
Large-Scale Multi-Agent Deep FBSDEs

Jazwinski, A. Stochastic process and filtering theory, aca-
demic press. A subsidiary of Harcourt Brace Jovanovich
Publishers, 1970.

Kamalapurkar, R., Klotz, J. R., Walters, P., and Dixon, W. E.
Model-based reinforcement learning in differential graph-
ical games. IEEE Transactions on Control of Network
Systems, 5(1):423–433, 2016.

Karatzas, I. and Shreve, S. Brownian motion and stochastic
calculus (graduate texts in mathematics), 1991.

Kushner, H. Numerical approximations for stochastic dif-
ferential games. SIAM J. Control Optim., 41:457–486,
2002.

Kushner, H. and Chamberlain, S. On stochastic differen-
tial games: Sufficient conditions that a given strategy be
a saddle point, and numerical procedures for the solu-
tion of the game. Journal of Mathematical Analysis and
Applications, 26:560–575, 1969.

Liu, I.-J., Yeh, R. A., and Schwing, A. G. Pic: permuta-
tion invariant critic for multi-agent deep reinforcement
learning. In Conference on Robot Learning, pp. 590–602.
PMLR, 2020.

Lyle, C., van der Wilk, M., Kwiatkowska, M., Gal, Y., and
Bloem-Reddy, B. On the benefits of invariance in neural
networks. arXiv preprint arXiv:2005.00178, 2020.

Ma, J., Zhang, J., et al. Representation theorems for back-
ward stochastic differential equations. Annals of Applied
probability, 12(4):1390–1418, 2002.

Mahajan, A., Rashid, T., Samvelyan, M., and Whiteson,
S. Maven: Multi-agent variational exploration. In Ad-
vances in Neural Information Processing Systems, pp.
7613–7624, 2019.

Mataramvura, S. and Øksendal, B. Risk minimizing portfo-
lios and hjbi equations for stochastic differential games.
Stochastics An International Journal of Probability and
Stochastic Processes, 80(4):317–337, 2008.

Osborne, M. J. and Rubinstein, A. A course in game theory
cambridge. MA: MIT Press [Google Scholar], 1994.

Pereira, M. A., Wang, Z., Exarchos, I., and Theodorou,
E. A. Learning deep stochastic optimal control policies
using forward-backward sdes. In Robotics: science and
systems, 2019.

Prasad, A. and Sethi, S. P. Competitive advertising un-
der uncertainty: A stochastic differential game approach.
Journal of Optimization Theory and Applications, 123(1):
163–185, 2004.

Raissi, M. Forward-backward stochastic neural networks:
Deep learning of high-dimensional partial differential
equations. arXiv preprint arXiv:1804.07010, 2018.

Ramachandran, K. M. and Tsokos, C. P. Stochastic differen-
tial games. Theory and applications, volume 2. Springer
Science & Business Media, 2012.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G.,
Foerster, J., and Whiteson, S. Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement
learning. arXiv preprint arXiv:1803.11485, 2018.

Rozen, O., Shwartz, V., Aharoni, R., and Dagan, I. Di-
versify your datasets: Analyzing generalization via con-
trolled variance in adversarial datasets. arXiv preprint
arXiv:1910.09302, 2019.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. In Advances in Neural Information Processing
Systems, pp. 5014–5026, 2018.

Shi, G., Hönig, W., Shi, X., Yue, Y., and Chung, S.-J. Neural-
swarm2: Planning and control of heterogeneous multi-
rotor swarms using learned interactions. arXiv preprint
arXiv:2012.05457, 2020.

Simon, D. Optimal state estimation: Kalman, H infinity,
and nonlinear approaches. John Wiley & Sons, 2006.

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi,
Y. Qtran: Learning to factorize with transformation for
cooperative multi-agent reinforcement learning. arXiv
preprint arXiv:1905.05408, 2019.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zam-
baldi, V. F., Jaderberg, M., Lanctot, M., Sonnerat, N.,
Leibo, J. Z., Tuyls, K., et al. Value-decomposition net-
works for cooperative multi-agent learning based on team
reward. In AAMAS, pp. 2085–2087, 2018.

Tan, M. Multi-agent reinforcement learning: Independent
vs. cooperative agents. In Proceedings of the tenth inter-
national conference on machine learning, pp. 330–337,
1993.

Theodorou, E., Tassa, Y., and Todorov, E. Stochastic differ-
ential dynamic programming. In Proceedings of the 2010
American Control Conference, pp. 1125–1132. IEEE,
2010.

Wang, L., Yang, Z., and Wang, Z. Breaking the curse
of many agents: Provable mean embedding q-iteration
for mean-field reinforcement learning. arXiv preprint
arXiv:2006.11917, 2020.

Large-Scale Multi-Agent Deep FBSDEs

Wang, Z., Lee, K., Pereira, M. A., Exarchos, I., and
Theodorou, E. A. Deep forward-backward SDEs for min-
max control. In 2019 IEEE 58th Conference on Decision
and Control (CDC), pp. 6807–6814. IEEE, 2019a.

Wang, Z., Pereira, M. A., and Theodorou, E. A. Deep
2fbsdes for systems with control multiplicative noise.
arXiv preprint arXiv:1906.04762, 2019b.

Yang, Y., Tutunov, R., Sakulwongtana, P., Ammar, H. B.,
and Wang, J. αα-rank: Scalable multi-agent evaluation
through evolution. arXiv preprint arXiv:1909.11628,
2019.

Yong, J. and Zhou, X. Y. Stochastic controls: Hamiltonian
systems and HJB equations, volume 43. Springer Science
& Business Media, 1999.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. In
Advances in neural information processing systems, pp.
3391–3401, 2017.

Zhou, M., Chen, Y., Wen, Y., Yang, Y., Su, Y., Zhang,
W., Zhang, D., and Wang, J. Factorized q-learning for
large-scale multi-agent systems. In Proceedings of the
First International Conference on Distributed Artificial
Intelligence, pp. 1–7, 2019.

Large-Scale Multi-Agent Deep FBSDEs

Supplementary Material
A. Multi-agent HJB Derivation
Applying Bellman’s principle to the value function (3) yields,

V i(t,X(t)) = inf
Ui∈Ui

E

[
V i(t+ dt,X(t+ dt)) +

∫ t+dt

t

Cidτ

]
= inf
Ui∈Ui

E
[
Cidt+ V i(t,X(t)) + V it (t,X(t))dt

+ V iTx (t,X(t))dX +
1

2
tr(Vxx(t,X(t)ΣΣT)dt

]
= inf
Ui∈Ui

E
[
Cidt+ V i(t,X(t)) + V it (t,X(t))dt

+ V iTx (t,X(t))((f +GU)dt+ ΣdW) +
1

2
tr(V ixx(t,X(t))ΣΣT)dt

]
= inf
Ui∈Ui

[
Cidt+ V i(t,X(t)) + V it (t,X(t))dt

+ V iTx (t,X(t))((f +GU)dt) +
1

2
tr(V ixx(t,X(t))ΣΣT)dt

]
⇒ 0 = V it (t,X(t)) + inf

Ui∈Ui

[
Ci + V iTx (t,X(t))(f +GU)

]
+

1

2
tr(V ixx(t,X(t))ΣΣT)

(20)

Given the cost function assumption (the cost function is quadratic w.r.t control variable.), the infimum can be obtained
explicitly using optimal control U∗i = −R−1(GT

i V
i
x +QT

i X). With that we can obtain the final form of the HJB PDE as

V it + h+ V iTx (f +GU0,∗) +
1

2
tr(V ixxΣΣT) = 0, V i(T,X) = g(X(T)). (21)

B. Multi-agent FBSDE Derivation
Given the HJB PDE in equation 5, one can apply the non-linear Feynman-Kac lemma (Karatzas & Shreve, 1991) to obtain a
set of FBSDE as

dX(t) = (f +GU0,∗)dt+ ΣdW , X(0) = x0 (FSDE)

dV i = −hdt+ V iTx ΣdW , V (X(T)) = g(X(T)). (BSDE)
(22)

The backward process is derived by applying Ito’s lemma on V i

dV i = V it dt+ V iTx dX +
1

2
tr(V ixxΣΣT)dt

Plug in eq.21 intoV it term, and eq.1into dX term

= (−h− V iTx (f +GU0,∗)−
1

2
tr(V ixxΣΣT))dt+ V iTx ((f +GU0,∗)dt+ ΣdW) +

1

2
tr(V ixxΣΣT)dt

= −hdt+ V iTx ΣdW .

C. Metrics
In the test set, we randomly select B initial states, and B × T noise W , where B is Batch size and T is time horizon. We
evaluate the performance of models based on three different metrics. All losses (for comparison) are computed by averaging
the last 10 stages and over 3 random seeds for fair comparison.

Large-Scale Multi-Agent Deep FBSDEs

C.1. Relative Square Error(RSE)

The RSE is a metric applied in test phase which is defined as following:

LRSE =

∑
i∈I

1≤j≤B(Ŷ i(0,Xj(0))− Y i(0,Xj(0)))2∑
i∈I

1≤j≤B(Ŷ i(0,Xj(0))− Ȳ i(0,Xj(0)))2
, (23)

Where Y i is the analytical solution of value function for ith agents at initial state Xj(0). The initial state Xj(0) is new
batch of data sampled from same distribution as X(0) in the training phase. The batch size B is 256 for all inter-bank
simulations. Ŷ i is the approximated value function for ith agent by FBSDE controller, and Ȳ i is the average of analytical
solution for ith agent over the entire batch.

C.2. Evaluation/training Loss

The evaluation loss is same as training loss which is defined as the mean square error between true terminal value evaluated
on the terminal state and the value propagated by the BSDE,

L(Ŷ iT , Y
i
T) =

1

B
||Ŷ iT − Y iT ||22 (24)

C.3. Cumulative Loss

The cumulative loss is computed explicitly from the objective function of optimal control (2) in the test phase. Here we
restate it for completeness.

Lcum := J it (X, Ui,m;U−i,m−1)

= E

[
g(XT) +

∫ T

0

Ci(Xτ , Ui(Xτ);U−i)dτ

]
,

(25)

D. Missing Derivation and Proof in Section 3
D.1. Assumption 2

Here we state the assumption 2 in detail.

Consider a general FBSDE system,

Xt,x
T = x +

∫ T

t

µsds+

∫ T

t

ΣsdWs (FSDE),

Y T,xt = g(Xt,x
T)−

∫ T

t

Hsds+

∫ T

t

ZsdWs (BSDE),

(26)

We use | · | and || · ||F to denote the L2 norm and Frobenius norm respectively. For terminal loss g(·), drift function
µ(·, ·, ·), H(·, ·, ·), diffusion function Σ(·, ·), and control function u(·, ·), they are Lipschitz continuous with respect to their
arguments:

|g(t,x1)− g(t,x2)|2 ≤ gx|x1 − x2|2

|H(t,x1, z1)−H(t,x2, z2)|2 ≤ Hx|x1 − x2|2 +Hz||z1 − z2||2F ,
||Σ(t,x1)− Σ(t,x2)||2F ≤ Σx|x1 − x2|2

||u(t,x1)− u(t,x2)||2 ≤ ux|x1 − x2|2

|µ(t,x1,u1)− µ(t,x2,u2)|2 ≤ µx|x1 − x2|2 + µu|u1 − u2|2,

(27)

Here µx, µu, gx, Hx, Hz,Σx, ux are all positive constants.

Large-Scale Multi-Agent Deep FBSDEs

D.2. Proof of Lemma 1

Proof. Denote (Xt,x
s , Y t,xs , Zt,xs)t≤s≤T as the solution for the FBSDE system for the ith agent:

Xt,x
T = x +

∫ T

t

µsds+

∫ T

t

ΣsdWs (FSDE),

Y T,xt = g(Xt,x
T)−

∫ T

t

Hsds+

∫ T

t

ZsdWs (BSDE),

(28)

for any (t0,x) ∈ [t0, T] × X . Then for any t ∈ [t0, T] and x1,x2 ∈ X , let (Xj
t , Y

j
t , Z

j
t) be the short notation of

(X
t0,xj

t , Y
t0,xj

t , Z
t0,xj

t), where j ∈ {1, 2}, t ∈ [0, T].
Here we define δXt, δYt, δZt, δΣt, δHt as:

δXt = X1
t −X2

t ,

δYt = Y 1
t − Y 2

t ,

δZt = Z1
t − Z2

t ,

δµt = µt(t,X
1
t ,U

1
t)− µ(t,X2

t ,U
2
t),

δHt = H(t,X1
t , Z

1
t)−H(t,X2

t , Z
2
t),

δΣt = Σ(t,X1
t)− Σ(t,X2

t),

(29)

Then we have:

dδXt = dX1
t − dX2

t

= (µt(t,X
1
t ,U

1
t)dt+ Σ(t,X1

t)dWt)− (µt(t,X
2
t ,U

2
t)dt+ Σ(t,X2

t)dWt)

= (δµt)dt+ δΣtdWt,

dδYt = −δHtdt+ δZT
t dWt.

(30)

By applying Itô lemma to dδXt and dδYt,

d|δXt|2 = (2δµtδXt +
1

2
· 2δ||Σt||2F)dt+ 2(δXt)

TδΣtdWt

= (2δµtδXt + δ||Σt||2F)dt+ 2(δXt)
TδΣtdWt

d|δYt|2 = (−2δHtδYt + δ||ZT
t ||2F)dt+ 2(δZtδYt)

TdWt

(31)

By taking the expectation on both sides of d|δXt|2, it will yield:

E[|δXt|2] = |x1 − x2|2 +

∫ t

t0

E
[
2δµsδXs + δ||Σs||2F

]
ds

≤ |x1 − x2|2 +

∫ t

t0

E
[
(µx + µuux)−1|δµs|2 + (µx + µuux)|δXs|2 + δ||Σs||2F

]
ds

≤ |x1 − x2|2 +

∫ t

t0

E
[
(µx + µuux)−1(µx|δXs|2 + µu|δu|2) + (µx + µuux)|δXs|2 + δ||Σs||2F

]
ds

≤ |x1 − x2|2 +

∫ t

t0

E
[
(µx + µuux)−1(µx|δXs|2 + µuux|δXs|2) + (µx + µuux)|δXs|2 + δ||Σs||2F

]
ds

≤ |x1 − x2|2 +

∫ t

t0

E
[
|δXs|2 + (µx + µuux)|δXs|2 + Σx|δXs|2

]
ds

= |x1 − x2|2 + (I + µx + µuux + Σx)

∫ t

t0

E|δXs|2ds

by Gronwall’s inequality

≤ e(I+µx+µuux+Σx)(t−t0)|x1 − x2|2

= eξ(t−t0)|x1 − x2|2
(32)

Large-Scale Multi-Agent Deep FBSDEs

Where ξ = I + µx + µuux + Σx.

Similarly, we can have,

E[|δYt|2] = E|δYT |2 +

∫ T

t

E
[
2δHsδYs − δ||ZT

s ||2F
]

ds

= E|g(T,x1)− g(T,x2)|2 +

∫ T

t

E [2δHsδYs]− E‖|Zs||2F ds

≤ gxE|δXT |2 +

∫ T

t

HzE|δYs|2 +H−1
z E|δHs|2 − E||Zs||2F ds

≤ gxE|δXT |2 +

∫ T

t

HzE|δYs|2 +H−1
z E

[
Hx|δXs|2 +Hz|δZs|2

]
− E||Zs||2F ds

= gxE|δXT |2 +

∫ T

t

HzE|δYs|2 +H−1
z HxE|δXs|2ds

≤
[
gxe

ξ(t−t0) +Hx
eξ(T−t) − eξ(t−t0)

HzΣx

]
|x1 − x2|2 +Hz

∫ T

t

E|δYs|2ds

by Gronwall’s inequality

|δYt|2 ≤ eHz(T−t)
[
gxe

ξ(T−t0) +Hx
eξ(T−t0) − eξ(t−t0)

HzΣx

]
|x1 − x2|2

(33)

When t0 = 0, one can have:
|δYT |2 ≤ gxeξT |x1 − x2|2

= L1|x1 − x2|2

|δY0|2 ≤ eHzT

[
gxe

ξT +Hx
eξT − 1

HzΣx

]
|x1 − x2|2

= L2|x1 − x2|2

(34)

Where
L1 = gxe

ξT

L2 = eHzT

[
gxe

ξT +Hx
eξT − 1

HzΣx

]
ξ = I + µx + µuux + Σx

(35)

D.3. Lemma.2 with Proof

Lemma 2. Denote (Xt,x
s , Y t,xs , Zt,xs)t≤s≤T as the solution for the FBSDE system with importance sampling (12, 13)

satisfying assumptions 1 and 2. Denote the difference of Y component at two different states x1 and x2 as:

δXt = Xt0,x1

t −Xt0,x2

t , δYt = Y t0,x1

t − Y t0,x2

t . (36)

Then we can have:
|δYT |2 ≤ L̃1|x1 − x2|2,
|δYt0 |2 ≤ L̃2|x1 − x2|2,

(37)

Where L1 and L2 are defined as:

L̃1 = gxe
ξ̃

L̃2 = e2(Hz+kz)(T−t0)

[
gxe

ξ̃(T−t0) +Hx(H−1
z + k−1

z)
eξ̃(T−t0) − 1

2Σx

]
,

ξ̃ = I + µ̃x + µ̃uux + Σx,

(38)

Large-Scale Multi-Agent Deep FBSDEs

Where µx, µu,Σx, Hx, Hz, gx, ux are Lipschitz constant defined in Assumption.2. The definition of Lipschitz constant
µ̃x, µ̃u, kz and proof can be found in the following proof.

Proof. Similar to the proof of lemma.1, now we first analyze the forward process with IS. Inspired by the success of
(Exarchos & Theodorou, 2018), we select the control computed from the last run as the importance sampling term. Then the
IS term in FSDE is defined as ms := ΣK = GU∗,0. New drift term is modified as µ̃s = µs +ms with Lipschitz constant
µ̃x and µ̃u. In the BSDE, Then IS term is written as ks = ZsKs = ZsΓU∗,0 = VxGU∗,0, and the modified H̃s = Hs + ks.
Here we formally write the Lipschitz constant for IS terms in FSDE and BSDE are:

|ms(t,x1,u1)−ms(t,x2,u2)|2 ≤ mx|x1 − x2|2 +mu|u1 − u2|2,
|ks(t,x1, z1)− ks(t,x2, z2)|2 ≤ kx|x1 − x2|2 + kz|z1 − z2|2,

(39)

Similar to the proof (D.2), we can have,

|δXt|2 ≤ e(I+µ̃x+µ̃uux+Σx)(t−t0)|x1 − x2|2

= eξ̃(t−t0)|x1 − x2|2
(40)

Where ξ̃ = I + µ̃x + µ̃uux + Σx.

And for Y term we will have,

E[|δYt|2] = E|δYT |2 +

∫ T

t

E
[
2(δHsδYs + δksδYs)− δ||ZT

s ||2F
]

ds

≤ gxE|δXT |2 +

∫ T

t

2HzE|δYs|2 + (2Hz)
−1E|δHs|2 + 2kzE|δYs|2 + (2kz)

−1E|δks|2 − E||Zs||2F ds

≤ gxE|δXT |2 +

∫ T

t

(2Hz + 2kz)E|δYs|2 + (2Hz)
−1E

[
Hx|δXs|2 +Hz||δZs||2F

]
+ (2kz)

−1E
[
kx|δXs|2 + kz||δZs||2F

]
− E||Zs||2F ds

Noticing that the drift term in BSDE w/o IS is Hs = Ci∗ + VxGU∗,0 which is a lipschitz continous function,
while IS term is ks = VxGU∗,0. then we can have kx ≤ Hx. By replacing kx by Hx, it yields:

≤ gxE|δXT |2 +

∫ T

t

(2Hz + 2kz)E|δYs|2 + (2Hz)
−1E

[
Hx|δXs|2 +Hz||δZs||2F

]
+ (2kz)

−1E
[
Hx|δXs|2 + kz||δZs||2F

]
− E||Zs||2F ds

≤ gxE|δXT |2 +

∫ T

t

(2Hz + 2kz)E|δYs|2 +
Hx

2
(H−1

z + k−1
z)E|δXs|2 + E||δZs||2F − E||Zs||2F ds

= gxE|δXT |2 +

∫ T

t

(2Hz + 2kz)E|δYs|2 +
Hx

2
(H−1

z + k−1
z)E|δXs|2ds

by Gronwall’s inequality

|δYt|2 ≤ e2(Hz+kz)(T−t)

[
gxe

ξ̃(T−t0) +Hx(H−1
z + k−1

z)
eξ̃(T−t0) − eξ̃(t−t0)

2Σx

]
|x1 − x2|2

(41)
When t0 = 0, we have,

|δYT |2 ≤ gxeξ̃T |x1 − x2|2

= L̃1|x1 − x2|2

|δY0|2 ≤ e2(Hz+kz)T

[
gxe

ξ̃T +Hx(H−1
z + k−1

z)
eξ̃T − 1

2Σx

]
|x1 − x2|2

= L̃2|x1 − x2|2

(42)

Large-Scale Multi-Agent Deep FBSDEs

Where ξ̃ = I + µ̃x + µ̃uux + Σx. Following arguments in (Ma et al., 2002), one further has,

||Zt||2S ≤ ||Σ||2S ||∇xYt||2S ≤MΣL̃2 (43)

D.4. Proof of Theorem 2

According to the result in Lemma.1 with the assumption that the initial state dataset D are identical for FBSDE w/ and w/o
importance sampling.

|δYT |2 ≤ gxeξT |x1 − x2|2

= L1|x1 − x2|2

|δY0|2 ≤ eHzT

[
gxe

ξT +Hx
eξT − 1

HzΣx

]
|x1 − x2|2

= L2|x1 − x2|2

ξ = I + µx + µuux + Σx

(44)

Similarly, According to Lemma.2, one have,

|δYT |2 ≤ gxeξ̃T |x1 − x2|2

= L̃1|x1 − x2|2

|δY0|2 ≤ e2(Hz+kz)T

[
gxe

ξ̃T +Hx(H−1
z + k−1

z)
eξ̃T − 1

2Σx

]
|x1 − x2|2

= L̃2|x1 − x2|2

ξ̃ = I + µ̃x + µ̃uux + Σx

(45)

We have µ̃x = µx +mx ≥ µx and µ̃u = µu +mu ≥ µu, where mx and mu are the Lipschitz constants for ms w.r.t. x and
u defined in equation.39 . Then we have ξ̃ ≥ ξ which leads to L̃1 ≥ L1. Noticing that the drift term in BSDE w/o IS is
Hs = Ci∗ + VxGU∗,0, while IS term is ks = VxGU∗,0. then we can have kx ≤ Hx, and kz ≤ Hz which leads to

1

2
(

1

Hz
+

1

kz
) >

1

Hz
(46)

We have known that µ̃x ≥ µx and 1
2 (1
Hz

+ 1
kz

) > 1
Hz

. Then we can have L̃1 ≥ L1 and L̃2 ≥ L2 strictly.

E. Invariant Layer Introductions and Implementation Techniques
E.1. Invariant Mapping

A function f maps its domain from X to Y . Domain X is a vector space Rd and Y is a continuous space R. Assume the
function takes a set as input: X = {x1...xN}, then the function f is invariant if it satisfies property E.1.

Property 1. A function f : X → Y defined on sets is permutation invariant to the order of objects in the set. i.e. For any
permutation function π: f({x1...xN}) = f(

{
xπ(1)...xπ(N)

}
)

In this paper, we discuss the case when f is a neural network only.
Theorem 3. (Zaheer et al., 2017) X has elements from countable universe. A function f(X) is a valid permutation
invariant function, i.e invariant to the permutation of X , iff it can be decomposed in the form ρ(

∑
x∈X φ(x)), for

appropriate functions ρ and φ.

In the symmetric multi-agent system, each agent is not distinguishable. This property gives some hints about how to
extract the features of the −ith agents using a neural network. The states of the −ith agents can be represented as a set:
X = {X1, X2, ..., Xi−1, Xi+1, ..., XN}. We want to design a neural network f which has the property of permutation
invariance. Specifically, φ is represented as a one layer neural network and ρ is a common nonlinear activation function, and
the invariant layer module is shown in Fig.11.

Large-Scale Multi-Agent Deep FBSDEs

Figure 11. Feature extractor architecture. φ represents fully connected neural network. ρ is the ReLU activation function.

E.2. Feature Extractor with Invariant Layer Architecture

The architecture of feature extractor with invariant layer is described in Fig. 11.

E.3. Invariant Layer Techniques

Noticing that all the agents has the access to the global states, we define the state input features of invariant layer for the ith
agent as:

Xt = {Xi, X1, X2..., Xi−1, Xi+1, ...XN} , (47)

with shape of [B,N,Nx], where B is the batch size, Nx is the dimension of the observed states. In the other word, we
always put own feature in the first position. For each agent i, there will exist such a feature tensor, then for the feature
extractor, the shape of input is [BS,N,N,Nx]. Therefore, the shape of input tensor will become [BS,N,N − 1, Nx]
for invariant layer. where N is the number of agents. First,we could use neural network to map the observed states to
the feature space with dimension Nf . Then the shape of the tensor will become [BS,N,N − 1, Nf]. After summing up
the features of all the element in the set, the dimension of the tensor would reduce to [BS,N, 1, Nf], and we denote this
feature tensor as F . However, the memory complexity is O(N2 ×Nf) which is not tolerable when the number of agent
N increases. Alternatively, we can simply map the tensor Xt whose dimension is [BS,N,Nf] into the desired feature
dimension Nf , then the shape of the tensor would become [BS,N,Nf], and we denote this tensor as F ′. Now we create
another tensor which is the average of features of element in set with size [BS, 1, Nf] and we denote it to be F̄ ′. Then
we compute F̂ = (F̄ ′ × N − F ′)/(N − 1) which has size of [BS,N,Nf]. We can find that F̂ = F , and the memory
complexity of computing F̂ is just O(N ×Nf). The derivation only holds when the system is symmetric and the agents are
not distinguishable. The technique can be extended to higher state dimension for individual agent.

F. Experiment Configurations
This section elaborates the experiment configurations for §4. For all the simulation, the number of SGD iteration is fixed as
NSGD = 100. We are using Adam as optimizer with 1E-3 learning rate for all simulations.

F.1. Inter-bank Experiments

In section §4.1, For the prediction of initial value function V i0 , all frameworks are using 2 layers feed forward network with
128 hidden dimension. For the baseline framework, we followed the suggested configuration motioned in (Han et al., 2018).
At each time steps, V ix is approximated by three layers of feed forward network with 64 hidden dimensions. We add batch
norm (Ioffe & Szegedy, 2015) after each affine transformation and before each nonlinear activation function. For Deep

Large-Scale Multi-Agent Deep FBSDEs

FBSDE with LSTM backbone, we are using two layer LSTM parametrized by 128 hidden state. If the framework includes
the invariant layer, the number of mapping features is chosen to be 256. The hyperparameters of the dynamics is listed as
following:

a = 0.1, q = 0.1, c = 0.5, ε = 0.5, ρ = 0.2, σ = 1, T = 1. (48)

In the simulation, the time horizon is separated into 40 time-steps over 1 second by Euler method. Learning rate is chosen
to be 1E-3 which is the default learning rate for Adam optimizer. The initial state for each agents are sampled from the
uniform distribution [−δ0, δ0]. Where δ0 is the constant standard deviation of state X(t) during the process as described in
(Han & Hu, 2019). In the evaluation, we are using 256 new sampled trajectory which are different from training trajectory
to evaluate the performance. The number of stage is set to be 100 which is enough for all framework to converge.

F.2. Belief Space Car Racing

In §4.2, the hyperparameter is listed as following:

cdrag = 0.01, L = 0.1, c = 0.5, T = 10.0 (49)

The observation noise is sampled from Gaussian noise m ∼ N (0, 0.1I). The time horizon is enrolled into 100 time-steps by
Euler method. In this experiments, the initial value Vi is approximated a single trainable scale and Vx,i(t) is approximated
by two layers of LSTM parametrized with 32 hidden dimensions. The number of stage is set to be 10.

G. FBSDEs and Analytical Solution for Inter-Bank Borrowing/Lending Problem
G.1. FBSDEs for Inter-Bank Borrowing/Lending Problem

By plugging the running cost (17) to the HJB (5) function, one can have,

V it + inf
Ui∈Ui

 N∑
j=1

[a(X̄ −Xj) + U2
j]Vxj

+
1

2
U2
i − qUi(X̄ −Xi) +

ε

2
(X̄ −Xi)

2

+

1

2
tr(V ixxΣΣT) = 0.

(50)

By computing the infimum explicitly, the optimal control of player i is:U∗i (X, t) = q(X̄ −Xi)− V ix(X, t). The final form
of HJB can be obtained as

V it +
1

2
tr(V ixxΣΣT) + a(X̄ −Xi)V

i
x +

∑
j 6=i

[a(X̄ −Xj) + Uj]V
j
x

+
ε

2
(X̄ −Xi)

2 − 1

2
(q(X̄ −Xi)− V ix)2 = 0

(51)

Applying Feynman-Kac lemma to equation 51, the corresponding FBSDE system is

dX(t) = (f(X(t), t) +G(X(t), t)u(t))dt+ Σ(t,X(t))dWt, X(0) = x0

dV i = −[
ε

2
(X̄ −Xi)

2 − 1

2
(q(X̄ −Xi)− V ix)2 + Ui]dt+ V i

T

x ΣdW, V (T) = g(X(T)).
(52)

G.2. Analytical solutions for Inter-Bank Borrowing/Lending Problem

The analytical solution for linear inter-bank problem was derived in (Carmona et al., 2013). We provide them here for
completeness. Assume the ansatz for HJB function is described as:

Vi(t,X) =
η(t)

2
(X̄ −Xi)

2 = µ(t) i ∈ I (53)

Where η(t), µ(t) are two scalar functions. The optimal control under this ansatz is:

U?i (t,X) =

[
q + η(t)(1− 1

N
)

]
(X̄ −Xi) (54)

Large-Scale Multi-Agent Deep FBSDEs

By pluginging the ansatz into HJB function derived in equation (51), one can have,

η̇(t) = 2(a+ q)η(t) + (1− 1

N2
)η2(t)− (ε− q2), η(T) = c,

µ̇(t) = −1

2
σ2(1− ρ2)(1− 1

N
)η(t), µ(T) = 0.

(55)

There exists the analytical solution for the Riccati equation described above as,

η(t) =
−(ε− q2)(e(δ+−δ−)(T−t) − 1)− c(δ+e(δ+−δ−)(T−t) − δ−)

(δ−e(δ+−δ−)(T−t) − δ+)− c(1− 1/N2)(e(δ+−δ−)(T−t))− 1
. (56)

Where δ± = −(a+ q)±
√
R and R = (a+ q)2 + (1− 1/N2)(ε− q2)

H. Additional Tables and Figures
H.1. Evaluation Loss with different number of agents

Fig.12 shows the comparison of SDFP-FBSDE and baseline by evaluation loss.

101 102 103

number of agents

0.15

0.20

0.25

0.30

0.35

Ev
al

ua
tio

n
Lo

ss

Baseline SDFP-FBSDE

Figure 12. Comparison of SDFP-FBSDE and Baseline for inter-bank problem with different number of agents evaluated on evaluation
loss(24).

H.2. Superlinear Inter-Bank Plots

Fig.13 demonstrates the performance difference between Baseline and our algorithm. One can find that our algorithm
convergence faster and better than baseline. Since in the superlinear case, the influence of control term in the forward
dynamics is mitigated, then the final performances are similar.

0 20 40 60 80 100
Number of Stages

10 1

100

Ev
al

ua
tio

n
Lo

ss

Baseline
SDFP-FBSDE

0 20 40 60 80 100
Number of Stages

101

4 × 100

6 × 100

2 × 101

Ac
cu

m
ul

at
iv

e
Lo

ss

Baseline
SDFP-FBSDE

Figure 13. Comparison of SDFP-FBSDE and Baseline for inter-bank problem in superlinear case with evaluation loss (24) and cumulative
loss(25)

Large-Scale Multi-Agent Deep FBSDEs

H.3. Posterior Plot of Car Racing

Fig.14 illustrates the trajectory of single game with posterior estimated by each car. One can find that the variance does not
blow up, and both of two cars are staying in the track.

Figure 14. Car racing plot with posterior trained with SDFP-FBSDE. The competition loss is turned off

H.4. DFP-FBSDE Framework

In this subsection, we demonstrate the framework of Deep Fictitious Play FBSDE (DFP-FBSDE) in Fig.15. Each NN (blue
box) represents for the FBSDE module shown in Fig.1.

𝑿! 𝑿"

𝑁𝑁"

𝑁𝑁#

𝑁𝑁$%"

𝑁𝑁$

𝑼! 𝑼"

𝑁𝑁"

𝑁𝑁#

𝑁𝑁$%"

𝑁𝑁$

⋱ ⋱

𝑿&

𝑁𝑁"

𝑁𝑁#

𝑁𝑁$%"

𝑁𝑁$

⋱⋯

⋯

$𝑌&"

$𝑌&#

$𝑌&$%"

$𝑌&$

𝑌&

ℒ(𝑌&, $𝑌&)

⋱

Figure 15. SDFP framework for N Players. Each NN block has the architecture in Fig. 1

I. Belief Car Racing
The framework for the racing problem is trained with batch size of 64, and 100 time steps over a time horizon of 10 seconds.

I.1. Continuous Time Extended Kalman Filter

The Partial Observable Markov Decision Process is generally difficult to solve within infinite dimensional space belief.
Commonly, the Value function does not have explicit parameterized form. Kalman filter overcome this challenge by

Large-Scale Multi-Agent Deep FBSDEs

presuming the noise distribution is Gaussian distribution. In order to deploy proposed Forward Backward Stochastic
Differential Equation (FBSDE) model in the Belief space, we need to utilize extended Kalman filter in continuous time
(Jazwinski, 1970) correspondingly. Given the partial observable stochastic system:

dx
dt

= f(x, u, w, t), and z = h(x, v, t) (57)

Where f is the stochastic state process featured by a Gaussian noise w ∼ N (0, Q), h is the observation function while
v ∼ N (0, R) is the observation noise. Next, we consider the linearization of the stochastic dynamics in eq.(47) represented
as follows:

A =
∂f

∂x

∣∣∣∣
x̂

, L =
∂f

∂w

∣∣∣∣
x̂

, C =
∂h

∂x

∣∣∣∣
x̂

,M =
∂h

∂v

∣∣∣∣
x̂

, Q̃ = LQLT, R̃ = MRMT (58)

one can write the posterior mean state x̂ and prior covariance matrix P− estimation update rule by (Simon, 2006):

x̂(0)E[x(0)], P−(0) = E[(x(0)− x̂)(x(0)− x̂)T]

K = PCTR̃−1

˙̂x = b(x̂, u, w, t) = f(x̂, u, w0, t) +K[z − h(x̂, v0, t)]

Ṗ− = AP− + P−AT + Q̃− P−CTR̃−1CP−

(59)

We follow the notation in (Simon, 2006), where x is the real state, x̂ is the mean of state estimated by Kalman filter based on
the noisy sensor observation, P− represents for the covariance matrix of the estimated state, nominal noise values are given
as w0 = 0 and v0 = 0, where superscript + is the posterior estimation and − is the prior estimation. Then we can define a
Gaussian belief dynamics as b(x̂k, P

−
k) by the mean state x̂ and variance P− of normal distribution N (x̂k, P

−
k)

The belief dynamics results in a decoupled FBSDE system as follows:

dbk = g(bk,Uk, 0)dt+ Σ(bk,Uk, 0)dW, dW ∼ N (0, I)

dV = −Ci
?

dt+ V i
T

x ΣdW
(60)

where:

g(bk,Uk) =

[
b(t,X(t), Ui,m(t);U−i,m)

vec(AkP
−
k + P−k A

T
k + Q̃k − P−k CT

k R̃
−1
k CkP

−
k)

]
Σ(bk,Uk) =

[√
KkCkP

−
k dt

0

]
V (T) = g(X(T))

X̂(0) = E[X(0)]

P−(0) = E[(X(0)− X̂)(X(0)− X̂)T]

(61)

In the car racing case, the dynamic function f(·, ·) in eq.57 is described as,

dX = (f(X) +G(X)U)dt+ Σ(X)dW , z = h(X) +m

f(X) =


v cos θ
v sin θ
−cdragv

0

 , G(X) = Σ(X) =


0 0
0 0
1 0
0 v/L

 , h(X) = x
(62)

Where dW is standard Brownian motion.

I.2. Cost Functions

We consider the problem of two cars racing on a circular track. The cost function of each car is designed as

Jt = exp
(∣∣x2

a2
+
y2

b2
− 1
∣∣)︸ ︷︷ ︸

track cost

+ ReLU
(
− v
)︸ ︷︷ ︸

velocity cost

+ exp
(
− d)︸ ︷︷ ︸

collision cost

Large-Scale Multi-Agent Deep FBSDEs

Where d is Euclidean distance between two cars. We use continuous time extended Kalman Filter to propagate belief space
dynamics described in equation 61.

We introduce the concept competitive game by using an additional competition cost:

Jcompetition = exp(−
[
cos(θ)
sin(θ)

]T [
x1 − x2

y1 − y2

]
)

Where xi, yi is the x, y position of the ith car. When the ith car is leading, the competition loss will be minor, and it will
increase exponentially when the car is trailing.
Thanks to the decoupled BSDE structure, each car can measure this competition loss separately and optimize the value
function individually.

J. Hardware
All simulations are run on

1. Nvidia RTX TITAN
2. Nvidia GTX TITAN BLACK

K. Algorithm

Algorithm 1 Scalable Deep Fictitious Play FBSDE
1: Hyper-parameters:N : Number of players; T : Number of timesteps; M : Number of stages in fictitious play; Ngd:

Number of gradient descent steps per stage; U0: the initial strategies for players in set I; B: Batch size; ∆t: time
discretization (Total time/Number of timesteps); π: Permutation function (E.1).

2: Parameters:φ: Network weights for Initial Value (IV) prediction fIV (·); θ: Weights and bias of Backbone and Feature
extractor (BF) fBF (·).

3: Initialize trainable papermeters:θ0, φ0

4: for m← 1 to M do
5: Generate B sample x0 and B × T Noise ∆w ∼ N (0, I∆t).
6: for l← 0 to Ngd − 1 do
7: for t← 0 to T − 1 do
8: if t==0 then
9: Predict value function for ith player: ŷi0 = fIV (x0;φm×Ngd+l)

10: else
11: Compute network prediction ẑi for ith player: ẑi = ΣT

i fBF (xt; θ
m×Ngd+l)

12: end if
13: Compute ith optimal control :u∗i = −R−1(ΓT

i zi +QT
i xt)

14: Infer −ith players’ network prediction and stop the gradient for them: ẑ−i = ΣT
−ifBF (π(xt); θ

m×Ngd)

15: Compute −ith optimal Control and stop the gradient for them: u∗−i = −R−1
−i (Γ

T
−iẑ−i +QT

−ixt)
16: Propagate FSDE: xt+1 = fFSDE(xt, u

∗
i ,u
∗
−i,∆wt, t) (12)

17: Propagate BSDE: ŷit+1 = fBSDE(ŷit,xt, u
∗
i ,u
∗
−i, ẑi,∆wt, t) (13)

18: end for
19: end for
20: Compute True terminal value yiT = gi(xT)
21: Compute loss: L(ŷiT , y

i
T) = 1

B ||ŷ
i
T − yiT ||22 (24)

22: Gradient Update: θl, φl

23: end for

