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A. Mathematical Proof
A.1. Proof of Thm. 5

Lemma 3. Consider ẋ = f(x) and ẏ = f(y), where f is
L-Lipschitz continuous. Then

‖x(t)− y(t)‖ ≤ exp(Lt)‖x(0)− y(0)‖. (10)

Proof. Since

x(t) = x(0) +

∫ t

0

f(x(τ))dτ

y(t) = y(0) +

∫ t

0

f(y(τ))dτ,

triangular inequality and Lipschitz continuity give

‖x(t)− y(t)‖

≤ ‖x(0)− y(0)‖+

∫ t

0

‖f(x(τ))− f(y(τ))‖dτ

≤ ‖x(0)− y(0)‖+

∫ t

0

L‖x(τ)− y(τ)‖dτ.

Gronwall inequality thus gives Eq. (10).

Lemma 4. Consider ẋ = f(x), with x(0) = x0 and L-
Lipschitz continuous f . Then

‖x(h)− x0‖ ≤
exp(Lh)− 1

L
‖f(x0)‖. (11)

(Note exp(Lh)−1
L = O(h).)

Proof. Note

x(h) = x0 +

∫ h

0

f(x(τ))dτ

= x0 +

∫ h

0

f(x(τ))− f(x0) + f(x0)dτ.

Let D(t) := x(t) − x0. Then triangular inequality and
Lipschitz continuity of f give

D(h) ≤
∫ h

0

LD(τ) + ‖f(x0)‖dτ

Gronwall lemma thus yields

D(h) ≤ exp(Lh)D(0) +
exp(Lh)− 1

L
‖f(x0)‖.

Since D(0) = 0, Eq. (11) is proved.

Proof of Thm. 5. Let En = ‖x(nh) − xn‖ denote the pre-
diction accuracy, and φhx0

be the h-time flow map of the
latent dynamics, i.e., φhx0

:= x(h) where x(·) satisfies
ẋ = f(x) subject to x(0) = x0. Then

x((n+ 1)h)− xn+1 = x((n+ 1)h)− φhxn + φhxn − xn+1,

and therefore

En+1 ≤ ‖x((n+ 1)h)− φhxn‖+ ‖φhxn − xn+1‖.
The first term is exactly ‖φhx(nh) − φhxn‖, and by Lemma. 3,
it is bounded by

‖φhx(nh)−φhxn‖ ≤ exp(Lh)‖x(nh)−xn‖ = exp(Lh)En.

For the second term, Taylor expansion gives

φhxn = xn + hf(xn) + h2/2f ′(φξxn)f(φξxn)

for some ξ ∈ [0, h], and therefore

‖φhxn − xn+1‖ = ‖h(f(xn)− f̃(xn)) + h2/2f ′(φξxn)f(φξxn)‖
≤ hδ + h2/2‖f ′(φξxn)‖‖f(φξxn)‖.

Note ‖f ′‖ ≤ L as f is C1 and L-Lipschitz. For the f(φξxn)
factor, note Lemma. 4 gives

‖φξxn − xn‖ ≤
exp(Lξ)− 1

L
‖f(xn)‖,

and therefore

‖f(φξxn)‖ = ‖f(xn) + f(φξxn)− f(xn)‖
≤ ‖f(xn)‖+ ‖f(φξxn)− f(xn)‖
≤ ‖f(xn)‖+ L‖φξxn − xn‖
≤ exp(Lξ)‖f(xn)‖

Since 0 ≤ ξ ≤ h, exp(Lξ) is bounded. Moreover, f(xn) is
bounded because f is Lipschitz and therefore continuous
and xn is assumed to be bounded. Therefore, there exists
constant C such that

‖f ′(φξxn)‖‖f(φξxn)‖ ≤ C
Summarizing both terms, we have

En+1 ≤ En exp(Lh) + hδ + Ch2/2.

Mathematical induction thus gives

EN ≤ E0exp(Lh)
N

+
(

exp(Lh)
N−1

+ exp(Lh)
N−2

+ · · ·+ 1
)

(hδ + Ch2/2)

= E0 exp(LT ) +
exp(LT )− 1

exp(Lh)− 1
(hδ + Ch2/2)

≤ E0 exp(LT ) +
exp(LT )− 1

Lh
(hδ + Ch2/2)

=
exp(LT )− 1

L
(δ + Ch/2).
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A.2. Proof of Thm. 3

Definition 5 (Diophantine condition). A frequency vector
ω = {ω1, ω2, . . . , ωd} satisfies Diophantine condition if
and only there exists positive constants γ, ν such that ω
satisfies (γ, ν)-Diophantine condition.

Definition 6 ((γ, ν)-Diophantine set). For a set Ω ⊆ Rd,
the corresponding (γ, ν)-Diophantine set is defined as

Ω∗ (γ, ν)
def
=
{
ω ∈ Ω :

ω satisfy (γ, ν) -Diophantine condition
}
.

Definition 7 (Diophantine set). For a set Ω ⊆ Rd, the
corresponding Diophantine set is defined as

Ω∗
def
=

⋃
γ>0,ν>0

Ω∗ (γ, ν) .

Theorem 6. For any bounded domain Ω ⊆ Rd, there exists
C > 0, such that the Lebesgue measure of the complemen-
tary of (γ, ν)-Diophantine set with ν ≥ d is bounded from
above,

λ (Ω\Ω∗(γ, ν)) ≤ C · γ.

Proof. See for instance (Hairer et al., 2006).

Theorem 7. For any bounded domain Ω ⊆ Rd, Diophan-
tine frequencies exist almost everywhere.

Proof. Since λ (Ω\Ω∗) ≤ λ (Ω\Ω∗ (γ, ν)), ∀γ > 0, ν > 0,
Thm. 6 gives, ∀γ > 0,

λ (Ω\Ω∗) ≤ C · γ,

meaning that Diophantine frequencies exist almost every-
where in Ω.

Remark 7. Even Diophantine frequencies exist almost ev-
erywhere in bounded domain Ω ⊆ Rd, Ω\Ω∗ is still an open
and dense set in Rd (see for instance Hairer et al., 2006).

Lemma 5 (Cauchy’s inequality). Suppose that f is a holo-
morphic function on a closed ball Br (θ∗) ⊂ C with r > 0.
If |f (θ)| ≤ M for all θ on the boundary of Br (θ∗), then
for all n ≥ 0, ∣∣∣f (n) (θ∗)

∣∣∣ ≤ n!M

rn
.

Proof. See for instance (Stein & Shakarchi, 2010).

Definition 8 (average over angles). Assume F (θ) is peri-
odic in each argument, i.e., F : Td → R, then the (angle)
average of F is defined as

F =
1

(2π)d

∫
Td
F (θ) dθ. (12)

Definition 9 (complex extension of Td). The complex ex-
tension of Td of width ρ is defined as

Bρ
(
Td
)

=
{
θ ∈ Td + iRd; ‖Imθ‖ < ρ

}
. (13)

Definition 10. For an analytic function f(·) =[
f1(·), . . . , fd(·)

]
∈ Cd, we define the following norm

‖f‖∞,S :=

d∑
i=1

sup
x∈S
|fi(x)| . (14)

Lemma 6. Suppose ω ∈ Rd satisfies the (γ, ν)-
Diophantine condition and G(θ) ∈ R is a bounded and
analytic function on Bρ

(
Td
)
. Then, with G being the aver-

age of G(θ), the PDE

DF (θ) · ω +G(θ) = G (15)

has a unique real analytic solution F (·) with F = 0. More-
over, for every positive δ < min (ρ, 1), F is bounded on
Bρ−δ

(
Td
)

by{ ‖F‖∞,Bρ−δ(Td) ≤ κ0δ
−α+1 ‖G‖∞,Bρ(Td) ,

‖∂θF‖∞,Bρ−δ(Td) ≤ κ1δ
−α ‖G‖∞,Bρ(Td) ,

with α = ν + d + 1 and κ0 = ν−18d2νν!, κ1 =
ν−18d2ν+1 (ν + 1)!.

Proof. See for instance (Hairer et al., 2006).

Lemma 7. Consider a nearly integrable system with gen-
erating function S (I0,ϕ1) = S0 (I0) + εS1 (I0,ϕ1). Sup-
pose S0 and S1 are analytic and bounded in a complex
neighborhood of D1 ⊆ Rd and D = D1 × Td respec-
tively. Then, there exists a real analytic canonical trans-
formation (J ,θ) ↔ (I,ϕ) generated by T (J ,ϕ) =
J · ϕ + εT1 (J ,ϕ), such that the generating function in
J ,θ variables takes the form of

S̃ (J0,θ1) = S̃0 (J0) + ε2R̃2 (J0,θ1, ε) . (16)

with ε2R̃2 being a higher-order perturbation to a new inte-
grable system S̃0. Moreover, this result is constructive: the
transformation J ,θ ↔ I,ϕ is given by T through{

Ii = ∂2T (Ji,ϕi) ,

θi = ∂1T (Ji,ϕi) .
∀i = 0, 1 (17)

and T1 is the solution to the PDE

∂2T1 (J ,ϕ) · ω (J) +G1 (J ,ϕ) = G1(J), (18)

where ω(·) = ∇S0 (·), G1(J ,ϕ) = S1(J ,ϕ+h∇S0(J)),
and G1(J) is its angle average.
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Proof. The generating function S in J ,θ variables (S̃) can
be converted in the following using Eq. (17),

S̃ (J0,θ1) = S (I0,ϕ1)

=S (J0 + ε∂2T1 (J0,ϕ0),ϕ1)

=S0 (J0 + ε∂2T1 (J0,ϕ0))

+ εS1 (J0 + ε∂2T1 (J0,ϕ0),ϕ0 + h∂1S(I0,ϕ1))

+O
(
ε2
)

=S0 (J0) + ε∂2T1 (J0,ϕ0) · ∇S0 (J0)

+ εS1 (J0,ϕ0 + h∇S(J0)) +O
(
ε2
)

=S0 (J0) + ε
{
∂2T1 (J0,ϕ0) · ∇S0 (J0)

+S1 (J0,ϕ0 + h∇S(J0))
}

+O
(
ε2
)

(19)

with h the constant in Eq. (4). Collecting all O(ε2) terms,
denoting them by a remainder term R̃2, and converting all
angles in R̃2 to θ1, we have

S̃ (J0,θ1)

=S0 (J0) + ε
{
∂2T1 (J0,ϕ0) · ∇S0 (J0)

+S1 (J0,ϕ0 + h∇S0(J0))
}

+ ε2R̃ (J0,θ1, ε) .

(20)

As long as the terms underlined in Eq. (20) add up to a func-
tion of J0 only, S̃ (J0,θ1) won’t have angle dependence
till the O

(
ε2
)

term. This leads to a solvability requirement.
More precisely, let G1(J0,ϕ0) = S1(J0,ϕ0 +h∇S0(J0))
and G1(J0) be its angle average. Then the PDE

∂2T1 (J0,ϕ0) · ∇S0 (J0) +G1 (J0,ϕ0) = G1(J0)
(21)

has a solution T1, and it makes the underlined termsG1(J0).
Therefore, T1 and hence the generating function T can be
solved for from Eq. (21). The generating function S̃ in J ,θ
variables takes the form

S̃ (J0,θ1) = S̃0 (J0) + ε2R̃2 (J0,θ1, ε) ,

with S̃0(J0) = S0(J0) + εG(J0).

Remark 8. Note that boundedness of R̃2 requires some
extra condition on ∇S0 (being Diophantine at some point;
see Lemma. 9 for details). With bounded R̃2, the generating
function S (·, ·) in I,ϕ variables is near integrable of or-
der O (ε) while S̃ (·, ·) in J ,θ variables is near integrable
of order O

(
ε2
)
. Therefore, under the transformation T ,

we get a ‘better’ set of variables J ,θ instead of I,ϕ, as
the J ,θ dynamics is closer to being integrable, hence the
dynamics of J ,θ can be estimated for longer time.

Remark 9. As angles satisfy periodic boundary conditions,

T1 and S1 can be expanded in Fourier series
T1 (J ,θ) =

∑
k∈Zd

tk (J) · ei(k·θ),

S1 (J ,θ) =
∑
k∈Zd

sk (J) · ei(k·θ).
(22)

Plugging Eq. (22) into Eq. (18), we have

tk · (k · ω (J)) + sk = 0.

Noting that if ω doesn’t satisfy Diophantine condition, k ·
ω can be small and may even vanish for some k ∈ Zd,
meaning that under some circumstances, the transformation
constructed by T (J ,ϕ) = J ·ϕ+ εT1 (J ,ϕ) is no longer
of near identity (Id+O(ε)) as T1 is not of order O (1) any
more.

Lemma 8. Consider a nearly integrable system with gen-
erating function S (I0,ϕ1) = S0 (I0) + εS1 (I0,ϕ1). Sup-
pose S0 and S1 are analytic and bounded in a complex
neighborhood of D1 ⊆ Rd and D = D1 × Td respec-
tively. Then, there exists a real analytic canonical trans-
formation (J ,θ) ↔ (I,ϕ) generated by T (J ,ϕ) =

J ·ϕ+
∑N−1
k=1 ε

k · Tk (J ,ϕ), such that the dynamics pro-
duced by the original generating function S rewritten in
J ,θ variables corresponds to a transformed generating
function S̃ given by

S̃ (J0,θ1) = S̃0 (J0) + εN R̃N (J0,θ1, ε) , (23)

where εN R̃N is a high-order perturbation to a new inte-
grable system S̃0(J0). Here, J ,θ ↔ I,ϕ is defined by T
through {

Ii = ∂2T (Ji,ϕi) ,

θi = ∂1T (Ji,ϕi) ,
∀i = 0, 1. (24)

Proof. Apply T (J ,ϕ) = J · ϕ + εT1 + εT2 + . . . +
εN−1TN−1 to S̃(J0,θ1) = S(I0,ϕ1) like in the proof of
Lemma. 7, Taylor expand, and put all O(εN ) terms into
R̃N . Then we have

S̃(J0,θ1) = S0(J0)

+ ε (∂2T1(J0,ϕ0) · ω(J0) +G1(J0,ϕ0))

+ ε2 (∂2T2(J0,ϕ0) · ω(J0) +G2(J0,ϕ0))

+ . . .

+ εN R̃N (J0,θ1, ε) ,

(25)

for some functions G1, · · · , GN−1 periodic in the angles,
andω(·) := ∇S(·). Similar toG1 in the proof of Lemma. 7,
G2, G3, · · · can be explicitly computed from Taylor expan-
sions, but our proof does not require their specific expres-
sions. Lemma. 7 solved for T1 (periodic in angles) by mak-
ing the underlined expression independent of the angles.
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Repeating a similar procedure at different orders of ε, Ti
(periodic) can be obtained for i = 1, 2, · · · . Specifically, Ti
satisfies the PDE

∂2Ti(J0,ϕ0) · ω(J0) +Gi(J0,ϕ0) = Gi(J0) (26)

(The existence of the solution to this is proved in Lemma. 6).
In general,

S̃ (J0,θ1) = S0 (J0) +

N−1∑
k=1

εkGk (J0) + εN R̃N (J0,θ1)

= S̃0 (J0) + εN R̃N (J0,θ1) ,

with S̃0 (J0) = S0 (J0) +
∑N−1
k=1 ε

kGk (J0).

Note that R̃N is not necessarily uniformly bounded in the
whole data domain in Lemmas. 7 and 8, but in most cases,
the uniform boundedness can be established (Lemma. 9) and
under that circumstance, we will be able to quantitatively
estimate the J ,θ dynamics (Lemma. 10).

Lemma 9. Consider a nearly integrable system with gen-
erating function S (I0,ϕ1) = S0 (I0) + εS1 (I0,ϕ1). Sup-
pose S0 and S1 are analytic and bounded in a complex
neighborhood of D1 and D = D1 × Td ⊆ Rd × Td re-
spectively. There exists a real analytic symplectic change
of coordinates of order O (ε): (I,ϕ)↔ (J ,θ) and under
this transformation, the generating function in J ,θ takes
the form

S̃ (J0,θ1) = S̃0 (J0) + εN R̃N (J0,θ1, ε) .

Suppose that ω(J∗) satisfies the (γ, ν)-Diophantine condi-
tion for some J∗ ∈ D1. Then, for any fixed N ≥ 2, there
exist positive constants ε0, c, C, ρ such that if ε ≤ ε0, then∥∥∥R̃N (·, ·)

∥∥∥
∞,B2δ(J∗)×Bρ(Td)

≤ C

with δ = c
(
N2 |log ε|

)−ν−1
.

Proof. Applying the canonical transformation T con-
structed in Lemma. 8, ∃ρ′, C ′ > 0 such that∥∥∥R̃N (J∗, ·)

∥∥∥
∞,Bρ′ (Td)

≤ C ′(N, d, γ, ν) (27)

Approximate S with respect to angle variables using Fourier
series Ŝm till term m ∝ |log ε| such that the error is
of order O(εN ) in a complex neighborhood of the torus{
J = J∗,ϕ ∈ Td

}
. Since |k · ω (J∗)| ≥ γ ‖k‖−ν1 , ∀k ∈

Zd, then ∃ sufficiently small c > 0 such that

|k · ω (J)| ≥ 1

2
γ ‖k‖−ν1 , ‖k‖1 ≤ Nm (28)

for all J ∈ B2δ(J∗) with δ = c(N2 |log ε|)−ν−1. As the
Fourier coefficients of Ŝm vanishes for ‖k‖1 > Nm, thus
according to condition Eq. (28) and combining S = Ŝm +
O(εN ), ∃ ρ′′ > 0 and C ′′ > 0, such that∥∥∥R̃N (J , ·)

∥∥∥
∞,Bρ′′ (Td)

≤ C ′′(N, d, γ, ν) (29)

for all ‖J − J∗‖ ≤ 2δ.

In general, ∃C and ε independent ρ such that∥∥∥R̃N (·, ·)
∥∥∥
∞,B2δ(J∗)×Bρ(Td)

≤ C(N, d, γ, ν).

(for the specific forms of C ′, C ′′, which are lengthy but
obtainable using tools of Fourier series and Cauchy’s in-
equality, see for instance (Hairer et al., 2006)).

Lemma 10. Consider a nearly integrable system with gen-
erating function S (I0,ϕ1) = S0 (I0) + εS1 (I0,ϕ1). Sup-
pose S0 and S1 are analytic and bounded in a complex
neighborhood of D1 and D = D1 × Td ⊆ Rd × Td re-
spectively. Then there exists a real analytic near identity
symplectic change of coordinates (I,ϕ) 7→ (J ,θ) of order
O(ε) and under this transformation, the generating function
S̃ in J ,θ variables takes the form

S̃ (J ,θ) = S̃0 (J) + εN R̃N (J ,θ, ε) .

where S̃0 only depends on actions. Suppose that ω (J∗) sat-
isfies the (γ, ν)-Diophantine condition for some J∗ ∈ D1.
Then, for any fixed N ≥ 2, ∃ positive constants ε0, c, C, ρ
such that if ε ≤ ε0, the dynamics of J ,θ (generated by S̃)
with ‖J0 − J∗‖2 ≤ c |log ε|−ν−1 satisfies

‖Jn − J0‖2 ≤ CnhεN ,
‖θn − ω̃ (J0)nh− θ0‖2

≤ C
(
n2h2 + nh |log ε|ν+1

)
εN .

(30)

Here ω (·) = ∇S0 (·) and ω̃ (·) = ∇S̃0 (·).

Proof. According to Lemma. 9, ∃c > 0, ρ > 0, C ′ > 0

such that for δ = c
(
N2 |log ε|

)−ν−1
, J ∈ Bδ (J∗) and θ ∈

Bρ
(
Td
)
,
∣∣∣R̃N (J ,θ)

∣∣∣ ≤ C ′. As ∀J ∈ Bδ (J∗), Bδ (J) ⊂
B2δ (J∗),

∣∣∣R̃N (J̃ ,θ)∣∣∣ ≤ C ′ for all J̃ ∈ Bδ (J) and θ ∈
Bρ
(
Td
)
. Using Cauchy’s inequality (Lemma. 5), we have∥∥∥∂2R̃N∥∥∥

∞,Bδ(J∗)×Bρ(Td)
≤ C ′ (31)

and ∥∥∥∂1R̃N∥∥∥
∞,Bδ(J∗)×Bρ(Td)

≤ C ′

δ
. (32)
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Plug Eq. (31) in the dynamics of J ,θ{
Ji = Ji+1 + h∂2S̃ (Ji,θi+1) ,

θi+1 = θi + h∂1S̃ (Ji,θi+1) ,
(33)

we have

‖Ji+1 − Ji‖2 ≤ C ′hεN , ∀i ∈ N
=⇒ ‖Jn − J0‖2 ≤ C ′nhεN .

for the J sequence. On the other hand, for θ sequence, plug
Eq. (32) in Eq. (33), we have

‖θi+1 − (θi + hω̃ (Ji))‖2 ≤
C ′

δ
hεN . (34)

Since ω̃ is analytic on a bounded domain, ω̃ is Lipschitz.
Thus, changing Ji in Eq. (34) to J0, ∃C ′′ such that

‖θi+1 − (θi + hω̃ (J0))‖2 ≤ C ′′nh2εN +
C ′

δ
hεN .

Therefore, letting C = max(C ′, C ′′), we have

‖θn − (θ0 + nhω̃ (J0))‖2

≤
n−1∑
i=0

‖θi+1 − (θi + hω̃ (J0))‖2

≤ Cnh
(
nh+

1

δ

)
εN

≤ Cnh
(
nh+ |log ε|ν+1

)
εN ,

and Eq. (30) is proved.

Proof of Thm. 3. Since it is assumed that analytic Sh and
Sθh satisfy∑

i=1,2

∥∥∂iSθh (·, ·)− ∂iSh (·, ·)
∥∥
∞ ≤ C1ε

on a bounded domain D, Sθh is an O(ε) perturbation of
Sh (note they can also be different by an O(1) constant,
but adding a constant to a generating function does not
change its induced dynamics, and we thus assume with-
out loss of generality that there is no such constant differ-
ence). Therefore, as Sh is integrable, Sθh can be written as
Sθh(I0,ϕ1) = Sh(I0) + εS1(I0,ϕ1) for some function S1

modeling the (normalized) perturbation, and is thus nearly
integrable. The latent dynamics, i.e., the exact solution of
the integrable Sh(I0) with initial condition I0,ϕ0 is{

I (t) = I0,

ϕ (t) = (ϕ0 + ω (I0) t) mod 2π.

Applying Lemma. 10 with N ≥ 3 (so that the (nh)
2
εN

term is of order O(ε) when nhε = O(1)) , there exists a

near identity canonical transformation (I,ϕ) 7→ (J ,θ) of
order ε such that the solution of Sθh in J ,θ variable satisfies{

‖Jn − J0‖2 ≤ C ′ε,
‖θn − (θ0 + ω̃ (J0)nh)‖2 ≤ C ′εnh,

(35)

for some constant C ′ (ε independent) ∀n ≤ h−1ε−1

(so that nhε is of order O(1)) with ω̃ (·) defined in
Lemma. 10. Note that the canonical transformation holds
for all (Ii,ϕi) ↔ (Ji,θi), we have ‖Ii − Ji‖2 ≤ kε,
‖ϕi − θi‖2 ≤ kε, ∀i ∈ N for some constant k > 0 and
‖ω̃ (J0)− ω (I0)‖2 ≤ k′ε for some positive constants k′.
Applying triangular inequality, ∃C > 0, such that{

‖In − I0‖2 ≤ Cε,
‖ϕn − (ϕ0 + ω (I0)nh)‖2 ≤ Cεnh,

for n ≤ h−1ε−1.

Remark 10. h−1ε−1 is actually a conservative bound for
n and one can extend the bound to be h−1ε(1−N)/2, ∀N ≥
3. Since N can be arbitrary, even if ε cannot be made
infinitesimal, as long as it is below a threshold, the time of
validity of the error bound in Thm. 3 can be extended to
arbitrarily long.

B. Experimental Details
Like most neural-network based algorithms for learning
dynamics, the full potential of GFNN is achieved in the
data rich regime. When preparing training data, we not only
prepared in an unbiased way, but also emphasized on fair
comparisons so that each of the existing methods is given
the same or more training data.

More specifically, for each experiment, the training set con-
tains a number of sequences starting with different initial
conditions. When training for predicting Hamiltonian dy-
namics (continuous), each sequence in the training set is stro-
boscopically sampled from simulated ground truth, which
is obtained using high-order numerical integrator with suf-
ficiently small timestep τ � h. For each experiment, the
data set with sequences of length 2 will be denoted as D2,
and the data set with sequences of length 5 will be denoted
as D5. VFNN, HNN, SRNN (seq len=2), and GFNN are
trained with the same data set D2, while SRNN (seq len=5)
is trained with D5. Note the number of flow maps (φ)
needed for each sequence in D5 is 4, while the number of
maps for each sequence of D2 is 1. Therefore, for fairness,
the number of sequences in D2, ntrain(D2), is set to be
four times ntrain(D5) in most examples (exceptions will be
explained).

All experiments are performed with PyTorch (CUDA) on
a machine with GeForce RTX 3070 graphic card, AMD
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Ryzen 7 3700X 8-Core Processor, 16 GB memory and the
Linux distribution of openSUSE Leap 15.2.

Codes are provided.

B.1. 2-Body Problem

The step size of each data sequence in D2 and D5 is h =
0.1. The ground truth trajectory is simulated using a 4th
order symplectic integrator with step size 10−3. The initial
condition of each data sequence is uniformly drawn from the
orbits with semi-major axis a ∈ (0.8, 1.2), eccentricity e ∈
(0, 0.05). In terms of the number of samples, ntrain(D2) =
100, 000, ntrain(D5) = 100, 000. Note SRNN (seq len=5)
is provided more training data ntrain(D5) than described
above, which would be 25, 000 instead, because less training
data didn’t provide good performance. The time derivative
data of the vector field based methods (VFNN, HNN) are
generated using (1st-order) finite difference.

Sθh is represented using multilayer perceptron (MLP), with
5 layers and 200, 100, 50, 20 neurons in hidden layers. The
Adam optimizer is utilized with batch size 200. The model
is trained for more than 20 epochs with initial learning rate
0.01. HNN, SRNN, SympNets are trained by their provided
codes. HNN, SRNN are trained under default training se-
tups and SympNets is trained using LA-SympNets with 30
layers and 10 sublayers (deeper than their default setups for
improved performance).

B.2. Hénon-Heiles System

The step size of each data sequence inD2 andD5 is h = 0.5.
The ground truth trajectory is simulated using a 4th or-
der symplectic integrator with step size 10−3. The initial
condition of each data sequence is drawn from a centered
Gaussian perturbation of states along one orbit randomly
with variance 0.012. In terms of the number of samples,
ntrain(D2) = 100, 000, ntrain(D5) = 25, 000. The data
sets for the regular motion experiment and for the chaotic
dynamics experiment are generated separably around a tra-
jectory with energy level 1

12 and 1
6 respectively. The time

derivative data of the vector field based methods (VFNN,
HNN) are generated using (1st-order) finite difference.

The MLP that represents Sθh has 5 layers and 200, 100, 50,
20 neurons in hidden layers. The Adam optimizer is utilized
with batch size 200. The model is trained for more than
20 epochs with initial learning rate 0.01. HNN, SRNN are
trained by their provided codes under default training setups.

B.3. PCR3BP

The step size of each data sequence inD2 andD5 is h = 0.1.
The ground truth trajectory is simulated using RK4 with step
size 10−3. The initial condition of each data sequence is

drawn from a centered Gaussian perturbation of states along
one orbit randomly with variance 0.052. In terms of the
number of samples, ntrain(D2) = 100, 000, ntrain(D5) =
25, 000. The time derivative data of the vector field based
methods (VFNN, HNN) are generated using (1st-order)
finite difference.

The MLP that represents Sθh has 5 layers and 200, 100, 50,
20 neurons in hidden layers. The Adam optimizer is utilized
with batch size 200. The model is trained for more than
20 epochs with initial learning rate 0.01. HNN, SRNN are
trained by their provided codes under default training setups.

B.4. Standard Map

The step size of each data sequence in D2 and D5 is h = 1.
The ground truth map is directly evolved from the discrete-
time evolution map Eq. (9). The initial condition of each
data sequence is drawn from a Gaussian perturbation of
states along one orbitrandomly with variance 0.52. In
terms of the number of samples in training / testing data,
ntrain(D2) = 1, 000, 000, ntrain(D5) = 250, 000. The
data sets of the regular motion experiment and for the
chaotic dynamics experiment are generated separably with
K = 0.6 and K = 1.2 and correspondingly different initial
conditions respectively. The time derivative data of the vec-
tor field based methods (VFNN, HNN) are generated using
(1st-order) finite difference (with ∆t = 1).

The MLP that represents Sθh has 5 layers and 500, 500, 200,
20 neurons in hidden layers. The Adam optimizer is utilized
with batch size 1000. The model is trained for more than
20 epochs with initial learning rate 0.001. HNN, SRNN
are trained by their provided codes under default training
setups.


