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Abstract
With the widespread deployment of large-scale
prediction systems in high-stakes domains, e.g.,
face recognition, criminal justice, etc., disparity
in prediction accuracy between different demo-
graphic subgroups has called for fundamental un-
derstanding on the source of such disparity and
algorithmic intervention to mitigate it. In this pa-
per, we study the accuracy disparity problem in
regression. To begin with, we first propose an
error decomposition theorem, which decomposes
the accuracy disparity into the distance between
marginal label distributions and the distance be-
tween conditional representations, to help explain
why such accuracy disparity appears in practice.
Motivated by this error decomposition and the
general idea of distribution alignment with statis-
tical distances, we then propose an algorithm to re-
duce this disparity, and analyze its game-theoretic
optima of the proposed objective functions. To
corroborate our theoretical findings, we also con-
duct experiments on five benchmark datasets. The
experimental results suggest that our proposed al-
gorithms can effectively mitigate accuracy dispar-
ity while maintaining the predictive power of the
regression models.

1. Introduction
Recent progress in machine learning has led to its
widespread use in many high-stakes domains, such as crim-
inal justice, healthcare, student loan approval, and hiring.
Meanwhile, it has also been widely observed that accuracy
disparity could occur inadvertently under various scenar-
ios in practice (Barocas and Selbst, 2016). For example,
errors are inclined to occur for individuals of certain un-
derrepresented demographic groups (Kim, 2016). In other
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cases, Buolamwini and Gebru (2018) showed that notable
accuracy disparity exists across different racial and gender
demographic subgroups on several real-world image classifi-
cation systems. Moreover, Bagdasaryan et al. (2019) found
out that a differentially private model even exacerbates such
accuracy disparity. Such accuracy disparity across demo-
graphic subgroups not only raises concerns in high-stake
applications but also can be utilized by malicious parties to
cause information leakage (Yaghini et al., 2019; Zhao et al.,
2020).

Despite the ample needs of accuracy parity, most prior work
limits its scope to studying the problem in binary classi-
fication settings (Hardt et al., 2016; Zafar et al., 2017b;
Zhao and Gordon, 2019; Jiang et al., 2019). Compared
to the accuracy disparity problem in classification settings,
accuracy disparity1 in regression is a more challenging but
less studied problem, due to the fact that many existing al-
gorithmic techniques designed for classification cannot be
extended in a straightforward way when the target variable
is continuous (Zhao et al., 2019). In a seminal work, Chen
et al. (2018) analyzed the impact of data collection on ac-
curacy disparity in general learning models. They provided
a descriptive analysis of such parity gaps and advocated
for collecting more training examples and introducing more
predictive variables. While such a suggestion is feasible in
applications where data collection and labeling is cheap, it
is not applicable in domains where it is time-consuming,
expensive, or even infeasible to collect more data, e.g., in
autonomous driving, education, etc.

Our Contributions In this paper, we provide a prescrip-
tive analysis of accuracy disparity and aim at providing al-
gorithmic interventions to reduce the disparity gap between
different demographic subgroups in the regression setting.
To start with, we first formally characterize why accuracy
disparity appears in regression problems by depicting the
feasible region of the underlying group-wise errors. Next,
we derive an error decomposition theorem that decomposes
the accuracy disparity into the distance between marginal
label distributions and the distance between conditional rep-

1Technically, accuracy disparity refers to (squared) error dif-
ference in our paper. We would like to use accuracy disparity
throughout our paper since it is a more commonly used term in
fairness problems.
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Figure 1: Geometric interpretation of accuracy disparity
in regression. The green area corresponds to the feasible
region of ErrD0 and ErrD1 under the hypothesis class H.
For any optimal hypothesis h which is solely designed to
minimize the overall error, the best the hypothesis h can do
is to intersect with one of the two bottom vertices of the
green area, leading to accuracy disparity if the width of the
feasible region is nonzero. See section 3.1 for more details.

resentations. We also provide a lower bound on the joint
error across groups. Based on these results, we illustrate
why regression models aiming to minimize the global loss
will inevitably lead to accuracy disparity if the marginal la-
bel distributions or conditional representations differ across
groups. See Figure 1 for illustration.

Motivated by the error decomposition theorem, we propose
two algorithms to reduce accuracy disparity via joint distri-
bution alignment with the total variation distance and the
Wasserstein distance, respectively. Furthermore, we ana-
lyze the game-theoretic optima of the objective functions
and illustrate the principle of our algorithms from a game-
theoretic perspective. To corroborate the effectiveness of our
proposed algorithms in reducing accuracy disparity, we con-
duct experiments on five benchmark datasets. Experimental
results suggest that our proposed algorithms help to mitigate
accuracy disparity while maintaining the predictive power
of the regression models. We believe our theoretical results
contribute to the understanding of why accuracy disparity
occurs in machine learning models, and the proposed algo-
rithms provides an alternative for intervention in real-world
scenarios where accuracy parity is desired but collecting
more data/features is time-consuming or infeasible.

2. Preliminaries
Notation We use X ✓ Rd and Y ✓ R to denote the
input and output space. We use X and Y to denote random
variables which take values in X and Y , respectively. Lower
case letters x and y denote the instantiation of X and Y .
We use H(X) to denote the Shannon entropy of random

variable X , H(X | Y ) to denote the conditional entropy of
X given Y , and I(X; Y ) to denote the mutual information
between X and Y . To simplify the presentation, we use
A 2 {0, 1} as the sensitive attribute, e.g., gender, race, etc.
Let H be the hypothesis class of regression models. In other
words, for h 2 H, h : X ! Y is a predictor. Note that
even if the predictor does not explicitly take the sensitive
attribute A as an input variable, the prediction can still be
biased due to the correlations with other input variables.
In this work we study the stochastic setting where there
is a joint distribution D over X, Y and A from which the
data are sampled. For a 2 {0, 1} and y 2 R, we use Da

to denote the conditional distribution of D given A = a

and D
y to denote the conditional distribution of D given

Y = y. For an event E, D(E) denotes the probability
of E under D. Given a feature transformation function
g : X ! Z that maps instances from the input space X

to feature space Z , we define g]D := D � g
�1 to be the

induced (pushforward) distribution of D under g, i.e., for
any event E

0
✓ Z , g]D(E0) := D({x 2 X | g(x) 2 E

0
}).

We define (·)+ to be max{·, 0}.

For regression problems, given a joint distribution D, the
error of a predictor h under D is defined as ErrD(h) :=
ED[(Y �h(X))2]. To make the notation more compact, we
may drop the subscript D when it is clear from the context.
Furthermore, we also use MSED(bY , Y ) to denote the mean
squared loss between the predicted variable bY = h(X) and
the true label Y over the joint distribution D. Similarly,
we also use CED(A k bA) to denote the cross-entropy loss
between the predicted variable bA and the true label A over
the joint distribution D. Throughout the paper, we make the
following standard boundedness assumption:

Assumption 2.1. There exists M > 0, such that for any
hypothesis H 3 h : X ! Y , khk1  M and |Y |  M .

Problem Setup Our goal is to learn a regression model
that is fair in the sense that the errors of the regressor are
approximately equal across the groups given by the sensi-
tive attribute A. We assume that the sensitive attribute A is
only available to the learner during the training phase and
is not visible during the inference phase. We would like
to point out that there are many other different and impor-
tant definitions of fairness (Narayanan, 2018) even in the
sub-category of group fairness, and our discussion is by no
means comprehensive. For example, two frequently used
definitions of fairness in the literature are the so-called statis-
tical parity (Dwork et al., 2012) and equalized odds (Hardt
et al., 2016). Nevertheless, throughout this paper we mainly
focus accuracy parity as our fairness notion, due to the fact
that machine learning systems have been shown to exhibit
substantial accuracy disparities between different demo-
graphic subgroups (Barocas and Selbst, 2016; Kim, 2016;
Buolamwini and Gebru, 2018). This observation has already
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brought huge public attention (e.g., see New York Times,
The Verge, and Insurance Journal) and calls for machine
learning systems that (at least approximately) satisfy accu-
racy parity. For example, in a healthcare spending prediction
system, stakeholders do not want the prediction error gaps
to be too large among different demographic subgroups.
Formally, accuracy parity is defined as follows:

Definition 2.1. Given a joint distribution D, a predictor h

satisfies accuracy parity if ErrD0(h) = ErrD1(h).

In practice the exact equality of accuracy between two
groups is often hard to ensure, so we define error gap to
measure how well the model satisfies accuracy parity:

Definition 2.2. Given a joint distribution D, the error gap
of a hypothesis h is �Err(h) := |ErrD0(h) � ErrD1(h)|.

By definition, if a model satisfies accuracy parity, �Err(h)
will be zero. Next we introduce two distance metrics that
will be used in our theoretical analysis and algorithm design:

• Total variation distance: it measures the largest possible
difference between the probabilities that the two proba-
bility distributions can assign to the same event E. We
use dTV(P,Q) to denote the total variation:

dTV(P,Q) := sup
E

|P(E) �Q(E)|.

• Wasserstein distance: the Wasserstein distance between
two probability distributions is

W1(P,Q) = sup
f2{f :kfkL1}

����
Z

⌦
fdP �

Z

⌦
fdQ

���� ,

where kfkL is the Lipschitz semi-norm of a real-valued
function of f and ⌦ is the sample space over which two
probability distributions P and Q are defined. By the
Kantorovich-Rubinstein duality theorem (Villani, 2008),
we recover the primal form of the Wasserstein distance,
defined as

W1(P,Q) := inf
�2�(P,Q)

Z
d(X, Y ) d�(X, Y ),

where �(P,Q) denotes the collection of all couplings of
P and Q, and X and Y denote the random variables with
law P and Q respectively. Throughout this paper we use
L1 distance for d(·, ·), but extensions to other distances,
e.g., L2 distance, is straightforward.

3. Main Results
In this section, we first characterize why accuracy dispar-
ity arises in regression models. More specifically, given a
hypothesis h 2 H, we first prove a lower bound of joint
errors. Then, we provide an error decomposition theorem

which upper bounds the accuracy disparity and decompose
it into the distance between marginal label distributions and
the distance between conditional representations. Based on
these results, we give a geometric interpretation to visualize
the feasible region of ErrD0 and ErrD1 and illustrate how
error gap arises when learning a hypothesis h that minimizes
the global square error. Motivated by the error decomposi-
tion theorem, we propose two algorithms to reduce accuracy
disparity, connect the game-theoretic optima of the objective
functions in our algorithms with our theorems, and describe
the practical implementations of the algorithms. Due to the
space limit, we defer all the detailed proofs to the appendix.

3.1. Bounds on Conditional Errors and Accuracy
Disparity Gap

Before we provide the prescriptive analysis of the accuracy
disparity problem in regression, it is natural to ask whether
accuracy parity is achievable in the first place. Hence, we
first provide a sufficient condition to achieve accuracy parity
in regression.

Proposition 3.1. Assume both EDa [Y ] and EDa [Y 2] are
equivalent for any A = a, then using a constant predictor
ensures accuracy parity in regression.

Proposition 3.1 states if the first two order moments
of marginal label distributions are equal across different
groups, then using a constant predictor leads to accuracy
parity in regression. Proposition 3.1 is a relaxation of our
proposed error decomposition theorem (Theorem 3.2) which
requires the total variation distance between group-wise
marginal label distributions to be zero. However, the con-
dition rarely holds in real-world scenarios and it does not
provide any insights to algorithm design. Next we provide
more in-depth analysis to understand why accuracy disparity
appears in regression models and provide algorithm inter-
ventions to mitigate the problem.

When we learn a predictor, the prediction function induces
X

h
�! bY , where bY is the predicted target variable given

by hypothesis h. Hence for any distribution D0 (D1) of X ,
the predictor also induces a distribution h]D0 (h]D1) of bY .
Recall that the Wasserstein distance is metric, hence the
following chain of triangle inequalities holds:

W1(D0(Y ),D1(Y ))  W1(D0(Y ), h]D0) +W1(h]D0, h]D1)

+W1(h]D1,D1(Y ))

Intuitively, W1(Da(Y ), h]Da) measures the distance be-
tween the true marginal label distribution and the predicted
one when A = a. This distance is related to the prediction
error of function h conditioned on A = a:

Lemma 3.1. Let bY = h(X), then for a 2 {0, 1},
W1(Da(Y ), h]Da) 

p
ErrDa(h).
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Now we can get the following theorem that characterizes
the lower bound of joint error on different groups:

Theorem 3.1. Let bY = h(X) be the predicted variable,
then ErrD0(h) + ErrD1(h) �

1
2

⇥�
W1(D0(Y ),D1(Y )) �

W1(h]D0, h]D1)
�
+

⇤2.

In Theorem 3.1, we see that if the difference between
marginal label distributions across groups is large, then
statistical parity could potentially lead to a large joint error.
Moreover, Theorem 3.1 could be extended to give a lower
bound on the joint error incurred by h as well:

Corollary 3.1. Let bY = h(X) and ↵ = D(A =
0) 2 [0, 1], we have ErrD(h) �

1
2 min{↵, 1 � ↵} ·

⇥�
W1(D0(Y ),D1(Y )) � W1(h]D0, h]D1)

�
+

⇤2.

Now we upper bound the error gap. We first relate the
error gap to marginal label distributions and the predicted
distributions conditioned on Y = y:

Theorem 3.2. If Assumption 2.1 holds, then for 8h 2 H,
let bY = h(X), the following inequality holds:

�Err(h)  8M
2
dTV(D0(Y ),D1(Y ))

+ 3M min{ED0 [|EDy
0
[bY ] � EDy

1
[bY ]|],

ED1 [|EDy
0
[bY ] � EDy

1
[bY ]|]}.

Remark We see that the error gap is upper bounded by
two terms: the distance between marginal label distributions
and the discrepancy between conditional predicted distribu-
tions across groups. Given a dataset, the distance between
marginal label distributions is a constant since the marginal
label distributions are fixed. For the second term, if we
can minimize the discrepancy of the conditional predicted
distribution across groups, we then have a model that is free
of accuracy disparity when the marginal label distributions
are well aligned.

Geometric Interpretation By Theorem 3.1 and Theo-
rem 3.2, we can visually illustrate how accuracy disparity
arises given data distribution and the learned hypothesis that
aims to minimize the global square error. In Figure 1, given
the hypothesis class H, we use the line ErrD0 +ErrD1 = B

to denote the lower bound in Theorem 3.1 and the two lines
|ErrD0 � ErrD1 | = A to denote the upper bound in Theo-
rem 3.2. These three lines form a feasible region (the green
area) of ErrD0 and ErrD1 under the hypothesis class H. For
any optimal hypothesis h which is solely designed to mini-
mize the overall error, the best the hypothesis h can do is to
intersect with one of the two bottom vertices. For example,
the hypotheses (the red dotted line and the blue dotted line)
trying to minimize overall error intersect with the two ver-
tices of the region to achieve the smallest ErrD0-intercept
(ErrD1 -intercept), due to the imbalance between these two

groups. However, since these two vertices are not on the
diagonal of the feasible region, there is no guarantee that the
hypothesis can satisfy accuracy parity (ErrD0 = ErrD1),
unless we can shrink the width of green area to zero.

3.2. Algorithm Design

Inspired by Theorem 3.2, we can mitigate the error gap by
aligning the group distributions via minimizing the distance
of the conditional distributions across groups. However,
it is intractable to do so explicitly in regression problems
since Y can take infinite values on R. Next we will present
two algorithms to approximately solve the problem through
adversarial representation learning.

Given a Markov chain X
g

�! Z
h

�! bY , we are inter-
ested in learning group-invariant conditional representa-
tions so that the discrepancy between the induced condi-
tional distributions D

Y
0 (Z = g(X)) and D

Y
1 (Z = g(X))

is minimized. In this case, the second term of the upper
bound in Theorem 3.2 is minimized. However, it is in gen-
eral not feasible since Y is a continuous random variable.
Instead, we propose to learn the representations of Z to
minimize the discrepancy between the joint distributions
D0(Z = g(X), Y ) and D1(Z = g(X), Y ). Next, we will
show the distances between conditional predicted distribu-
tions DY

0 (Z = g(X)) and D
Y
1 (Z = g(X)) are minimized

when we minimize the joint distributions D0(Z = g(X), Y )
and D1(Z = g(X), Y ) in Theorem 3.3 and Theorem 3.4.

To proceed, we first consider using the total variation dis-
tance to measure the distance between two distributions. In
particular, we can choose to learn a binary discriminator
f : Z ⇥ Y �! bA that achieves minimum binary classi-
fication error on discriminating between points sampled
from two distributions. In practice, we use the cross-entropy
loss as a convex surrogate loss. Formally, we are going to
consider the following minimax game between g and f :

min
f2F

max
g

CED(A k f(g(X), Y )) (1)

Interestingly, for the above equation, the optimal feature
transformation g corresponds to the one that induces invari-
ant conditional feature distributions.
Theorem 3.3. Consider the minimax game in (1). The
equilibrium (g⇤, f⇤) of the game is attained when 1).
Z = g

⇤(X) is independent of A conditioned on Y ; 2).
f
⇤(Z, Y ) = D(A = 1 | Y, Z).

Since in the equilibrium of the game Z is independent of
A conditioned on Y , the optimal f

⇤(Z, Y ) could also be
equivalently written as f

⇤(Z, Y ) = D(A = 1 | Y ), i.e., the
only useful information for the discriminator in the equilib-
rium is through the external information Y . In Theorem 3.3,
the minimum cross-entropy loss that the discriminator (the
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equilibrium of the game) can achieve is H(A | Z, Y ) (see
Proposition A.1 in Appendix A). For any feature transform
g, by the basic property of conditional entropy, we have:

min
f2F

CED(A k f(g(X), Y )) = H(A | Z, Y )

= H(A | Y ) � I(A; Z | Y ).

We know that H(A | Y ) is a constant given the data dis-
tribution. The maximization of g in (1) is equivalent to
the minimization of minZ=g(X) I(A; Z | Y ), and it fol-
lows that the optimal strategy for the transformation g is
the one that induces conditionally invariant features, e.g.,
I(A; Z | Y ) = 0. Formally, we arrive at the following
minimax problem:

min
h,g

max
f2F

MSED(h(g(X)), Y )��·CED(A k f(g(X), Y ))

In the above formulation, the first term corresponds to the
minimization of prediction loss of the target task and the
second term is the loss incurred by the adversary f . As a
whole, the minimax optimization problem expresses a trade-
off (controlled by the hyper-parameter � > 0) between
accuracy and accuracy disparity through the representation
learning function g.

Wasserstein Variant Similarly, if we choose to align joint
distributions via minimizing Wasserstein distance, the fol-
lowing theorem holds.

Theorem 3.4. Let the optimal feature transformation g
⇤ :=

arg ming W1(D0(g(X), Y ),D1(g(X), Y )), then D
Y
0 (Z =

g
⇤(X)) = D

Y
1 (Z = g

⇤(X)) almost surely.

One notable advantage of using the Wasserstein distance
instead of the TV distance is that, the Wasserstein distance is
a continuous functional of both the feature map g as well as
the discriminator f (Arjovsky et al., 2017). Furthermore, if
both g and f are continuous functions of their corresponding
model parameters, which is the case for models we are
going to use in experiments, the objective function will
be continuous in both model parameters. This property
of the Wasserstein distance makes it more favorable from
an optimization perspective. Using the dual formulation,
equivalently, we can learn a Lipschitz function f : Z⇥Y !

R as a witness function:

min
h,g,Z0⇠g]D0,Z1⇠g]D1

max
f :kfkL1

MSED(h(g(X)), Y )

+ � ·
��f(Z0, Y ) � f(Z1, Y )

��.

Game-Theoretic Interpretation We provide a game-
theoretic interpretation of our algorithms in Figure 2 to
make our algorithms easier to follow.

X

Input Data

Transform
ed 

Representation
Z

Y
External 

Information

Â

Alice Bob

Figure 2: The game-theoretic illustration of our algorithms.
Bob’s goal is to guess the group membership A of each
feature Z sent by Alice with the corresponding labels Y

as the external information, while Alice’s goal is to find a
transformation from X to Z to confuse Bob.

As illustrated in Figure 2, consider Alice (encoder) and Bob
(discriminator) participate a two-player game: upon receiv-
ing a set of inputs X , Alice applies a transformation to the
inputs to generate the corresponding features Z and then
sends them to Bob. Besides the features sent by Alice, Bob
also has access to the external information Y , which corre-
sponds to the corresponding labels for the set of features
sent by Alice. Once having both the features Z and the
corresponding labels Y from external resources, Bob’s goal
is to guess the group membership A of each feature sent by
Alice, and to maximize his correctness as much as possible.
On the other hand, Alice’s goal is to compete with Bob,
i.e., to find a transformation to confuse Bob as much as she
can. Different from the traditional game without external
information, here due to the external information Y Bob
has access to, Alice cannot hope to fully fool Bob, since
Bob can gain some insights about the group membership
A of features from the external label information anyway.
Nevertheless, Theorem 3.3 and Theorem 3.4 both state that
when Bob uses a binary discriminator or a Wasstertein dis-
criminator to learn A, the best Alice could do is to to learn
a transformation g so that the transformed representation Z

is insensitive to the values of A conditioned on any values
of Y = y.

4. Experiments
Inspired by our theoretical results that decompose accuracy
disparity into the distance between marginal label distribu-
tions and the distance between conditional representations,
we propose two algorithms to mitigate it. In this section,
we conduct experiments to evaluate the effectiveness of our
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(a) Adult (b) COMPAS (c) Crime

(d) Law (e) Insurance

Figure 3: Overall results: R
2 regression scores and error gaps of different methods in five datasets. Our goal is to achieve

high R
2 scores with small error gap values (i.e., the most desirable points are located in the upper-left corner). Our proposed

methods achieve the best trade-offs in Adult, COMPAS, Crime and Insurance datasets.

proposed algorithms in reducing the accuracy disparity.

4.1. Experimental Setup

Datasets We conduct experiments on five benchmark
datasets: the Adult dataset (Dua and Graff, 2017), COMPAS
dataset (Dieterich et al., 2016), Communities and Crime
dataset (Dua and Graff, 2017), Law School dataset (Wight-
man and Ramsey, 1998) and Medical Insurance Cost
dataset (Lantz, 2013). All datasets contain binary sensi-
tive attributes (e.g., male/female, white/non-white). We
refer readers to Appendix B for detailed descriptions of the
datasets and the data pre-processing pipelines. Note that
although the Adult and COMPAS datasets are for binary
classification tasks, recent evidences (Que and Belkin, 2016;
Muthukumar et al., 2020; Hui and Belkin, 2021) suggest that
square loss achieves comparable performance with cross-
entropy loss and hinge loss. In this regard, we take them as
regression tasks with two distinctive ordinal values.

Methods We term the proposed algorithms CENET and
WASSERSTEINNET for our two proposed algorithms respec-
tively and implement them using Pytorch (Paszke et al.,
2019).2 To the best of our knowledge, no previous study
aims to minimize accuracy disparity in regression using rep-
resentation learning. However, there are other similar fair-
ness notions and mitigation techniques proposed for regres-
sion and we add them as our baselines: (1) Bounded group
loss (BGL) (Agarwal et al., 2019), which asks for the pre-
diction errors for any groups to remain below a predefined
level ✏; (2) Coefficient of determination (COD) (Komiyama
et al., 2018), which asks for the coefficient of determina-
tion between the sensitive attributes and the predictions to
remain below a predefined level ✏.

For each dataset, we perform controlled experiments by
2Our code is publicly available at:

https://github.com/JFChi/Understanding-and
-Mitigating-Accuracy-Disparity-in-Regressi
on

https://github.com/JFChi/Understanding-and-Mitigating-Accuracy-Disparity-in-Regression
https://github.com/JFChi/Understanding-and-Mitigating-Accuracy-Disparity-in-Regression
https://github.com/JFChi/Understanding-and-Mitigating-Accuracy-Disparity-in-Regression
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(a) Adult (b) COMPAS (c) Crime

(d) Law (e) Insurance

Figure 4: R
2 regression scores and error gaps when � changes in CENET and WASSERSTEINNET. The general trend is

that with the increase of �, the error gap values and R
2 scores gradually decrease, except the cases where � increases in

CENET in Adult, Crime and Insurance dataset. The exceptions are caused by the instability of the training processes of
CENET (Arjovsky and Bottou, 2017).

fixing the regression model architectures to be the same. We
train the regression models via minimizing mean squared
loss. Among all methods, we vary the trade-off parameter
(i.e., � in CENET and WASSERSTEINNET and ✏ in BGL
and COD) and report and the corresponding R

2 scores and
the error gap values. For each experiment, we average
the results for ten different random seeds. Note that COD
cannot be implemented on the Adult dataset since the size
of the Adult dataset is large and the QCQP optimization
algorithm to solve COD needs a quadratic memory usage
of the dataset size. We refer readers to Appendix B for
detailed hyper-parameter settings in our experiments and
Appendix C for additional experimental results.

4.2. Results and Analysis

The overall results are visualized in Figure 3. The following
summarizes our observations and analyses: (1) Our pro-
posed methods WASSERSTEINNET and CENET are most
effective in reducing the error gap values in all datasets com-
pared to the baselines. Our proposed methods also achieve
the best trade-offs in Adult, COMPAS, Crime and Insurance

datasets: with the similar error gap values (R2 scores), our
methods achieve the highest R

2 scores (lowest error gap
values). In the Law dataset, the error gap values decrease
with high utility losses in our proposed methods due the
significant trade-offs between the predictive power of the re-
gressors and accuracy parity. We suspect this is because the
feature noise distribution in one group differs significantly
than the others in the Law dataset. (2) Among our proposed
methods, WASSERSTEINNET are more effective in reducing
the error gap values while CENET might fail to decrease
the error gaps in Adult, Crime and Insurance datasets and
might even cause non-negligible reductions in the predictive
performance of the regressors in Adult and Crime datasets.
The reason behind it is that the minimax optimization in
the training of CENET could lead to an unstable training
process under the presence of a noisy approximation to the
optimal discriminator (Arjovsky and Bottou, 2017). We will
provide more analysis in Figure 4 next. (3) Compared to our
proposed methods, BGL and COD can also decrease error
gaps to a certain extent. This is because: (i) BGL aims to
keep errors remaining relatively low in each group, which
helps to reduce accuracy disparity; (ii) CoD aims to reduce
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the correlation between the sensitive attributes and the pre-
dictions (or the inputs) in the feature space, which might
somehow reduce the dependency between the distributions
of these two variables.

We further analyze how the trade-off parameter � in the
objective functions affect the performance of our methods.
Figure 4 shows R

2 regression scores and error gaps when
� changes in CENET and WASSERSTEINNET. We see the
general trend is that with the increase of the trade-off pa-
rameter �, the error gap values and R

2 scores gradually
decrease. Plus, the increase of � generally leads to the insta-
bility of training processes with larger variances of both R

2

scores and error gap values. In Adult, Crime and Insurance
datasets, WASSERSTEINNET is more effective in mitigating
accuracy disparity when � increases, while CENET fails to
decrease the error gap values and might suffer from signif-
icant accuracy loss. The failure to decrease the error gap
values with significant accuracy loss and variance indicates
the estimation of total variation in minimax optimization for
CENET could lead to a highly unstable training process (Ar-
jovsky and Bottou, 2017).

5. Related Work
Algorithmic Fairness In the literature, two main notions
of fairness, i.e., group fairness and individual fairness, has
been widely studied (Dwork et al., 2012; Zemel et al., 2013;
Feldman et al., 2015; Zafar et al., 2017a; Hardt et al., 2016;
Zafar et al., 2017b; Hashimoto et al., 2018; Madras et al.,
2019). In particular, Chen et al. (2018) analyzed the im-
pact of data collection on discrimination (e.g., false positive
rate, false negative rate, and zero-one loss) from the per-
spectives of bias-variance-noise decomposition, and they
suggested collecting more training examples and collect
additional variables to reduce discrimination. Khani and
Liang (2019) argued that the loss difference among differ-
ent groups is determined by the amount of latent (unob-
servable) feature noise and the difference between means,
variances, and sizes of the groups with an assumption that
there are a latent random feature and a noise feature that
are involved in the generation of the observable features.
Khani and Liang (2020) further found out that spurious
features from inputs can hurt accuracy and affect groups
disproportionately. Zhao and Gordon (2019) proposed an
error decomposition theorem which upper bounds accuracy
disparity in the classification setting by three terms: the sum
of group-wise noise, the distance of marginal input distri-
butions across groups and the discrepancy of group-wise
optimal decision functions. However, their error decompo-
sition theorem does not lead to any mitigation approaches
in classification: minimizing the distance of marginal input
distributions across groups does not necessarily mitigate ac-
curacy disparity since it could possibly exacerbate the noise

term and the discrepancy of group-wise optimal decision
functions in the meantime. Besides, the optimal group-wise
decision functions are unknown and intractable to approxi-
mate in the feature spaces, which also adds to the difficulty
of applying their upper bound directly. In comparison, our
work only assumes that there is a joint distribution where all
variables are sampled and precisely characterizes disparate
predictive accuracy in regression in terms of the distance be-
tween marginal label distributions and the distance between
conditional representations. Inspired by our theoretical re-
sults, we also propose practical algorithms to mitigate the
problem when collecting more data becomes infeasible.

Fair Regression A series of works focus on fairness under
the regression problems (Calders et al., 2013; Johnson et al.,
2016; Berk et al., 2018; Komiyama et al., 2018; Chzhen
et al., 2020b; Bigot, 2020). To the best of our knowledge,
no previous study aimed to minimize accuracy disparity in
regression from representation learning. However, there
are different fairness notions and techniques proposed for
regression: Agarwal et al. (2019) proposed fair regression
with bounded group loss (i.e., it asks that the prediction er-
ror for any protected group remains below some pre-defined
level) and used exponentiated-gradient approach to satisfy
BGL. Komiyama et al. (2018) aimed to reduce the coeffi-
cient of determination between the sensitive attributes be-
tween the predictions to some pre-defined level and used an
off-the-shelf convex optimizer to solve the problem. Mary
et al. (2019) used the Hirschfeld-Gebelein-Rényi Maximum
Correlation Coefficient to generalize fairness measurement
to continuous variables and ensured equalized odds (demo-
graphic parity) constraint by minimizing the �

2 divergence
between the predicted variable and the sensitive variable
(conditioned on target variable). Zink and Rose (2020) con-
sidered regression problems in health care spending and
proposed five fairness criteria (e.g., covariance constraint,
net compensation penalization, etc.) in the healthcare do-
main. Narasimhan et al. (2020) proposed pairwise fair-
ness notions (e.g., pairwise equal opportunity requires each
pair from two arbitrary different groups to be equally-likely
to be ranked correctly) for ranking and regression models.
Chzhen et al. (2020a) studied the regression problem with
demographic parity constraint and showed the optimal fair
predictor is achieved in the Wasserstein barycenter of group
distributions. In contrast, we source out the root of accu-
racy disparity in regression through the lens of information
theory and reduce it via distributional alignment using TV
distance and Wasserstein distance in the minimax games.

Fair Representation A line of works focus on building
algorithmic fair decision making systems using adversar-
ial techniques to learn fair representations (Edwards and
Storkey, 2015; Beutel et al., 2017; Zhao et al., 2019). The
main idea behind is to learn a good representation of the
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data so that the data owner can maximize the accuracy while
removing the information related to the sensitive attribute.
Madras et al. (2018) proposed a generalized framework to
learn adversarially fair and transferable representations and
suggests using the label information in the adversary to
learn equalized odds or equal opportunity representations in
the classification setting. Apart from adversarial represen-
tation, recent work also proposed to use distance metrics,
e.g., the maximum mean discrepancy (Louizos et al., 2015)
and the Wasserstein distance (Jiang et al., 2019) to remove
group-related information. Prior to this work, it is not clear
aligning conditional distributions via adversarial represen-
tation learning could lead to (approximate) accuracy parity.
Our analysis is the first work to connect accuracy parity and
(conditional) distributional alignment in regression and we
also provide algorithm interventions to mitigate the problem
where it is challenging to align conditional distributions in
regression problems.

6. Conclusion
In this paper, we theoretically and empirically study ac-
curacy disparity in regression problems. Specifically, we
prove an information-theoretic lower bound on the joint
error and a complementary upper bound on the error gap
across groups to depict the feasible region of group-wise
errors. Our theoretical results indicate that accuracy dispar-
ity occurs inevitably due to the marginal label distributions
differ across groups. To reduce such disparity, we further
propose to achieve accuracy parity by learning conditional
group-invariant representations using statistical distances.
The game-theoretic optima of the objective functions in our
proposed methods are achieved when the accuracy dispar-
ity is minimized. Our empirical results on five benchmark
datasets demonstrate that our proposed algorithms help to
reduce accuracy disparity effectively. We believe our re-
sults take an important step towards better understanding
accuracy disparity in machine learning models.
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