (2)Citeseer-smail200 subgraphs with j V|
20, extracted from Citeseer network (Sen et al., 2008) us-

X o d k. (3 563 protei hs f
mized under node sequencesampled from the approxi- ing random walk. (3Enzymes brotein grapns trom

. ) . . BRENDA database (Schomburg et al., 2004) wiith
mate posterior. That is, tting the model does not require

d d-h derinas: rather. th . | jVj 125 (4) Lung 400 chemical graphs with | Vj
to de Ne agd-noc oraerings, rather, the (approxmat'e y) 50, sampled from Kim et al. (2018). (¥east 400 chemical
most likely node orderings are used. As a comparison,

. ) . . ﬁraphs withs | Vj 50, sampled from Kim et al. (2018).
model trained with uniformly distributed random node order-(6) Cora: 400 subgraphs wit j Vj 97, extracted from

ing_s can be seen as using a uniform variat_iongl distributio%e Cora network (Sen et al., 2008) using random walk.
which in turn corresponds to a looser log-likelihood bound.
. . . Methods. We choose three recent graph generative models,
Although_the score functlon estl_mator may exhibit Iarg_eDeepGMG (Li et al., 2018), GraphRNN (You et al., 2018),
variance in general, in our experiments we found that thi nd GraphGEN (Goyal et al., 2020). We use their original
does not represent an issue. In f."&.t; 4 samples were training methods with default hyperparameters as baselines,
enough and allowed for stable optimization of the opject!veand compare them with the proposed VI method. For our
"method, we use the Nauty package (McKay & Piperno,
2013) to computg [A]j and the color re nement algo-
We present the training procedure in Algorithm 1. Therithm to approximat¢ [Gi.,]j, and we parameterize the
algorithm can be applied to many autoregressive modelgariational distribution with a GAT (Vetikovic et al., 2017)
operating with the adjacency matrx, such as GraphRNN with 3 layers, 6 attention heads, and residual connections.
and GraphGEN. For models that operate with the graph

|
logg ( ®jG) r logqg ( ®jG):

Eqg. 17 shows that the parametersf the model are opti-

techniques (Mohamed et al., 2019) for future work.
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Table 1.Approximate test log-likelihood and variational lower bound (ELBO) of different graph generation models. For each model, we
compare the default training algorithm with our method based on VI; the table shows that VI improves the model's predictive performance.
Moreover, the variational bound is relatively tight. We used paiirebt to compare the results; the numbers in bold indicate that the
method is better at th&% signi cance level.

Community-small  Citeseer-small Enzymes Lung Yeast Cora
log-like/ELBO log-like/ELBO  log-like/ELBO log-like/ELBO log-like/ELBO log-like/ELBO
DeepGMG uniform -206.2/-303.9 -60.9/-67 -281.9/-290.8 -146.7/-225.7 -115.1/128.9 -283.7/-295.2
VI [ours] -124.8/-131.8 -59.6/-65.6 -145.8/-156.2  -146.1/-224.6  -105.4/-115.7 -227/-247.2
GraphRNN uniform -154.6/-157.6 -101.9/-105.7  -340.3/-349.1  -232.4/-242.2  -189.3/-200.1  -380.6/-401.8
VI [ours] -53.7/-59.9 -89.6/-93.2 -274.9/-282.8  -155.9/-175.8  -109.1/-133.7  -345.3/-358.3
GraphGEN DFS -263.74/NA -73.0/NA -574.2INA -140.1/NA -66.46/NA -199.5/NA
VI [ours] -26.6/-35.0 -64.3/-71.1 -189.7/-213.8  -117.3/-125.5-64.98/-72.39  -143.6/-152.3
Ground Truth BFS uniform VI [ours]

Community-small

Enzymes

Figure 3.(Top) Graph samples from different models trained on Community-small and Enzymes. The model tted with VI learns to
generate graphs with the same structural patterns as the real data. (Bottom) Averaged adjacency matrices for a graph with different
samples from the node ordering. Our VI approach uncovers the underlying structure of the graph.

4.2. Predictive performance in terms of log-likelihood Appendix A.3).

Here we compare the different methods in terms of the logFor our method, we use the learngd jG) distribution
likelihood on test data. We approximate the log-likelihoodas the proposal in the importance sampling approximation.
using importance sampling (Murphy, 2012). We use theFor DeepGMG and GraphRNN, we use a uniform proposal
variational distributionq ( jG) as the proposal distribu- q ( jG), because these methods are trained with node order-
tion and drawL sample§ (Vg from it. The importance ings sampled from the uniform distribution (as mentioned

sampling approximation dbgp(G) is before, this is equivalent to using a uniform variational dis-
tribution). We usd = 1,;000samples for each graph in the
, 1% p (G; |(|)) ] test set, except for GraphGEN, for which we only use the
logp (G) " log L ) q ( MjG) (19)  canonical order ? to estimate the log-likelihood.

_ o The results are in Table 1. We compare the results from
Here ) q ( jG) forl = 1;:::;L. The estimation each baseline and from our approach using a paitesit
is unbiased only wheh approaches in nity; nevertheless, gt the 5% signi cance level. We see that the proposed
we found that. = 1;000gives an accurate estimation (see
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Table 2.Graph quality on the considered datasets (MMD on three metrics). Models tted with VI tend to produce higher-quality samples.

Community-small Citeseer-small Enzymes
Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit
DeepGMG uniform 0.2 0.978 0.40 0.052 0.06 0.005 151 0.95 0.29
Vlf[ours] 0.178 0.921 0.338 0.028 0.014 0.005 1.01 048 0.27
BFS 0.034 0.11 0.009 0.016 0.05 0.004 0.03 0.085 0.043

GraphRNN uniform  0.096 0.091 0.021 0.009 0.09 0.003 0.042 0.104 0.074
Vl[ours] 0.018 0.01 0.008 0.08 0.05 0.002 0.015 0.067 0.02
DFS 0.695 0.931 0.178 0.0470.032 0.017 0.716 0.456 0.078

GraphGEN /' 1ours] 0143 0.248  0.068 0.032 0.078 0.008 0.346 0.440 0.020
Lung Yeast Cora
Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit
DeepGMG  Uniform — 0.206 0.023 0224 0547 0242 0470 035 027 011
Vi[ours] 0.189 0.023 0.2 0.324 0.118 0258 036 022 0.04

BFS 0.103 0.301 0.043 0.512 0.153 0.026 1.125 1.002 0.427
GraphRNN uniform  1.213 0.002 0.081 0.746 0.351 0.070 0.188 0.206 0.200
VI[ours] 0.074 0.060 0.004 0.097 0.092 0.005 0.066 0.171 0.052
DFS 0.049 0.017 0.000 0.014 0.003 0.000 0.099 0.167 0.122
Vl[ours] 0.022 0.008 0.000 0.012 0.003 0.000 0.056 0.103 0.069

GraphGEN

VI method exhibits better predictive performance on mostcommunities, but it does not generally use a single edge
datasets, and the improvements are often very signi canto connect them. The model tted with uniform orderings
To assess the quality of the variational lower bound, we alsdails to generate two communities. These results can be
show its value in Table 1 (the bound was estimated withexplained by the plot of adjacency matrices in Figure 3
1000samples fromg ( jG)). We can see that the bound (bottom). In this gure, we choose one graph, sample node
is relatively tight for most cases. These results indicateorderings from different distributions, and plot the average
that our training procedure based on VI can signi cantly of their corresponding adjacency matrices. On Community-
improve the performance of a graph generative model.  small, the BFS order produces an adjacency matrix whose

. two anti-diagonal blocks are near zero. We hypothesize that
On the Yeast dataset, the result of the VI approach is Vehis pattern across all node orderings is easier for the model

close to the DeepGMG baseline. We checked the nod{e . s . .
. L ...~ tolearn. The variational distribution discovers this pattern.
orderings sampled from the learned variational distribution

and observed that they are very similar to DFS orders. W&Ve perform the same analysis for the Enzymes dataset. In
hypothesize that, for this dataset, the postapigr jG) is  Figure 3 (top), the samples from the VI training method are
higher for DFS orders, and thqt( jG) can ndthis. On  more similar to the ground truth data than for the baseline
the Community-small dataset, the gap with the baseline israining methods—they have the shape of long strips, and
much larger; this is because the graphs in this dataset haveo of them contains large cycles. Figure 3 (bottom) shows
a special structure that always connects two communitiethe averaged adjacency matrices; we can see that the vari-
with one edge. The variational distribution seems to be ablational distribution learns to form band matrices that have
to exploit this structure to improve the model tting. For the most non-zeros around the diagonal. In contrast, BFS order-
Citeseer-small and Cora datasets, the gap is smaller—thesggs scatter non-zeros to a wider range. In Appendix A.4,
datasets are generated from random walks, so the graphe provide a similar analysis for DeepGMG (which is based
have less structure for the VI algorithm to exploit. on graph sequences) on the Enzymes dataset.

4.3. Qualitative analysis 4.4. Quality of generated graphs

We now analyze qualitatively the graphs generated by eacHere we quantitatively assess the quality of generated
approach. Here we focus on GraphRNN models. Figure raphs. Following previous works (You et al., 2018; Liao
(top left) shows four graphs from the Community-small et al., 2019; Goyal et al., 2020), we measure the quality in
dataset and four graphs from the Enzymes dataset. Wierms of their similarity to a test set using different metrics:
then show graphs generated by variants of GraphRNNs thahe degree distribution, clustering coef cients and occur-
are trained with different node orderings (BFS, uniform,rences of 4-node orbits. Then, we measure the difference
and our VI approach); these samples are representative ametween the test set and a set of generated graphs using the
not cherry-picked. For Community-small, our method canmaximum mean discrepancy (MMD) between their respec-
capture the speci ¢ graph pattern—only one edge existsive distributions (lower MMD indicates a better model).

between t.WO cor_nmunltles—w_lth only one exception. TheTabIe 2 shows the MMD evaluation on the six datasets. The
model trained with BFS orderings learns to generate two
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VI training method improves the performance of the three graphs and sparsity. lxdvances in Neural Information
models in four datasets (Community-small, Enzymes, Yeast, Processing Systemgp. 4249-4257, 2016.

and Cora), with some minor performance drops on the other , )
two datasets. On Citeseer-small, the VI method exhibits £&roonetto, P., King, M., and Hamze, F. A stochastic ap-
performance drop on only one metric when it is applied on proximation method for mference in probap|llst|c graphi-
GraphRNN or GraphGEN; this is somewhat consistent with F:al models. IMdvances in Neural Information Process-
our previous results that the log-likelihood improvement on N9 Systems2009.

this dataset is less s!gni cant. O_veraII, the res_ults inqicatebai’ H.. Nazi, A., Li, Y., Dai, B., and Schuurmans, D. Scal-
that an aut'oregressn./e generative model trained with VI 5o deep generative modeling for sparse graphsiv
produces higher-quality graphs. preprint arXiv:2006.155022020.

: Erdos, P. and Rényi, A. On the evolution of random graphs.
5. Conclusion Publ. Math. Inst. Hung. Acad. S&(1):17-60, 1960.

In this paper, we analyze autoregressive graph generativ
models that are based on either the adjacency matrix o

the graph sequence. We provide an in-depth discussion of
the automorphism issue that raises when calculating thgoyal, N., Jain, H. V., and Ranu, S. GraphGEN: A scalable
marginal likelihood of the graph. USing VI, we also address approach to domain-agnostic labeled graph generation.

the intractable marginalization over node orderings for t- | proceedings of The Web Conference 2080 1253—
ting a graph generative model. The experiment results show 1263, 2020.

that the variational distribution learns reasonable orderings

that improve the generative model's performance. Our variGuo, X. and Zhao, L. A systematic survey on deep gen-

ational lower bound is tighter than existing bounds on the erative models for graph generatiorarXiv preprint

marginal log-likelihood. We evaluate models based on their arXiv:2007.066862020.

approach exhibi beter predictive performance and are ablS'™: S Chen. 3. Cheng, T., Gindulyte, A., He, J., He,
S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B.,

to generate higher-quality graphs than previous methods. Zaslavsky, L., Zhang, J., and Bolton, E. E. PubChem

The main limitation of our method is its scalability; thus it o : ;

is not designed for large graphs. We expect future work will 20.19 update: improved access to chemical daltzcleic
. T . . Acids Research7(D1):D1102-D1109, 10 2018.

accelerate the algorithm to improve its scalability.
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