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Abstract

There recently has been a surge of interest in de-
veloping a new class of deep learning (DL) archi-
tectures that integrate an explicit time dimension
as a fundamental building block of learning and
representation mechanisms. In turn, many recent
results show that topological descriptors of the
observed data, encoding information on the shape
of the dataset in a topological space at different
scales, that is, persistent homology of the data,
may contain important complementary informa-
tion, improving both performance and robustness
of DL. As convergence of these two emerging
ideas, we propose to enhance DL architectures
with the most salient time-conditioned topologi-
cal information of the data and introduce the con-
cept of zigzag persistence into time-aware graph
convolutional networks (GCNs). Zigzag persis-
tence provides a systematic and mathematically
rigorous framework to track the most important
topological features of the observed data that tend
to manifest themselves over time. To integrate the
extracted time-conditioned topological descrip-
tors into DL, we develop a new topological sum-
mary, zigzag persistence image, and derive its the-
oretical stability guarantees. We validate the new
GCNs with a time-aware zigzag topological layer
(Z-GCNETs), in application to traffic forecasting
and Ethereum blockchain price prediction. Our
results indicate that Z-GCNET outperforms 13
state-of-the-art methods on 4 time series datasets.
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1. Introduction
Many real world phenomena are intrinsically dynamic by
nature, and ideally neural networks, encoding the knowl-
edge about the world should also be based on more explicit
time-conditioned representation and learning mechanisms.
However, most currently available deep learning (DL) ar-
chitectures are inherently static and do not systematically
integrate time-dimension into the learning process. As a
result, such model architectures often cannot reliably, ac-
curately and on time learn many salient time-conditioned
characteristics of complex interdependent systems, resulting
in outdated decisions and requiring frequent model updates.

In turn, in the last few years we observe an increasing in-
terest to integrate deep neural network architectures with
persistent homology representations of the learned objects,
typically in a form of some topological layer in DL (Hofer
et al., 2019; Carrière et al., 2020; Carlsson & Gabrielsson,
2020). Such persistent homology representations allow us to
extract and learn descriptors of the object shape. (By shape
here we broadly understand data characteristics that are in-
variant under continuous transformations such as bending,
stretching, and compressing.) Such interest in combining
persistent homology representations with DL is explained
by the complementary multi-scale information topological
descriptors deliver about the underlying objects, and higher
robustness of these salient object characterisations to pertur-
bations.

Here we take the first step toward merging the two direc-
tions. To enhance DL with the most salient time-conditioned
topological information, we introduce the concept of zigzag
persistence into time-aware DL. Building on the fundamen-
tal results on quiver representations, zigzag persistence stud-
ies properties of topological spaces which are connected
via inclusions going in both directions (Carlsson & Silva,
2010; Tausz & Carlsson, 2011; Carlsson, 2019). Such gen-
eralization of ordinary persistent homology allows us to
track topological properties of time-conditioned objects by
extracting salient time-aware topological features through
time-ordered inclusions. We propose to summarize the
extracted time-aware persistence in a form of zigzag persis-
tence images and then to integrate the resulting information
as a learnable time-aware zigzag layer into GCN.
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The key novelty of our paper can be summarized as follows:

• This is the first approach bridging time-conditioned DL
with time-aware persistent homology representations
of the data.

• We propose a new vectorized summary for time-aware
persistence, namely, zigzag persistence image and dis-
cuss its theoretical stability guarantees.

• We introduce the concepts of time-aware zigzag persis-
tence into learning time-conditioned graph structures
and develop a zigzag topological layer (Z-GCNET) for
time-aware graph convolutional networks (GCNs).

• Our experiments on application Z-GCNET to traffic
forecasting and Ethereum blockchain price prediction
show that Z-GCNET surpasses 13 state-of-the-art meth-
ods on 4 benchmark datasets, both in terms of accuracy
and robustness.

2. Related Work
Zigzag Persistence is yet an emerging tool in applied
topological data analysis, but many recent studies have al-
ready shown its high utility in such diverse applications
as brain sciences (Chowdhury et al., 2018), imagery clas-
sification (Adams et al., 2020), cyber-security of mobile
sensor networks (Adams & Carlsson, 2015; Gamble et al.,
2015), and characterization of flocking and swarming be-
havior in biological sciences (Corcoran & Jones, 2017; Kim
et al., 2020). An alternative to zigzag but a closely related
approach to assess properties of time-varying data with per-
sistent homology, namely, crocker stacks, has been recently
suggested by Xian et al. (2020), though the crocker stacks
representations are not learnable in DL models. While
zigzag has been studied in conjunction with dynamic sys-
tems (Tymochko et al., 2020) and time-evolving point
clouds (Corcoran & Jones, 2017), till now, the utility of
zigzag persistence remains untapped not only in conjunc-
tion with GCNs but with any other DL tools.

Time series forecasting From a deep learning perspective,
Recurrent Neural Networks (RNNs) are natural methods to
model time-dependent datasets (Yu et al., 2019). In partic-
ular, the stable architecture of Long Short Term Memories
(LSTMs), and its variant called Gate Recurrent Unit (GRU),
solves the gradient instability of predecessors and adds extra
flexibility due to their memory storage and forget gates. The
ability of LSTM and GRU to selectively learn historical
patterns led to their wide spread adoption as one of the main
DL tools for time-dependant objects (Schmidhuber, 2017;
Shin & Kim, 2020; Segovia-Dominguez et al., 2021). In
general, GRU models tend to have fewer parameters than
LSTMs but exhibit similar forecasting performance (Greff
et al., 2017; Gao et al., 2020). However, applications of

RNN are limited by the underlying structure of the input
data, for instance, these methods are not designed to han-
dle objects from non-Euclidean spaces, such as graphs and
manifolds.

Graph convolutional networks To overcome the limita-
tions of traditional convolution on graph structured data,
graph convolution-based methods (Defferrard et al., 2016;
Kipf & Welling, 2017; Veličković et al., 2018) are proposed
to explore both global and local structures. GCNs usually
consists of graph convolution layers which extract the edge
characteristics between neighbor nodes and aggregate fea-
ture information from neighborhood via graph filters. In
addition to convolution, there has been a surge of interest
in applying GCNs to time series forecasting tasks (Yu et al.,
2018; Yao et al., 2018; Yan et al., 2018; Guo et al., 2019;
Weber et al., 2019; Pareja et al., 2020; Segovia Dominguez
et al., 2021). Although these methods have achieved state-
of-the-art performance in traffic flow forecasting, human
action recognition, and anti-money laundering regulation,
the design of spatial temporal graph convolution network
framework is mostly based on modeling spatial-temporal
correlation in terms of feature-level and pre-defined graph
structure.

3. Time-Aware Topological Signatures of
Graphs

Spatio-temporal Data as Graph Structures The spatial-
temporal networks can be represented as a sequence
of discrete snapshots, {G1,G2, . . . ,GT }, where Gt =
{Vt, Et,Wt} is the graph structure at time step t, t =
1, . . . , T . In Gt, Vt is a node set with cardinality |Vt| of Nt
and Et ⊆ Vt × Vt is an edge set. A nonnegative symmetric
Nt ×Nt-matrix Wt with entries {ωtij}1≤i,j≤Nt represents
the adjacency matrix of Gt, that is, ωtij > 0 for any etij ∈ Et
and ωtij = 0, otherwise. Let F, F ∈ Z>0 be the number
of different node features associated each node v ∈ Vt.
Then, a Nt × F feature matrixXt serves as an input to the
framework of time series process modeling. Throughout
the paper we suppress subscript t, for the sake of notations,
unless dependency over time is emphasized in the particular
context.

Background on Persistent Homology Persistent homol-
ogy is a mathematical machinery to extract the intrin-
sic shape properties of graph G that are invariant under
continuous transformations such as bending, stretching,
and twisting. The key idea is, based on some appropri-
ate scale parameter, to associate G with a graph filtration
G1 ⊆ . . . ⊆ Gn = G and then to equip each Gi with an
abstract simplicial complex C (Gi), 1 ≤ i ≤ n, yielding
a filtration of complexes C (G1) ⊆ . . . ⊆ C (Gn). Now,
we can systematically and efficiently track evolution of
various patterns such as connected components, cycles,
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and voids throughout this hierarchical sequence of com-
plexes. Each topological feature, or p-hole (e.g., number
of connected components and voids), 0 ≤ p ≤ D, is rep-
resented by a unique pair (ib, jd), where birth ib and death
jd are the scale parameters at which the feature first ap-
pears and disappears, respectively, and D is the highest
dimension of the simplicial complexes. The lifespan of the
feature is defined as jd − ib. The extracted topological in-
formation can be then summarized as a persistence diagram
Dgm = {(ib, jd) ∈ R2|ib < jd}. Multiplicity of a point
(ib, jd) ∈ D is the number of p-dimensional topological fea-
tures (p-holes) that are born and die at ib and jb, respectively.
Points at the diagonal Dgm are taken with infinite multiplic-
ity. The idea is then to evaluate topological features that
persist (i.e., have longer lifespan) over the complex filtra-
tion and, hence, are likelier to contain important structural
information on the graph.

Finally, filtration of the weighted graph G can be con-
structed in multiple ways. For instance, (i) we can select
a scale parameter as a shortest weighted path between any
two nodes; then as an abstract simplicial complex C on
G, consider a Vietoris–Rips (VR) complex V Rν∗(G) =
{G′ ⊆ G|diam(G′) ≤ ν∗}. That is, Vietoris-Rips complex
V Rν∗(G) is generated by subgraphs G′ of bounded diame-
ter ν∗ (i.e. any subgraph G′ of k-nodes with diam(G′) ≤ ν∗
generates a (k − 1)-simplex in V Rν∗(G)). Hence, for a
set of scale thresholds ν1 ≤ . . . ≤ νn, we obtain a VR
filtration V R1 ⊆ . . . ⊆ V Rn. Alternatively, (ii) we can
consider a sublevel filtration induced by a continuous func-
tion f defined on the nodes set V of G. Let f : V ! R and
ν1 < ν2 < . . . < νn be a sequence of sorted filtered values,
then C i = {σ ∈ C : maxv∈σ f(v) ≤ νi}. Note that a
VR filtration (i) is a subcase of sublevel filtration (ii) with
f being the diameter function (Adams et al., 2017; Bauer,
2019).

Time-Aware Zigzag Persistence Since our primary aim
is to assess interconnected evolution of multiple time-
conditioned objects, the developed methodology for track-
ing topological and geometric properties of these objects
shall ideally account for their intrinsically dynamic nature.
We address this goal by introducing the concept of zigzag
persistence into GCN. Zigzag persistence is a generaliza-
tion of persistent homology proposed by (Carlsson & Silva,
2010) and provides a systematic and mathematically rig-
orous framework to track the most important topological
features of the data persisting over time.

Let {Gt}T1 be a sequence of networks observed over time.
The key idea of zigzag persistence is to evaluate pairwise
compatible topological features in this time-ordered se-
quence of networks. First, we define a set of network inclu-

sions over time

G1 G2 G3 . . .
↪! ↪! ↪! ↪!

,

G1 ∪ G2 G2 ∪ G3

where Gk ∪ Gk+1 is defined as a graph with a node set
Vk ∪ Vk+1 and an edge set Ek ∪ Ek+1. Second, we fix a
scale parameter ν∗ and build a zigzag diagram of simpli-
cial complexes for the given ν∗ over the constructed set of
network inclusions

C (G1, ν∗) C (G2, ν∗)
↪! ↪! ↪!

C (G1 ∪ G2, ν∗) . . .

Using the zigzag filtration for the given ν∗, we can track
birth and death of each topological feature over {Gt}T1 as
time points tb and td, 1 ≤ tb ≤ td ≤ T , respectively.
Similarly to a non-dynamic case, we can extend the no-
tion of persistence diagram for the analysis of topological
characteristics of time-varying data delivered by the zigzag
persistence.
Definition 3.1 (Zigzag Persistence Diagram (ZPD)). Let
tb and td be time points, when a topological feature first
appears (i.e., is born) and disappears (i.e., dies) in the time
period [1, T ] over the zigzag diagram of simplicial com-
plexes for a fixed scale parameter ν∗, respectively. If the
topological feature first appears in C (Gk, ν∗), tb = k; if it
first appears in C (Gk∪Gk+1, ν∗), tb = k+1/2. Similarly, if
a topological feature last appears in C (Gk, ν∗), td = k; and
if it last appears in C (Gk∪Gk+1, ν∗), td = k+1/2. A multi-
set of points in R2, DgmZZν∗ = {(tb, td) ∈ R2|tb < tb},
for a fixed ν∗ is called a zigzag persistence diagram (ZPD).

Inspired by the notion of a persistent image as a summary
of ordinary persistence (Adams et al., 2017), to input topo-
logical information summarized by ZPD into a GCN, we
propose a representation of ZPD as zigzag persistence image
(ZPI). ZPI is a finite-dimensional vector representation of a
ZPD and can be computed through the following steps:

• Step 1: Map a zigzag persistence diagram DgmZZν∗ to an
integrable function ρDgmZZν∗

: R2 ! R2, called a zigzag
persistence surface. The zigzag persistence surface is
given by sums of weighted Gaussian functions that are
centered at each point in DgmZZν∗ , i.e.

ρDgmZZν∗
=

∑
µ∈DgmZZ′ν∗

g (µ) e

{
− ||z−µ||

2

2ϑ2

}
.

Here DgmZZ′ν∗ is the transformed multi-set in DgmZZν∗ ,
i.e., DgmZZ′ν∗(x, y) = (x, y − x); g(µ) is a weighting
function with mean µ = (µx, µy) ∈ R2 and variance ϑ2,
which depends on the distance from the diagonal.
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• Step 2: Perform a discretization of a subdomain of zigzag
persistence surface ρDgmZZν∗

in a grid.

• Step 3: The ZPI, i.e., a matrix of pixel values, can be
obtained by subsequent integration over each grid box.

The value of each pixel z ∈ R2 within a ZPI is then defined
as:

ZPIν∗(z) =

∫∫
z

∑
µ∈DgmZZ′ν∗

g (µ) e

{
− ||z−µ||

2

2ϑ2

}
dzxdzy.

Proposition 3.1. Let g : R2 ! R be a non-negative contin-
uous and piece-wise differentiable function. Let DgmZZν∗
be a zigzag persistence diagram for some fixed scale parame-
ter ν∗, and let ZPIν∗ be its corresponding zigzag persistence
image. Then, ZPIν∗ is stable with respect to the Wasserstein-
1 distance between zigzag persistence diagrams.

Derivations of the proposition can be found in Appendix D
of the supplementary material.

Tracking evolution of topological patterns in these se-
quences of time-evolving graphs allows us to glean insights
into which properties of the observed time-conditioned ob-
jects, e.g., traffic data or Ethereum transaction graphs, tend
to persist over time and, hence, are likelier to play a more
important role in predictive tasks.

Figure 1. Illustrations of 0- and 1-dimensional ZPD and 0- and
1-dimensional ZPI for PeMSD4 dataset using the sliding window
size τ = 12, i.e., dynamic network with 12 graphs. Upper part
shows the 0-dimensional ZPD and ZPI whilst the lower part is the
1-dimensional ZPD and ZPI.

4. Z-GCNETs
Given the graph G and graph signals Xτ =
{Xt−τ , . . . ,Xt−1} ∈ Rτ×N×F of τ past time pe-
riods (i.e. window size τ ; where Xi ∈ RN×F and
i ∈ {t − τ, . . . , t − 1}), we employ a model targeted
on multi-step time series forecasting. That is, given the
windows size τ of past graph signals and the ahead horizon
size h, our goal is to learn a mapping function which maps
the historical data {Xt−τ , . . . ,Xt−1} into the future data
{Xt, . . . ,Xt+h}.

Laplacianlink In spatial-temporal domain, the topology
of graph may have different structure at different points
in time. In this paper, we use the self-adaptive adjacency
matrix (Wu et al., 2019) as the normalized Laplacian by
trainable node embedding dictionaries φ ∈ RN×c, i.e.,
L = softmax(ReLU(φφ>)), where the dimension of
embedding c ≥ 1. Although introducing node embedding
dictionaries allows capture hidden spatial dependence in-
formation, it cannot sufficiently capture the global graph
information and the similarity between nodes. To overcome
the limits and explore neighborhoods of nodes at differ-
ent depths, we define a new polynomial representation for
Laplacian based on positive powers of the Laplacian matrix.
Laplacianlink L̃ is then formulated as:

L̃ =
[
I,L,L2, . . . ,LK

]
∈ RN×N×(K+1), (1)

where K ≥ 1, I ∈ RN×N represents the identity matrix,
and Lk ∈ RN×N , with 0 ≤ k ≤ K, denotes the power
series of normalized Laplacian.

By linking (i.e., stacking) the power series of normalized
Laplacian, we build a diffusion formalism to accumulate
neighbors’ information of different power levels. Hence,
each node will successfully exploit and propagate spatial-
temporal correlations after spatial and temporal graph con-
volutional operations.

Spatial graph convolution To model the spatial network Gt
at timestamp twith its node feature matrixXt, we define the
spatial graph convolution as multiplying the input of each
layer with the Laplacianlink L̃, which is then fed into the
trainable projection matrix Θ = φV (where V stands for
the trainable weight). In spatial-temporal graph modeling,
we prefer to use weight sharing in matrix factorization rather
than directly assigning a trainable weight matrix in order not
only to avoid the risk of over-fitting but also to reduce the
computational complexity. We compute the transformation
in spatial domain, in each layer, as follows:

H
(`)
i,S = (L̃H

(`−1)
i,S )>φV , (2)

where φ ∈ RN×c is the node embedding and V ∈
Rc×(K+1)×Cin×(Cout/2) is the trainable weight (Cin and



Z-GCNETs: Time Zigzags at Graph Convolutional Networks for Time Series Forecasting

Figure 2. The architecture of Z-GCNETs. Given a sliding window, e.g. (Gt−3, . . . ,Gt), we extract zigzag persistence image (ZPI) based
on zigzag filtration. For the ZPI ∈ R2 with the shape of p× p, Z-GCNETs first learn the topological features of ZPI through CNN-based
framework, and then apply global max-pooling to obtain the maximum values among pooled activation maps. The output of zigzag
persistence representation learning is decoded into spatial graph convolution and temporal graph convolution, where the inputs of spatial
graph convolution and temporal graph convolution are current timestamps, e.g., Gt in red dashed box, and the sliding window (i.e.,
(Gt−3, . . . ,Gt) in yellow dashed box) respectively. After graph convolution operations, features from time-aware zigzag topological layer
are combined and moved to GRU to perform forecasting. Symbol ⊗ represents dot product whilst ⊕ denotes combination.

Cout are the number of channels in input and output, re-
spectively). Finally, H(`−1)

i,S ∈ RN×(Cin/2) is the matrix
of activations of spatial graph convolution to the `-th layer
and H(0)

i,S = Xi. As a result, all information regarding
the `-layered input at time i are reflected in the latest state
variable.

Temporal graph convolution In addition to spatial domain,
the nature of spatial-temporal networks includes temporal
relationships among multiple spatial networks. To extract
temporal dependency patterns, we choose longer window
size (i.e., by using the entire sliding window as input) and
apply temporal graph convolution to graph signals in sliding
window Xτ . The mechanism has several excellent prop-
erties: (i) there is no need to select a particular size of the
nested sliding window, (ii) temporal dependency patterns
can be well captured and evaluated by (longer) window
sizes, whereas shorter window sizes (i.e., nested sliding
window) are likelier to be biased and noisy, and (iii) the slid-
ing window Xτ enhances efficiency of estimating temporal
dependencies. The temporal graph convolution is given by:

H
(`)
i,T =

(
(L̃H

(`−1)
i,T )>φU (`−1)

)
Q, (3)

where U (`) ∈ Rc×Cin×(Cout/2) is trainable weight and
U (0) ∈ Rc×F×(Cout/2), Q ∈ Rτ×1 is the trainable pro-
jection vector in temporal graph convolutional layer, and
H

(`−1)
i,T ∈ Rτ×N×(Cin/2) is the hidden matrix fed to the

`-th layer andH(0)
i,T =Xτ ∈ Rτ×N×F .

Time-aware zigzag topological layer To learn the topolog-
ical features across a range of spatial and temporal scales,
we extend the CNN model to be used along with ZPI. In
this paper, we present a framework to aggregate the topo-
logical persistent features into the feature representation
learned from GCN. Let ZPIτ denote the ZPI based on the

sliding window Xτ . (Here for brevity we suppress de-
pendence of ZPI on a scale parameter ν∗.) We design the
time-aware zigzag topological layer to (i) extract and learn
the spatial-temporal topological features contained in ZPI,
(ii) aggregate transformed information from (spatial or tem-
poral) graph convolution and spatial-temporal topological
information from zigzag persistence module, and (iii) mix
spatial-temporal and spatial-temporal topological informa-
tion. The information’s extraction, aggregation, and combi-
nation processes are expressed as:

Z(`) = ξmax

(
f (`)cnn(ZPIτ )

)
,

S
(`)
i =H

(`)
i,SZ

(`),

T
(`)
i =H

(`)
i,T Z

(`),

H
(`)
i,out = COMBINE(`)(S

(`)
i ,T

(`)
i ),

(4)

where f
(`)
cnn represents the convolutional neural network

(CNN) in the `-th layer, ξmax(·) denotes global max-pooling
operation, Z(`) ∈ R(Cout/2) is the learned zigzag persis-
tence representation from CNN, S(`)

i ∈ RN×(Cout/2) is
the aggregated spatial2-temporal representation, T (`)

i ∈
RN×(Cout/2) is the aggregated spatial-temporal2 represen-
tation, and the output of time-aware zigzag topological layer
H

(`)
i,out ∈ RN×Cout combines hidden states S(`)

i and T (`)
i

at time i.

GRU with time-aware zigzag topological layer GRU is a
variant of the LSTM network. Compared with LSTM, GRU
has a simpler structure, fewer training parameters, and more
easily overcome vanishing and exploding gradient problems.
The feed forward propagation of GRU with time-aware
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Table 1. Summary of datasets used in time series forecasting tasks.
[‡] means the average number of edges in transportation networks
under threshold ν∗.

Dataset # Nodes Avg # edges Time range

Bytom 100 9.98 27/07/2017 - 07/05/2018
Decentraland 100 16.94 14/10/2017 - 07/05/2018
PeMSD4 307 316.10‡ 01/01/2018 - 28/02/2018
PeMSD8 170 193.53‡ 01/07/2016 - 31/08/2016

zigzag topological layer is recursively conducted as:

zi = ϕ (W z [Oi−1,Hi,out] + bz) ,

ri = ϕ (W r [Oi−1,Hi,out] + br) ,

Õi = tanh (W o [ri �Oi−1,Hi,out] + bo),

Õi = zt �Oi−1 + (1− zt)� Õi,

(5)

where ϕ(·) is a non-linear function, i.e., the ReLU function;
� is the elementwise product; zi and ri are update gate
and reset gate, respectively; bz , br, bo,W z ,W r, andW o

are trainable parameters; [Oi−1,Hi,out] and Oi are the
input and output of GRU model, respectively. In this way,
Z-GCNETs contains structural, temporal, and topological
information.

Figure 2 depicts the framework of our proposed Z-GCNETs
model. As illustrated in Figure 2, Z-GCNETs contains the
four major steps. First, we use CNN base model (fcnn)
to learn the topological features of an ZPI and then em-
ploy global max-pooling (ξmax) to the corresponding feature
maps to obtain image-level feature representation (see the
black dashed box). Second, purple dashed box, in the spa-
tial and temporal dimensions, i.e., (i) we use spatial graph
convolution to capture spatial correlations between nodes
and get HS (Equation 2); (ii) we use temporal graph con-
volution to capture temporal correlations between features
in different time slices and getHT (Equation 3). Third, we
can get hidden states S (red dashed block) and T (yellow
dashed block) by applying the HS and HT to ZPI repre-
sentation, respectively; then combine S and T and get output
of time-aware zigzag topological layerHout (Equation 4).
Fourth, we passHout to the GRU for modeling the temporal
dependency.

5. Experiments
5.1. Datasets

We consider two types of networks (i) traffic network and
(ii) Ethereum token network. Statistical overview of all
datasets is given in Table 1. We now describe the detailed
construction of traffic and Ethereum transaction networks as
follows (i) The freeway Performance Measurement System
(PeMS) data sources (i.e., PeMSD4 and PeMSD8) (Chen

et al., 2001) collects real time traffic data in California. Both
PeMSD4 and PeMSD8 datasets are aggregated to 5 minutes,
therefore there are overall 16,992 and 17,856 data points in
PeMSD4 and PeMSD8, respectively. In the traffic network,
the node is represented by the loop detector which can detect
real time measurement of traffic conditions and the edge
is a freeway segment between two nearest nodes. Hence,
the node set Vt ≡ V and the node feature matrix of traffic
network Xt ∈ RN×3 denotes that each node has 3 features
(i.e., flow rate, speed, and occupancy) at time t. To capture
both spatial and temporal dependencies, we reconstruct the
traffic graph structure Gt = {V, Et,W ν∗

t } at time t. Here,
we define the right censoring weight W ν∗

t

ων∗t,uv =


wt,uv (u, v) ∈ E and wt,uv ≤ ν∗
0 (u, v) ∈ E and wt,uv > ν∗

0 (u, v) /∈ E
, (6)

where wt,uv = e−||xt,u−xt,v||
2/γ is based on the Radial Ba-

sis Function (RBF). To investigate how the traffic graph
structure evolves over time, at each time point t we keep
only edges with weights ων∗t,uv which are no greater than
some positive threshold ν∗. Hence, the resulting graph is dy-
namic, that is, its edge set changes over the considered time
period. In our experiments, we assign parameter γ = 1.0
to RBF and set the thresholds in PeMSD4 and PeMSD8 to
ν∗ = 0.5 and ν∗ = 0.3, respectively. (ii) The Ethereum
blockchain was developed in 2014 to implement Smart Con-
tracts, which are used to create and sell digital assets on the
network1. In particular, token assets are specially valuable
because each token naturally represents a network layer
with the same nodes, i.e., addresses of users, appearing in
the networks, i.e., layers, of multiple tokens (Akcora et al.,
2021; Li et al., 2020; di Angelo & Salzer, 2020). For our
experiments, we extract two token networks with more than
$100M in market value2, Bytom and Decentraland tokens,
from the publicly available Ethereum blockchain. We focus
our analysis on the dynamic network generated by the daily
transactions on each token network, and historical daily
closed prices2. Since each token has different creation date3,
Bytom dynamic network contains 285 nets whilst Decen-
traland dynamic network has 206 nets. Ethereum’s token
networks have an average of 442788/1192722 nodes/edges.
To maintain a reasonable computation time, we obtain a
subgraph via the maximum weight subgraph approximation
method of (Vassilevska et al., 2006), which allows us to re-
duce the dynamic network size considering only most active
nodes and its corresponding nodes. Let Gt = {Vt, Et, W̃t}
denotes the reduced Ethereum blockchain network on day t
and Xt ∈ RNt×1 be the node feature matrix, we assume a
solely node feature: the node degree. Each node in Vt is a

1Ethereum.org
2EtherScan.io
3End date: May 7, 2018

Ethereum.org
EtherScan.io
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Table 2. Forecasting performance comparison of different approaches on PeMSD4 and PeMSD8 datasets. The baselines with † marks the
results from rerunning the published source codes. Z-GCNETs uses the weight rank clique filtration.

Model PeMSD4 PeMSD8

MAE RMSE MAPE MAE RMSE MAPE

HA 38.03 59.24 27.88% 34.86 52.04 24.07%
VAR (Hamilton, 2020) 24.54 38.61 17.24% 19.19 29.81 13.10%
FC-LSTM† (Sutskever et al., 2014) 26.77 40.65 18.23% 23.09 35.17 14.99%
GRU-ED (Cho et al., 2014) 23.68 39.27 16.44% 22.00 36.23 13.33%
DSANet (Huang et al., 2019) 22.79 35.77 16.03% 17.14 26.96 11.32%
DCRNN† (Li et al., 2018) 21.20 37.23 14.15% 16.83 26.35 10.90%
STGCN† (Yu et al., 2018) 21.16 35.69 13.83% 17.52 27.07 11.23%
GraphWaveNet† (Wu et al., 2019) 28.15 39.88 18.52% 20.30 30.82 13.84%
ASTGCN† (Guo et al., 2019) 22.81 34.33 16.60% 17.98 28.00 11.66%
MSTGCN† (Guo et al., 2019) 23.96 37.21 14.33% 19.00 29.15 12.38%
STSGCN† (Song et al., 2020) 21.23 33.69 13.90% 17.13 26.86 10.96%
AGCRN† (Bai et al., 2020) 19.83 32.30 12.97% 15.95 25.22 10.09%
LSGCN (Huang et al., 2020) 21.53 33.86 13.18% 17.73 26.76 11.20%

Z-GCNETs (ours) 19.50 31.61 12.78% 15.76 25.11 10.01%

buyer/seller and edges in Et represent transactions in the net-
work. To construct the similarity matrix W̃t, the normalized
number of transactions between node pairs (u, v) serves as
the edge weight value wt,uv ∈ W̃t. In our experiments, we
consider a set of 100 most actively trading nodes over the
whole time period. That is, on each particular day t, both
the node and edge sets vary. If a particular node vi does not
trade on day t, then vi is entered as isolated node. As such,
N = 100.

5.2. Experiment Settings

For multi-step time series forecasting, we evaluate the per-
formances of Z-GCNETs on 4 time series datasets versus 13
state-of-the-art baselines (SOAs). Among them, Historical
Average (HA) and Vector Auto-Regression (VAR) (Hamil-
ton, 2020) are the statistical time series models. FC-
LSTM (Sutskever et al., 2014) and GRU-ED (Cho et al.,
2014) are RNN-based neural networks. DSANet (Huang
et al., 2019) is the self-attention networks. DCRNN (Li et al.,
2018), STGCN (Yu et al., 2018), GraphWaveNet (Wu et al.,
2019), ASTGCN (Guo et al., 2019), MSTGCN (Guo et al.,
2019), STSGCN (Song et al., 2020) are the spatial-temporal
GCNs. AGCRN (Bai et al., 2020) and LSGCN (Huang
et al., 2020) are the GRU-based GCNs. We conduct our
experiments on NVIDIA GeForce RTX 3090 GPU card
with 24GB memory. The PeMSD4 and PeMSD8 are split
in chronological order with 60% for training sets, 20% for
validation sets, and 20% for test sets. For PeMSD4 and
PeMSD8, Z-GCNETs contains 2 layers, with each layer
has 64 hidden units. We consider the window size τ = 12
and horizon h = 12 for Z-GCNETs on both PeMSD4 and

PeMSD8 datasets. Besides, the inputs of PeMSD4 and
PeMSD8 are normalized by min-max normalization ap-
proach. We split Bytom and Decentraland with 80% for

Table 3. Computational costs for generation of zigzag persistence
images (ZPI) and a single training epoch of Z-GCNETs.

Dataset Window Size Average Time Taken (sec)
ZPI Z-GCNETs (epoch)

Decentraland 7 0.03 2.09
Bytom 7 0.03 2.06
PeMSD4 12 0.86 30.12
PeMSD8 12 0.65 36.76

training sets and 20% for test sets. For token networks,
Z-GCNETs contains 2 layers, where each layer has 16
hidden units. We use one week historical data to predict
the next week’s data, i.e., window size τ = 7 and hori-
zon h = 7 over Bytom and Decentralnad datasets. All
reported results are based on the weight rank clique filtra-
tion (Stolz et al., 2017). More detailed description of the
experimental settings can be found in Appendix A, while
the analysis of sensitivity with respect to the choice of fil-
tration is in Appendix B. The code is available at https:
//github.com/Z-GCNETs/Z-GCNETs.git.

Table 3 reports the average running time of ZPI generation
and training time per epoch of our Z-GCNETs model on all
datasets.

https://github.com/Z-GCNETs/Z-GCNETs.git
https://github.com/Z-GCNETs/Z-GCNETs.git
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5.3. Comparison with the Baseline Methods

Table 2 shows the comparison of our proposed Z-GCNETs
and SOAs for traffic flow forecasting tasks. We assess model
performance with Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE) on PeMSD4 and PeMSD8. From Table 2, we find
that our proposed model Z-GCNETs consistently outper-
forms SOAs on PeMSD4 and PeMSD8. The improvement
gain of Z-GCNETs over the next most accurate methods
ranges from 0.44% to 2.06% in RMSE for PeMSD4 and
PeMSD8. Table 4 summarizes the forecasting performance
on Bytom and Decentraland in terms of RMSE.

We find that Z-GCNETs, based on the power filtration with
transaction volume as edge weight, outperforms AGCRN by
margins of 3.67% and 4.60%. (See the results in Appendix B
for other filtrations. For all filtration types, Z-GCNETs
yields better forecasting performance than all SOAs.). In
contrast with SOAs, Z-GCNETs fully leverages the topologi-
cal information by incorporating zigzag topological features
via CNN on topological space. Given the dynamic nature
of the considered data, our experiments show that estab-
lishing a connection between the time-indexed zigzag pairs
can deliver substantial gains for learning and forecasting
time-evolving objects.

Table 4. Forecasting results (MAPE) on Ethereum token networks.
Z-GCNETs uses power filtration with transaction volume as edge
weight.

Model Bytom Decentraland

FC-LSTM (Sutskever et al., 2014) 40.72% 33.46%
DCRNN (Li et al., 2018) 35.36% 27.69%
STGCN (Yu et al., 2018) 37.33% 28.22%
GraphWaveNet (Wu et al., 2019) 39.18% 37.67%
ASTGCN (Guo et al., 2019) 34.49% 27.43%
AGCRN (Bai et al., 2020) 34.46% 26.75%
LSGCN (Huang et al., 2020) 34.91% 28.37%

Z-GCNETs 30.79% 22.15%

5.4. Ablation Study

To better understand the importance of the different com-
ponents in Z-GCNETs, we conduct ablation studies on
PeMSD4 and PeMSD8 and the results are presented in Ta-
ble 5. The results show that Z-GCNETs have better perfor-
mance over Z-GCNETs without zigzag persistence represen-
tation learning (zigzag learning), spatial graph convolution
(GCNSpatial), or temporal graph convolution (GCNTemporal).
Specifically, we observe that when removing GCNTemporal,
the multi-step forecasting is affected significantly, i.e., Z-
GCNETs outperforms Z-GCNETs without temporal graph
convolution with relative gain 6.46% on RMSE for PeMSD4.

Comparison results on PeMSD8, w/o zigzag learning and
w/o show the necessity for encoding topological information
and modeling spatial structural information in multi-step
forecasting over spatial-temporal time series datasets. Addi-
tional results for the ablation study on Ethereum tokens are
presented in Appendix C.

Table 5. Ablation study of the network architecture. [*] means
the GCNSpatial is only applied to the most recent time point in the
sliding window.

Architecture MAE RMSE MAPE

PeMSD4

Z-GCNETs 19.50 31.61 12.78%
W/o Zigzag learning 19.65 31.94 13.01%
W/o GCNSpatial

∗ 19.86 31.96 13.19%
W/o GCNTemporal 20.76 33.18 13.60%

PeMSD8

Z-GCNETs 15.76 25.11 10.01%
W/o Zigzag learning 17.16 27.06 10.77%
W/o GCNSpatial

∗ 16.92 26.86 10.33%
W/o GCNTemporal 16.66 26.44 10.39%

5.5. How does time-aware zigzag persistence help?

To track the importance of p-dimensional topological fea-
tures in Z-GCNETs (i.e., 0-dimensional and 1-dimensional
holes), we evaluate the performance of Z-GCNETs on two
different aspects: (i) the sensitivity of Z-GCNETs to differ-
ent dimensional topological features and (ii) the effects of
threshold ν∗ in constructed input networks along with zigzag
persistence. Table 6 summarizes the results using different
dimensional topological features and different thresholds on
PeMSD4 and PeMSD8. Under the same scale parameter
ν∗, we find that 1-dimensional topological features con-
sistently outperform 0-dimensional terms on both datasets.
Furthermore, the forecasting results on PeMSD4 are not
significantly affected by varying ν∗. However, on PeMSD8,
1-dimensional topological features constructed under ν∗ of
0.3 yield better results than 1-dimensional summaries con-
structed under ν∗ = 0.5.

5.6. Robustness Study

To assess robustness of Z-GCNETs under noisy conditions,
we consider adding Gaussian noise into 30% of training sets.
The added noise follows zero-mean i.i.d Gaussian density
with fixed variance ς2, i.e., N (0, ς2), where ς ∈ {2, 4}. In
Table 7, we report comparisons with two competitive base-
lines (AGCRN and LSGCN) on Decentraland and PeMSD4
using two different noise levels. Table 7 shows performance
of Z-GCNETs and two SOAs under described noisy con-
ditions. We find that performance of all methods slowly
decays as variance of noise increases. Nevertheless, we
notice that Z-GCNETs is still consistently more robust than
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Table 6. Results of zigzag persistence on the dynamic network
with different dimensional features and threshold values (ν∗).

Zigzag module PeMSD4

MAE RMSE MAPE

Z-GCNETs +

0-th ZPIν∗=0.3 19.73 32.04 12.93%
1-st ZPIν∗=0.3 19.47 31.66 12.75%
0-th ZPIν∗=0.5 19.78 32.20 12.98%
1-st ZPIν∗=0.5 19.50 31.61 12.78%

Zigzag module PeMSD8

MAE RMSE MAPE

Z-GCNETs +

0-th ZPIν∗=0.3 17.14 27.24 10.66%
1-st ZPIν∗=0.3 15.76 25.11 10.01%
0-th ZPIν∗=0.5 17.22 27.41 10.77%
1-st ZPIν∗=0.5 16.77 26.62 10.39%

SOAs on both Decentraland and PeMSD4.

Table 7. Robustness study on Decentraland and PeMSD4 (RMSE).

Noise AGCRN LSGCN Z-GCNETs (ours)

Decentraland
N (0, 2) 27.69 36.10 24.12
N (0, 4) 28.12 36.79 25.03

PeMSD4
N (0, 2) 32.24 34.16 31.95
N (0, 4) 32.67 34.75 32.18

6. Conclusion
Inspired by the recent call for developing time-aware deep
learning mechanisms of the US Defense Advanced Re-
search Projects Agency (DARPA), we have proposed a new
time-aware zigzag topological layer (Z-GCNETs) for time-
conditioned GCNs. Our idea is based on the concepts of
zigzag persistence whose utility remains unexplored not
only in conjunction with time-aware GCN but DL in general.
The new Z-GCNETs layer allows us to track the salient time-
aware topological characterizations of the data persisting
over time. Our results on spatio-temporal graph structured
data have indicated that integration of the new time-aware
zigzag topological layer into GCNs results both in enhanced
forecasting performance and robustness gains.
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