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Abstract
The streaming update of Bayesian posterior cal-
culation provides us a natural way for continual
learning. However, the naïve mean-field posterior
parametrization for variational approximation is
inappropiate in neural network, and thus, lock the
full ability for preventing catastrophic forgetting.
To resolve this issue, we introduce a generative
regularization for all given classification models,
which is implemented by leveraging energy-based
models with contrastive loss, to obtain the suffi-
cient features for valid decomposition in poste-
rior approxiamtion. By combining discriminative
and generative loss together, we empirically show
that the proposed method outperforms state-of-
the-art methods on a variety of tasks, avoiding
catastrophic forgetting in continual learning. In
particular, the proposed method outperforms base-
line methods over 15% on the Fashion-MNIST
dataset and 10% on the CUB dataset.

1. Introduction
Many real-world machine learning applications require clas-
sification models to learn a sequence of tasks in an incremen-
tal way. For each task, learning system could only access
part of whole data and the previously seen data can not be
assessed. For example, previous customer data usually can
not be accessed due to increasingly more strict data regula-
tions on the user privacy, such as GDPR (Voigt & Von dem
Bussche, 2017). The labelled data of an existing task can be
depleted when new tasks emerge (Sutton et al., 2014; Kirk-
patrick et al., 2017). Thus, an intelligent agent for continual
learning must not only adapt to newly incoming tasks but
also perform well on entire set of all the existing tasks in an
incremental way that avoids revisiting all previous data at
each stage. Previous studies (McCloskey & Cohen, 1989;
Ratcliff, 1990) found that conventional deep learning mod-
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els fail to tackle continual learning with the phenomenon of
catastrophic forgetting, where deep neural networks tend
to lose the information of previous tasks (i.e. classification
accuracy drops significantly) after a new task is introduced.

Apparently, in order to achieve continual learning, catas-
trophic forgetting is an important issue to be addressed.
A common strategy is to fix parameters used in the pre-
vious tasks. When new tasks arrive, based on different
criteria, each method can reuse part of the fixed parameters
(Fernando et al., 2017), expand some model components
(Rusu et al., 2016; Yoon et al., 2018), or search for the
best new model architecture to process new task (Li et al.,
2019). Alternatively, instead of fixing a model, memory-
based methods store a subset of previous data and constrain
the update of models by leveraging the distilled knowledge
from previous tasks (Castro et al., 2018; Hou et al., 2018;
Javed & Shafait, 2018; Li & Hoiem, 2017; Rebuffi et al.,
2017; Shin et al., 2017). These methods demonstrate the
capability of alleviating the forgetting in practice on sev-
eral datasets, however, without investigating and explaining
the potential cause of catastrophic forgetting. More impor-
tantly, model adaption methods come at the cost that the
model size expands correspondingly to the number of new
tasks; while keeping data directly violates GDPR regulation.
These drawbacks make existing methods not applicable for
large-scale real-world applications. Therefore, there is a
need to investigate the cause of catastrophic forgetting for
a principled algorithm under the memoryless, fixed model
setup.

Most of the existing literature views the incremental training
as a moving path in parameter space, then the catastrophic
forgetting happens when the update direction obtained based
on partial data leads an inappropriate solution. Therefore, it
is natural to design the search and update directions in train-
ing to avoid the catastrophic forgetting (Kirkpatrick et al.,
2017; Nguyen et al., 2018; Zenke et al., 2017; Smola et al.,
2003). Variational Continual Learning (VCL) (Nguyen et al.,
2018), as a representative algorithm, exploits the equivalent
streaming update form of Bayesian posterior calculation,
which by nature only uses part of data, and therefore can
combat forgetting. In practice, the exact posterior is in-
tractable, especially in the Bayesian neural network, then,
variational methods are used for approximation. The VCL
achieves good empirical performance on various bench-
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Figure 1. Illustration of the problem setup.

marks. However, VCL approxiamtes the posterior distri-
bution by assuming parameters shared by all tasks to be
independent of all task-specific parameters, which is dif-
ficult to satisfy, especially in neural network, as we will
illustrate in Figure 1. Moreover, our experimental results
demonstrate that discrminative VCL models tend to extract
features from limited parts of an object, which is only useful
particular current task, instead of diverse features from all
different parts. Since the classifier is built on concentrated
features, independence assumption in VCL is prone to errors
as training in the subsequent tasks might make the model
attend to other features which are not considered in the ear-
lier tasks. These drawbacks of VCL motivate us to have a
valid posterior approximation while encouraging models to
focus on more diverse features.

Fortunately, we can fullfil these two desiderata by equipping
the model with data generative regularization in the training
process. The generative regularization is pushing the model
to catch the characteristics of all parts of the object for
generatation, so that the shared component will be sufficient
features and stable across all tasks. Meanwhile, with the
sufficient features, we can recover the independent condition
as we discusse in Section 3.2. Our contributions can be
summarised as follows:

• we analyze Bayesian approach in the continual learning
setup and point out a deficiency of the parameter indepen-
dence assumption;

• we propose to use energy-based model with Langevin
dynamic sampling as an implicit regularization term in
training discriminative task;

• we empirically show that the proposed variational learning
with generative regularization works well on all bench-
mark datasets we consider.

2. Related Work
Continual learning by regularization. There are a rich
body of methods solving catastrophic forgetting problem
by introducing different regularizations. EWC (Kirkpatrick
et al., 2017) aims to minimize the change of weights that

are important to previous tasks through the estimation of
diagonal empirical fisher information matrix. SI (Zenke
et al., 2017) proposes to alleviate catastrophic forgetting by
allowing individual synapse to estimate their importance
for solving learned tasks, then penalizing changes on the
important weights. IMM (Lee et al., 2017) trains individual
models on each task and then carries out a second stage of
training to combine them. VCL (Nguyen et al., 2018) takes
a Bayesian point of view to model a sequential learning
procedure. This line of research assumes a memoryless (i.e.,
no stored old-data) and fixed model (i.e., model architecture
cannot be adjusted during training) setup to study inherent
causes of catastrophic forgetting. Our work falls in this
line of research, but is derived in a principled way, and we
mainly compare our algorithm with state-of-the-art methods
in this category.

Continual learning by model adaption. Another class
of methods addresses the continual learning problem by
allowing the model to expand its capacity, while keeping
the parameters used to solve previous tasks fixed. PathNet
(Fernando et al., 2017) selects paths between predefined
modules, and tuning is allowed only when an unused module
is selected. Dynamically expandable networks (DEN) (Yoon
et al., 2018) selects whether to expand or duplicate layers
based on certain criteria for an incoming new task. Similarly,
Rusu et al. (2016) tries to leverage the strategies adopted in
progressive networks to heal forgetting. Following this line
of research, (Li et al., 2019) proposed to solve the continual
learning by explicitly taking into account continual structure
optimization via differentiable neural architecture search.
Our main goal is to study the catastrophic forgetting problem
given the constraint that the structure of underlying model
is fixed, while this category is out of our consideration.

Memory-based approaches and generative models. Pre-
vious works also try to alleviate catastrophic forgetting by
introducing memory systems which store previous data and
replay the stored old examples with the new data (Farquhar
& Gal, 2019; Li et al., 2018; Lopez-Paz & Ranzato, 2017;
Rebuffi et al., 2017; Robins, 1995). Specifically, these ap-
proaches require to keep either a coreset data or a generative
model to replay previous tasks in order to leverage the dis-
tilled knowledge from previous tasks (Castro et al., 2018;
Hou et al., 2018; Javed & Shafait, 2018; Li & Hoiem, 2017;
Rebuffi et al., 2017; Shin et al., 2017; Wu et al., 2019). In
practice, these methods alleviate the forgetting phenomena
if enough old-data recorded, but it will increase the data
usage Since our method is related to generative models, we
will also compare to one of the representative algorithms,
variational generative replay (VGR) (Farquhar & Gal, 2019).

Energy-based model. Our method is partly based on ap-
plying energy-based models (EBMs). We refer readers to
(LeCun et al., 2006) for a more comprehensive review. The



Overcoming Catastrophic Forgetting by Bayesian Generative Regularization

primary difficulty in training EBMs comes from estimation
of the partition function. Our work follows the derivation
in (Dai et al., 2019). We notice that some concurrent works
have also pointed out the importance of generative capability
in the training process (Du & Mordatch, 2019; Grathwohl
et al., 2019), the motivation behind these works differ from
us and their focus is not in overcoming catastrophic for-
getting. Furthermore, empirical results showed that using
only EBMs could not achieve the best performance. The
proposed integration of Bayesian framework and generative
capability significantly outperforms EBM alone.

3. Methods
In this section, we first clarify the problem setting in Sec-
tion 3.1. Then, we analyze the drawback of the posterior ap-
proximation used in the original VCL (Nguyen et al., 2018),
which motivates the generalization regularizer in Section 3.2.
After providing a brief introduction to EBM in Section 3.3,
we design the generation-regularized Bayesian EBM to com-
bat catastrophic forgetting in Section 3.4.

3.1. Problem Statement

A given classification model M , with a set of parame-
ters denoted as θ, consists of parameters shared across
all tasks θS and parameters dedicated to specific tasks θt.
Sequential tasks are denoted as D1, D2, . . . , DT , where
each Dt = (Xt, Yt) defines a classification task with ob-
servations Xt and labels Yt. In the canonical setup (Kirk-
patrick et al., 2017; Nguyen et al., 2018), for each task t,
only one dataset Dt can be used and all previous datasets
D1, . . . , Dt−1 cannot be accessed. The goal of our work is
to achieve good classification accuracy on each task after
observing all T tasks. In addition, we do not allow the algo-
rithm to change the pre-defined structure of the model M
or introduce additional parameters in shared networks. An
illustration of the problem formulation is shown in Figure 1.

3.2. Motivations

We first explain why Bayesian method is a good candidate
to resolve the forgetting problem, and then point out what
lacks in existing literature, which motives the EBM view
with generalization regularization.

Following (Nguyen et al., 2018), we assume some prior
distribution of model parameters p0(θ) (e.g., p0(θ) follows
normal distribution). According to Bayes’ rule, the posterior
distribution after observing T datasets can be written as:

p(θ|D1:T ) ∝ p(θ)
T∏
t=1

p(Dt|θ) ∝
(
p(θ)

T−1∏
t=1

p(Dt|θ)
)
p(DT |θ)

=

(
p(θ)p(D1:T−1|θ)

)
p(DT |θ)

∝ p(θ|D1:T−1)p(DT |θ).

Therefore, we can see that if we have a good posterior
approximation of previous tasks p(θ|D1:T−1), by Bayesian
approach we can combine p(θ|D1:T−1) and likelihood of
the current task p(DT |θ) to obtain the posterior of model
parameters p(θ|D1:T ) that work well for all tasks. The
above decomposition paves a natural way for Bayesian
method to handle the continual learning setup. In general
the posterior is intractable, however, we can approximate
the true posterior p(θ|D1:t) of each task t by KL-divergence
via variational inference, such that ∀t = 1, 2, . . . , T ,

qt(θ) = argmin
q∈Q

KL
(
q(θ)‖ 1

Zt
qt−1(θ)p(Dt|θ)

)
,

where qt(θ) and qt−1(θ) are the approximated posterior up
to timestamp t − 1 and t, Q is a predefined approximate
posteriors set and Zt is a normalization constant which
needs not to be computed. We then apply variational method
to estimate the lower bound of P (y|θ, x) and arrive the
following training loss for each task t:∑Bt

n=1 Eθ∼qt(θ)[− log p(yt,n|θ, xt,n)] +KL
(
qt(θ)‖qt−1(θ)

)
, (1)

where Bt denotes the dataset size of task t. One can
parametrize p(yt,n|θ, xt,n) with Gaussian distribution and
softmax upon the output of neural network, for regres-
sion and classification, respectively. The parameter of
posterior can be trained end-to-end via reparametrization
trick (Kingma & Welling, 2014).

Despite that Bayesian method looks promising, we need to
point out one important deficit in VCL (Nguyen et al., 2018).
VCL assumes the shared model parameters θS are indepen-
dent of the individual head network θt and thus the posterior
function p(θ|D1:t) of the task t could be decomposed into:

p(θ|D1:t) = p(θt|D1:t)p(θS |D1:t), (2)

where θ = {θS , θt}. VCL then applies Bayeisan approach
on approximating p(θS |D1:t) and fix θt after training each
task t. However, the independence assumption between θt
and θS is not true in general, especially in neural network
where the head parameter θt highly depends on the shared
layers. The correct factorization of posterior function should
be

p(θ|D1:t) = p(θt|D1:t; θS)p(θS |D1:t), (3)

where the dependence between θS and θt exists. Thus, in
order to correctly apply Bayesian framework, we may use a
sufficient feature for θS such that the equation (2) becomes
a valid reduction.

We provide a sufficient condition under which the decompo-
sition (2) is valid.

Proposition 1. If the causal joint distribution is

p(θt, θS , D1:t) = p(θS)p(D1:tθS)p(θt|D1:t),
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we have the posterior

q(θS , θt|D1:t) = p(θS |D1:t)p(θt|D1:t),

therefore, the decomposition (2) becomes valid.

Proof. The conclusion can be verified straightforwardly.

q(θS , θt|D1:t) =
p(θS)p(D1:t|θS)p(θt|D1:t)

p(D1:t)

= p(θS |D1:t)p(θt|D1:t),

from which we obtain the conditional independence prop-
erty θS ⊥ θt|D1:t.

The condition in Proposition 1 inspires us the generative
requirement on the intermediate layer of the model (i.e.,
θS) to revalid the decomposition (2). Bringing generative
power ((i.e., p(D1:tθS)) into the play could exploit varia-
tional Bayesian inference overcome forgetting better.

The remaining question is

how do we equip the underlying model with generative
power without adding more number of parameters?

We answer this question by resorting to the Energy-based
model (EBM). Essentially, the neural network p(y|x, θ) can
be understood as a EBM, which automatically has the dis-
criminative and generative ability, although in most of the
training for supervised tasks, the generative ability is just
simply ignored. From this perspective, we will comple-
ment the existing discriminative loss in the training with
an additional generative loss term to ensure the causal con-
dition in (1), and eventually guarantee the decomposition
in Bayesian inference is valid. Therefore, it totally release
the power of Bayesian inference to overcome catastrophic
forgetting. In the following sections, we illustrate how gen-
erative power of EBM can be fit into the Bayesian method.

3.3. Energy-based Model

For any given discriminative model fθ(x) (e.g., deep neural
networks for classification tasks) parameterized by θ as

p(y|x) = exp(y>fθ(x))

Zx

with Zx(θ) =
∑
y∈Y exp(y

>fθ(x)), it can be view as EBM
with energy function y>fθ(x). Then, obviously, by redefine
the partition function, we obtain the joint distribution with
generative ability:

pθ(x, y) =
exp(yT fθ(x))

Z(θ)
, (4)

where Z(θ) =
∑
y

∫
exp(yT fθ(x))dx. In this work, fθ(·)

is a neural network parameterized by θ. We can train the
joint EBM by maximum likelihood estimation:

Figure 2. Illustration of the proposed method.

Algorithm 1 Gibbs-Langevin Dynamic Sampling

Input: Buffer B, storing previous sampled data
Output: Sampled data xS , yS and buffer B
x0 ∼ B
for s = 1 to S do
ys ∼ p(y|xs)
xs = xs−1 +

1
2ηs∇x[y

T
s f(xs−1)] + ε,

ε ∼ N(0, ηs)
ηs =

1
s

end for
Add xS , yS into B.
Return xS , yS , B.

max
θ
pθ(x, y) = max

θ
log pθ(x, y)

= max
θ
yT fθ(x)− logZ(θ). (5)

However, directly solving MLE of general EBMs is in-
tractable due to the log-partition function logZ(θ). To al-
leviate the computation, Contrastive Divergence (CD) is
proposed in (Hinton, 2002). CD estimates the gradient of
the MLE of EBM as:

∇θ log pθ(x, y) = ED
[
yT∇θfθ(x)

]
− Epθ(x,y)

[
yT∇θfθ(x)

]
,

(6)
where pθ(x, y) denotes the underlying distribution from
EBM. The second term Epθ(x,y)

[
yT∇θfθ(x)

]
can be cal-

culated as firstly sample (batch of) data xt, yt by using
Langevin dynamic sampling shown in Algorithm 1, and
then calculate the yTt f(xt) to stochastically get the esti-
mated value of Epθ(x,y)

[
yT∇θfθ(x)

]
.

3.4. Bayesian Inference as Learning with Generative
Regularization

With the formulation of generative loss, instead of inter-
preting p(Dt|θ) as a discriminative model p(yt|xt; θ) in eq



Overcoming Catastrophic Forgetting by Bayesian Generative Regularization

Algorithm 2 Algorithm of Bayesian Generative Regulariza-
tion (BGR) at task t.

Input: Dataset of task t Dt, Posterior distribution of
previous tasks qt−1(θ), Number of training epochs E and
learning rate β
Output: Posterior distribution qt(θ) of learned model
qt(θ) = qt−1(θ)
for epoch = 1 to E do
xb, yb ∼ Dt

θ ∼ qt(θ)
Generate sample xt, yt by Algorithm 1
Calculate gradient∇θL(θ; pθ) via Theorem 2.
qt(θ) = qt(θ) - β∇θL(θ; pθ)

end for
Return qt(θ)

(1), we have p(Dt|θ) to be a generative model as pθ(x, y).
Now, instead of lower-bounding P (y|θ, x), we estimate
the lower bound of P (x, y, θ) and the core training objec-
tive of task t in variational method changes from eq (1) into :

min
qt∈Q

Eqt,Dt
[
− log pθ(x, y) +KL

(
qt(θ|D1:t)‖qt−1(θ|D1:t−1)

)]
,

where Q is the functional space of posterior distribution. For
simplicity, we follow the literature to assume Q to represent
mean-field distribution, and we generate a model parameter
θ by sampling it from qt. Recall that p(x, y) = p(y|x)p(x),
thus we can rewrite the objective as

min
qt∈Q

Eqt,Dt
[
− (1− λ) log pθ(y, x)− λ log pθ(y|x)

− λ log pθ(x) +KL(qt(θ|D1:t)‖qt−1(θ|D1:t−1))
]
, (7)

where the log pθ(y|x) can be understood as the common
discriminative loss, while both log pθ(x) and log pθ(x, y)
can be understood as generative regularizations that match
the empirical joint distribution and marginal distribution
simultaneously. Then, we apply Contrastive Divergence to
optimize (7), which providing the estimation of gradient of
pθ(x, y). In fact, new objective is also related to contrastive
loss (Chen et al., 2020; Dai et al., 2019), where we use
the synthesis samples as negative samples. Here we give a
derivation of unbiased gradient estimator of log pθ(x) in the
following theorem.

Theorem 1. Given a discriminative model fθ(x), the unbi-
ased gradient estimator of the corresponding Energy-based
model term log pθ(x) is given by the following estimator:

∇θ log pθ(x) = Epθ(y|x)[y
T∇θfθ(x)]− Epθ(x,y)[y

T∇θfθ(x)].

Proof. The proof is postponed to Appendix A.

Based on this theorem, we could obtain the derivative of the

objective in eq (7) by using eq (6) and Theorem 1, and we
summarize it in the following theorem.

Theorem 2. The estimation of gradient of loss used in train-
ing the proposed method eq (7) is given by

∇θL(θ; pθ) ,
1

λ
∇θKL(qt(θ|D1:t)‖qt−1(θ|D1:t−1))

−∇θ log pθ(y|x)

+
1

λ
(Epθ(x,y)

[
yT∇θfθ(x)

]
− EDt [yT∇θfθ(x)]).

Proof. The proof is postponed to Appendix B.

The overall illustration of losses used in this work is summa-
rized in Figure 2. The first term of the gradient estimation
corresponds to the weighted KL-divergence between poste-
rior approximation of task t and t− 1. The second term is
the common NLL loss used in training deep neural networks.
The calculation of these two terms corresponds to the gra-
dient of forward neural network computation, and thus it
could be obtained by back-propagation of underlying model
fθ. The rest two terms correspond to the weighted genera-
tive capability. In this paper, we treat the generative term as
a regularization term. λ represents the importance balance
of the generative regularization and discriminative NLL loss.
We named the proposed method Bayesian Generative Reg-
ularization, and the overall algorithm is summarized in
Algorithm 2.

4. Experiments
4.1. Datasets

We evaluate the proposed method on four datasets.

Permuted-MNIST Permuted-MNIST is a very popular
benchmark dataset in the continual learning literature. The
dataset received at each time step Dt consists of labeled
MNIST images whose pixels have undergone a fixed ran-
dom permutation.

Split-MNIST This experiment was used by (Zenke et al.,
2017). Five binary classification tasks from the MNIST
dataset arrive in sequence: 0/1, 2/3, 4/5, 6/7, and 8/9.

Permuted-MNIST: The dataset received at each time step
Dt consists of labeled MNIST images whose pixels have
undergone a fixed random permutation. Split-MNIST: This
experiment was used by (Zenke et al., 2017). Five binary
classification tasks from the MNIST dataset arrive in se-
quence: 0/1, 2/3, 4/5, 6/7, and 8/9.

Fashion-MNIST Fashion-MNIST (Xiao et al., 2017), sim-
ilar to MNIST dataset, consists of a training set of 60,000
examples and a test set of 10,000 examples. Each example
is a 28 x 28 grayscale image, associated with a label from
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10 classes. This dataset represents more realistic features of
real-world images and thus becomes an increasingly popu-
lar benchmark. For this task, we follow the Split-MNIST
setup to split the classes into sequence: 0/1 (T-shirt/Trouser),
2/3 (Pullover/Dress), 4/5 (Coat/Sandal), 6/7 (Shirt/Sneaker),
and 8/9 (Bag/Ankle boot).

CUB To further validate the proposed method could work
on real-world color images, we perform experiments on
Caltech-UCSD Birds (CUB) dataset. CUB is an image
dataset with photos of 200 bird species. We select top 100
classes with more training images and then split thsese 100
classes into 10 continual learning tasks randomly. Each
task consists of 5 binary classification in order. Detailed
processing of the dataset is described in the supplementary.

4.2. Baseline Methods

We compare our method to the following baseline methods.

• SGD: simply trains each task in an incremental setup
without any regularization. It serves as the bottom line of
all the methods.

• All-data: trains the tasks jointly assuming all datasets
are available. At each step, a random dataset is sampled
and then a batch of data is sampled from the dataset. It
serves as the upper bound and indicates the difficulty of
the classification task.

• EWC (Kirkpatrick et al., 2017): builds the importance
estimation on top of diagonal Laplace propagation by
calculating the diagonal of empirical Fisher information.

• VCL (Nguyen et al., 2018; Swaroop et al., 2019): con-
ducts variational inference from Bayesian point of view
of continual learning. VCL is reported as the most com-
petitive method under our problem setup. In particular,
we implement the improved version of VCL (Swaroop
et al., 2019).

• VGR (Farquhar & Gal, 2019): extends VCL by augment-
ing a GAN generative model to record the replay data.

Detailed processing of the dataset, implementation of the
baseline methods and hyperparameters of the proposed
method are described in the supplementary.

4.3. Results and Analysis

The evaluation metric used is average classification accu-
racy over all observed tasks. We first summarize accuracy
of each method after observing all tasks in Table 1. Our
proposed method is named Bayesian Generative Regular-
ization (BGR). We notice that “All-data” achieves high
accuracy for almost all datasets. Accuracy on CUB drops a

Permuted Split Fashion CUB
All-data 99.3 99.1 99.3 88.3

SGD 37 90 74.6 65.2
EWC 87.5 97.4 82.2 67.2
VCL 92.3 98.2 76.9 67.4
VGR 70.5 97.7 86.2 76.8
BGR 92.7 98.2 97.2 78.8

Table 1. Summarization of overall performance on continual learning
tasks. Results shown in the table are average classification accuracy
(in %) of each task.

Fashion CUB
SGD 74.6 65.2

All-data 99.3 91.0
GEN 87.9 74.0

GEN-L2 90.9 72.8
VCL 76.9 67.4
BGR 97.2 78.8

Table 2. Ablation study of overall performance on Fashion-MNIST
and CUB datasets. Results shown in the table are average classifica-
tion accuracy (in %) of each task.

bit as there are certain species of birds which are difficult to
classify it correctly. This shows that all classification tasks
are not difficult when all data are provided. The challenges
are indeed faced when continual learning setup comes in
and causes forgetting. In the table, we see that BGR outper-
forms baselines in all tasks. In particular, the improvement
is significant on Fashion-MNIST and CUB dataset which
contain more real-world alike objects. BGR increase about
15% accuracy in Fashion-MNIST and 10% in CUB datasets.

In addition to accuracy after observing all tasks, we are
also interested in individual performance after observing
each new incoming task. Average classification accuracy of
each time step of Permuted-MNIST and Split-MNIST are
shown in Figure 3 and Figure 4. We can observe that despite
the performance of SGD-only training drops abruptly, all
other methods performs relatively steady over all time steps,
and BGR stands out in the later time steps. For real-world
objects as Fashion-MNIST and CUB, results are shown in
Figure 5 and Figure 6. These two tasks contain more diffi-
cult classification tasks and thus it’s more challenging when
posed as continual learning setup. The difficulty of each
task might be very different hence the accuracy fluctuates.
Consequently, the curve won’t be as smooth as previous two
datasets. Nevertheless, we again observe that BGR has a
relatively steady performance over the baseline methods.

We also want to point out that since BGR contains generative
capability, indeed we could sample images from the trained
model. However, our main focus is not generative model but
overcoming forgetting, so the generated images might not
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Figure 3. Detailed Classification Results of Permuted-MNIST.

Figure 4. Detailed Classification Results of Split-MNIST.

be realistic as the state-of-the-art generative models. The
generative power used rather as a regularization to make the
model robust to continual learning setup. We have attached
some examples of generated images of MNIST and Fashion-
MNISt dataset in the supplementary.

4.4. Ablation Study

Despite we have validated the performance of the proposed
method, we are not sure if the gain comes from genera-
tive regularization, Bayesian method or indeed the better
estimation of the posterior by combining two approaches.
Therefore, we conduct ablation analysis on Fashion-MNIST
and CUB to verify the importance of each component. No-
tice that BGR without the generative regularization would
simply become the VCL method. To test the generative
component without Bayesian framework, we will remove
model parameter sampling procedure and KL-divergence
term. This leads to normal training of the classifier with

Figure 5. Detailed Classification Results of Fashion-MNIST.

NLL loss plus the generative loss from EBM. We denote this
setup as GEN. We also try to apply the GEN with L2 regu-
larization which resembles the KL divergence term in our
formulation. We denote such method as GEN-L2. Results
of all the methods are summarized in Table 2.

From Table 2, we could observe that generative term itself
is very useful to overcome the catastrophic forgetting. Com-
pared to the performance of VCL, GEN could achieve more
than 5% performance gain on CUB, and more than 10%
on Fashion-MNIST. Generative capability indeed provides
a more robust model in continual learning setup and this
validates our initial intuition that knowing the complete for-
mulation of the object would make model perform better.
On the other hand, results show that adding L2 regulariza-
tion on top of generative term is not necessarily helpful.
Even when it’s effective, the performance gain is rather
limited.

However, we also notice that the generative term alone can-
not reach a performance comparable to the proposed method.
Furthermore, we could observe the synergy effect that the
sum of the performance gain from VCL and GEN together
could not reach the performance of BGR. This implies that
in BGR, Bayesian framework and generative term are not
working independently. Generative capability implicitly
helps to capture the relationship between θt and θS better
with more diverse feature. So when two approaches are com-
bined, we could get an approximation of posterior p(θ|D1:t)
with more information on the object without introducing
more model or data complexity.

4.5. Comparison to Generative Model

It is also important to compare BGR and VGR, which is
a representative algorithm using generative models, in de-
tails since both are generative models. Results are shown in
Figure 7. The performance on CUB and Split-MNIST are
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Figure 6. Detailed Classification Results of CUB.

Figure 7. Detailed Comparison of VGR on Split-MNIST.

similar. The biggest difference is that for VGR to work, it
needs to use GAN with much larer parameters. BGR uses
only 220k parameters on Split-MNIST and if we choose
GAN in VGR with similar size, the perform drops to 88
(VGR-SMALL). Also notice that in VGR paper (Farquhar &
Gal, 2019), authors continue to use classifier from previous
task. If we re-initiate the classifier every time a new task
comes in and train the model with replayed data, then the
performance drops to 66 (VGR-GAN-ONLY). This again
shows that generative capability works better when com-
bined with discriminative classifier as in BGR. On the other
hand, the benefit of using separate generative model as in
VGR is that the training speed is fast. BGR takes 3097 sec-
onds to finish and VGR only takes 564 seconds. BGR could
use smaller model size but it takes longer training time as
monte carlo sampling is time-consuming.

(a) Top 20% salient points of models trained with
SGD. Salient points concentrate on most discrim-
inative part of the digits and model suffers from
catastrophic forgetting. Accuracy drops from
99.7% to 54.2% after training on another task.

(b) Top 20% salient points of models trained with
the proposed method. EBM provides a generative
capability so the salient points scatter equally over
the whole stroke of digits. Accuracy drops only
from 99.7% to 95.0% after training on another
task. This shows the importance of generative
term in overcoming catastrophic forgetting.

Figure 8. Illustration of importance of learning diverse features by
proposed generative term in the model.

4.6. Comparison to Memory-based Methods

Our work focused on memory-less setup to study how gener-
ative capability can empower the model to overcome catas-
trophic forgetting. However, many large-scale catastrophic
forgetting problems are solved by memory-based solutions.
Memory-based method allows the algorithm store some
data from previous tasks and re-use the data to fine-tune the
model in the later stages. It’s thus hard to directly compare
BGR with memory-based methods since the underlying as-
sumptions are different. However, we provide some results
on MNIST and FashionMNIST for the completeness, and
this also gives reader a change to observe the trade-off be-
tween memory and memory-less methods. We run the code
of GDumb method (Prabhu et al., 2020)1, and found out
that indeed it achieves better MNIST results (98.5) over
us (98.2) with memory k = 5000. However, it does not
perform equivalently well on FashionMNIST. It requires
memory k = 7500 to achieve similar performance (97.2)
whereas BGR requires no extra storage.

1https://github.com/drimpossible/GDumb
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4.7. Extension to Class Incremental Learning Setup

With the advance of catastrophic forgetting research, many
other learning scenarios are introduced. Class incremental
Learning (Prabhu et al., 2020; Farquhar & Gal, 2019), a
popular setup, consider a combination of single-head and
multi-head setup. It’s a single-head setup but each time
we will only be given a subset of classes as in multi-head
setup. In (Farquhar & Gal, 2019), authors pointed out that
this task is challenging for methods without memory sys-
tems. Indeed, directly applying the proposed method cannot
yield a good result. However, in this section we show that
the proposed BGR can be combined with memory-based
methods to achieve better results. Specifically, we con-
sider a combination of BGR with an meta-learning method
iTAML (Rajasegaran et al., 2020). Under the original learn-
ing scheme in iTAML, we additionally add the generative
regularization term into the training objective, and observe
that on splitMNIST dataset, the performance improves from
97.8 (iTAML) to 98.4 (iTAML+Ours), which shows that
BGR can indeed be used as a regularization on top of state-
of-the-art memory-based methods. Further study of how the
proposed BGR could be combined with other methods is an
interesting future direction.

4.8. Qualitative Analysis: Generative Capability
Learns Diverse Features

Since we add the generative regularization in the objective
function, we are interested in what types of features we
learn in the proposed method. In order to generate an object,
generative model should not only recognize certain parts
of the object but also capture most variations of it. Thus,
we hypothesize that generative capability learn a more di-
verse feature instead of concentrated discriminative features.
Such holistic feature capture should prevent model from
focusing on only part of object and alleviate the catastrophic
forgetting. To get a qualitative assessment, we performed
the Integrated Gradients method (Sundararajan et al., 2017)
to investigate which pixels of the image contribute most to
the output of the model2. The salient points are marked
with red dots. These points represent the part of the object
wit strongest response to the feature extraction process (i.e.,
activations in the neural network).

As shown in Figure 8a, instead of understanding full stroke
of the drawing, training the pair discriminatively with NLL
loss makes the model focusing on certain part of the under-
lying object. Specifically, salient points of the digit 7 are
spread mostly on top horizontal stroke, and salient points
of the digit 9 centered on lower left curved stroke. Admit-
tedly, these salient points mark the most critical difference
between the shape of these two digits so discriminative

2https://github.com/chihkuanyeh/saliency_evaluation

models can exploit such informative feature to succeed in
classification task. However, since not many features are
extracted in the first task, when the model moves to the
next task, the discriminative model might focus on a very
different set of features such that minor adjustment of model
parameters will cause the desired feature extraction in task
1 lost. On the other hand, as shown in the in Figure 8b,
salient points of BGR with generative capability will be be
equally distributed to different parts of the stroke. And the
accuracy drops only from 99.7% to 95.0% after training on
another task. This shows the importance of generative term
in overcoming catastrophic forgetting.

5. Conclusions
In this paper, we use Energy-based Model to provide the
generative loss as a regularization term in order to over-
come the catastrophic forgetting. Energy-based model with
hybrid monte carlo sampling process can equip the under-
lying model with the generative capability. Experimental
results show that when generative capability is combined
with Bayesian inference framework, it can alleviate catas-
trophic forgetting significantly without modifying underly-
ing model architecture. The proposed BGR outperforms
state-of-the-art method on Fashion-MNIST dataset about
15% accuracy and CUB dataset about 10%.
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