
Private Alternating Least Squares

A. Proof of Theorem 1
Proof. To prove the guarantee for Algorithm 1, it suffices to show the following claim: that at each time step t ∈ [T], the
computations of X and

∑
i∈Ω′j

M ij ·U i, for all j ∈ [m] satisfy
(
α, α k

2σ2

)
-RDP. One can then compose the privacy losses

via simple Rényi composition (Mironov, 2017) to obtain the overall RDP-cost to be
(
α, α kT

2σ2

)
.

To prove the claim, notice that at each time step t ∈ [T], there are m computations of X and
∑
i∈Ω′j

M ij ·U i. Since each
user i ∈ [n] can affect only k of those computations, by Gaussian mechanism (Dwork et al., 2006a; Mironov, 2017) and
the generalization of standard composition property of RDP (Mironov, 2017, Proposition 1) to the joint RDP, we have the
required guarantee.

We now translate joint-RDP to join-DP. By the first part of the theorem, Algorithm 1 is (α, αρ2)-joint RDP with ρ2 = kT
2σ2 .

Thus by (Mironov, 2017, Proposition 3) it is (ε, δ)-joint DP with ε = αρ2 + ln(1/δ)
α−1 for any α > 1. The latter expression is

minimized when α = 1 +

√
ln(1/δ)

ρ , which yields εmin(ρ) = αρ2 + ln(1/δ)
α−1 = 2

√
ln(1/δ)ρ+ ρ2. Now fix ε > 0, δ ∈ (0, 1).

To guarantee (ε, δ)-joint DP while minimizing the noise (which scales as 1/ρ by definition of ρ), it suffices to maximize
ρ subject to εmin(ρ) ≤ ε, but since εmin is increasing in ρ, ρ is maximized when εmin(ρ) = ε. This is a second-order
polynomial in ρ, and it has a positive root at ρ+ =

√
ln(1/δ) + ε−

√
ln(1/δ). Therefore, setting

σ =

√
kT/2

ρ+
=

√
kT/2√

ln(1/δ) + ε−
√

ln(1/δ)
=

√
kT/2(

√
ln(1/δ) + ε+

√
ln(1/δ))

ε
≤
√

2kT (ln(1/δ) + ε)

ε

suffices to guarantee (ε, δ)-joint DP. This completes the proof.

B. Proofs from Section 4
Recall the problem setting. M = U∗Σ∗(V ∗)> where (U∗)>U∗ = I and (V ∗)>V ∗ = I . Also, U∗ and V ∗ are
µ-incoherent by assumption. That is, ‖U∗i ‖2 ≤ µ

√
r/
√
n and ‖V ∗j‖2 ≤ µ

√
r/
√
m. The set of observations is Ω =

{(i, j) s.t. δij = 1}, where δij are i.i.d. Bernoulli random variables with Pr[δij = 1] = p. We sample a new set of
observations before every update.

We now present a basic lemma.

Lemma 5. Let U∗ and U t be µ and µ1-incoherent, orthonormal matrices where µ1 ≥ µ and n · p ≥ µµ1r
2. Then, the

following holds for all j ∈ [m] (w.p. ≥ 1−mδ):∥∥∥∥∥1

p

n∑
i=1

δijU
∗
i (U

t
i)
> − (U∗)>U t

∥∥∥∥∥
F

≤ C

√
µ2

1r

n · p
· ln r

δ
.

Proof. The proof follows from the matrix Bernstein inequality (Tropp, 2015, Theorem 6.1.1) and incoherence of U∗,
U t.

Lemma 6. Let δij be i.i.d. Bernoulli random variables with Pr[δij = 1] = p. Then, the following holds (w.p. ≥ 1− δ):∥∥∥∥1

p
PΩ(M)−M

∥∥∥∥
F

≤ C
(√

n

p
ln

1

δ
+

1

p
ln

1

δ

)
· ‖M‖∞.

Proof. The lemma is similar to Theorem 7 of (Recht, 2011) and follows by the matrix Bernstein inequality (Tropp, 2015,
Theorem 6.1.1).

B.1. Rank-1 Case

Simplifying the notation, denote M = σ∗u∗(v∗)> where (u∗)>u∗ = 1 and (v∗)>v∗ = 1.

Note that as k = C · p ·m lnn w.p. ≥ 1− T/n100, we do not throw any tuples in Line 7 of Algorithm 1. Similarly, using
incoherence we have: ‖M‖∞ ≤ ΓM . So, we do not clip any sample in Line 1 of Algorithm 1.

Private Alternating Least Squares

Now, we use mathematical induction to show the incoherence of resulting vt and ût, and to show that the clipping operations
do not really apply in our setting with the selected hyper-parameters.

For the base case (t = 0), initialization of v0 ensures that Err(v∗,v0) ≤ C
lnn . Now, using (Jain et al., 2013, Lemma C.2)

that uses clipping only in the first step to ensure incoherence, we get that v0 is 16µ-incoherent.

In the induction step, assuming the Lemma holds for vt, we prove the claim for ût and vt+1. Dropping superscripts of Ω′i
for notation simplicity and using λ = 0, we have: ût = arg min

u

∥∥PΩ

(
M − u(vt)>

)∥∥2

F
. The update of ut = ût/‖ût‖2.

So using (Jain et al., 2013, Lemma 5.5, Lemma 5.7, Theorem 5.1), we get w.p. ≥ 1− 1/n100:

ut is 16µ-incoherent,

‖ût‖2 ≥ σ∗/16,

Err(ut,u∗) ≤ 1

4
Err(vt,v∗). (3)

To complete the claim, we only need to study the update for vt+1, which is a noisy version of the ALS update:

v̂t+1 = (D + Gt)−1
(
PΩ(M)ût + g

)
,

where D and Gt are diagonal matrices s.t. Djj =
∑

(i,j)∈Ω(ûti)
2 and Gt

jj ∼ Γ2
uσ · N (0, 1).

We first prove that D + Gt is indeed invertible, and has lower-bounded smallest eigenvalue. Using Lemma 5, and
pn ≥ µ2 log n log(1/δ), we have w.p. ≥ 1−mδ,

1

p
Djj ≥ ‖ût‖22

(
1−

√
1

log n

)
.

Also, using maximum of Gaussians, we have w.p. ≥ 1−mδ,

1

p

∥∥Gt
∥∥

2
≤

Γ2
uσ
√

log(n/δ)

p
≤
µ2(σ∗)2σ

√
log(n/δ)

np
≤ ‖ût‖22

16× 256
,

where the final inequality follows by the assumption on p.

So,

‖(D + Gt)−1‖2 ≤
2

p · ‖ût‖22
. (4)

We now conduct error analysis for v̂t+1:
v̂t+1 = α · v∗ −E,

where α = σ∗·(u∗)>ut

‖ût‖2
. Furthermore, for a matrix C with Cjj =

∑
(i,j)∈Ω ûtiu

∗
i , we have E = E1 + E2 with

E1
j = (Djj + Gt

jj)
−1(αDjj − σ∗Cjj)v

∗
j , E2

j = (Djj + Gt
jj)
−1(αGt

jjv
∗
j − gj).

This step follows from the observation that (PΩ(M)ût)j = σ∗Cjjv
∗
j . (We note that E is a vector but we use upper case to

be consistent with Section B.2.)

Note that E[αDjj − σ∗Cjj] = 0. Furthermore, using incoherence of v∗,
∥∥∥ût∥∥∥

2
≥ σ∗/16, and the Bernstein’s inequality,

we have:
‖E1‖2 ≤

1

64
Err(ut,u∗). (5)

Now,

‖E2‖2 ≤
2
√

log n

p ·
∥∥∥ût∥∥∥2

2

·
(
16Γ2

uσ + ΓMΓuσ
√
m
)
≤ Cµ4

√
log n

np
· σ. (6)

Private Alternating Least Squares

Using (5) and (6),
∥∥∥v̂t+1

∥∥∥
2
≥ 3/4.

Thus, we get:

Err(v∗,vt+1) ≤ 1

32
Err(u∗,ut+1) +

Cµ4
√

log n

np
· σ.

Similarly, by incoherence of v∗ and using bound on E1
j and E2

j , we get:

‖v̂t+1‖∞ ≤ 3µ.

Therefore

vt+1 is 16µ-incoherent,

Err(vt+1,v∗) ≤ 1

32
Err(ut,u∗) +

Cµ4
√

log n

np
· σ. (7)

So, the inductive hypothesis holds. Furthermore, we get Theorem 2, by combining the error terms of ut and vt+1.

B.2. Rank-r Case

B.2.1. PROOF OF LEMMA 3

Note that as k = C · p ·m lnn, w.p. ≥ 1− T/n100, we do not throw any tuples in Line 7 of Algorithm 1. Similarly, using
incoherence we have: ‖M‖∞ ≤ ΓM . So, we do not clip any samples in Line 1 of Algorithm 1.

Now, we use mathematical induction to show the incoherence of resulting V̂
t

and Û
t
, and to show that the clipping

operations do not really apply in our setting with the selected hyperparamters.

For the base case (t = 0), initialization of V̂
0

ensures that (V̂
0
)>V̂

0
= I and Err(V ∗, V̂

0
) ≤ C

κ2r2 lnn . Now, using (Jain

et al., 2013, Lemma C.2) that uses clipping only in the first step to ensure incoherence, we get that V̂
0

is 16µ
√
r-incoherent.

For the induction step, assuming the Lemma holds for V̂
t
, we prove the claim for Û

t
and V̂

t+1
. Dropping superscripts

of Ω′i for notation simplicity and using λ = 0, we have: Û
t

= arg min
U

∥∥PΩ

(
M −U(V t)>

)∥∥2

F
. That is, the update of

Û
t

= U tRU , with U t being the Q part of QR-decomposition, is identical to the standard non-noisy ALS. So using (Jain
et al., 2013, Lemma 5.5, Lemma 5.7, Theorem 5.1)1, we get w.p. ≥ 1− 1/n100,

U t is 16κµ-incoherent,

‖Σ∗R−1
U ‖2 ≤ 16κ, i.e., ‖R−1

U ‖2 ≤
∥∥(Σ∗)−1

∥∥
2
‖Σ∗R−1

U ‖2 ≤ 16‖(Σ∗)−1‖2κ,

Err(U t,U∗) ≤ 1

4
Err(V t,V ∗). (8)

That is, now to complete the claim we only need to study the update for V̂
t+1

, which is a noisy version of the ALS update.

Now consider,

Xt
j = (Û

t
)>

 ∑
i:(i,j)∈Ω

eie
>
i

 Û
t

+ Gt
j = p ·RU

(U t)>

1

p

∑
i:(i,j)∈Ω

eie
>
i

U t + N t
j

RU , (9)

where Gt is the noise added in Line 10 of Algorithm 1 at time step t, Dt
j = (U t)>

(
1
p

∑
i:(i,j)∈Ω eie

>
i

)
U t and N t

j =
1
pR
−1
U Gt

jR
−1
U . Note that using Gaussian eigenvalue bound (Vershynin, 2010) and Weyl’s inequality (Bhatia, 2013), we

have w.p. ≥ 1− 1/n100,

σmin(Dt
j + N t

j) ≥

(
1− C

√
µ2κ2r

n · p
· lnn− 2Γ2

uσ
√
r

p · σmin(RU)2

)
≥ 1

2
, (10)

1Lemma 5.5 of (Jain et al., 2013) has a redundant
√
r term in incoherence claim

Private Alternating Least Squares

where the last inequality follows from: np ≥ Cµ2κ2r ln2 n and n
√
p ≥ Cµ2κ6r

√
r ·
√
m lnn·(T ln(1/δ))

ε .

Next, we argue that Xt
j is PSD. Observe that

σmin(Xt
j) ≥

1

2
p · σmin(RU)2 ≥ C p · σmin(Σ∗)2

κ2
> 0, (11)

where the last inequality follows from (8).

This shows that X used in update of V̂
t+1

is PSD, and hence the update for V̂
t+1

is given by:

RU (V̂
t+1

)>j (12)

=(Dj + N t
j)
−1
(
CjΣ

∗(V ∗)>j + ḡtj
)

(13)

=(U t)>U∗Σ∗(V ∗)>j (14)

− (Dj + N t
j)
−1(Dj(U

t)>U∗ −Cj)Σ
∗(V ∗)>j − (Dj + N t

j)
−1(N t

j(U
t)>U∗Σ∗(V ∗)>j − ḡtj), (15)

where Dj = (U t)>
(

1
p

∑
i:(i,j)∈Ω eie

>
i

)
U t, Cj = (U t)>

(
1
p

∑
i:(i,j)∈Ω eie

>
i

)
U∗, and ḡtj = 1

pR
−1
U gtj .

That is,

V̂
t+1

RU = V ∗Σ∗(U∗)>U t −E>, Ej = E1
j + E2

j ,

E1
j = (Dj + N t

j)
−1(Dj(U

t)>U∗ −Cj)Σ
∗(V ∗)>j , E2

j = (Dj + N t
j)
−1(N t

j(U
t)>U∗Σ∗(V ∗)>j − ḡtj). (16)

Let V̂
t+1

= V t+1RV . Then,

V t+1RVRU = V ∗Σ∗(U∗)>U t −E>, Ej = E1
j + E2

j ,

E1
j = (Dj + N t

j)
−1(Dj(U

t)>U∗ −Cj)Σ
∗(V ∗)>j , E2

j = (Dj + N t
j)
−1(N t

j(U
t)>U∗Σ∗(V ∗)>j − ḡtj). (17)

Using the technique of (Jain et al., 2013, Lemma 5.6) and the bound on σmin(Dt
j + N t

j) (see (10)), we get:∥∥(Σ∗)−1E1
∥∥
F
≤ C

κ
Err(U t,U∗). (18)

Similarly, w.p. ≥ 1− 1/n100:

‖(Σ∗)−1E2‖F ≤
2

σmin(Σ∗)
·

(
Γ2
uσ

pσmin(RU)2

σmax(Σ∗)µ
√
r2m lnn√

m
+

ΓuΓMσ

pσmin(RU)
·
√
mr lnn

)
,

≤ Cσ
√

lnn

pn
·
(
κ5 · µ3r2 + µ3r2κ3

)
≤ Cκ5 · µ3r2

√
lnn

√
pn

·
√
m lnn · T ln(1/δ)

ε
. (19)

Let β = Cκ5·µ3r2
√

lnn√
pn

√
m lnn·T ln(1/δ)

ε . Now,

σmin(RVRU) ≥ σmin(Σ∗)
(
1− 2Err(U t,U∗)− κβ

)
≥ σmin(Σ∗)

2
, (20)

where the last inequality holds because:

√
pn ≥ Cκ6µ3r2

√
m
T lnn ln(1/δ)

ε
.

Using (17), we have:

max
j

∥∥(V t+1)>j
∥∥

2
≤ 2µκ

√
r√

m
+

4µκ
√
r√

m
+

2µκrΓ2
uσ√

mpσmin(RU)2
+

2ΓuΓMσ
√
r

pσmin(Σ∗)σmin(RU)
≤ 16µκ

√
r√

m
, (21)

where the last inequality follows from the assumption that
√
pn ≥ Cκ6µ3r2

√
mT lnn ln(1/δ)

ε . This concludes the proof.

Private Alternating Least Squares

B.2.2. PROOF OF LEMMA 4

The proof for this key Lemma follows technique similar to the above proof. That is, using previous lemma, the clipping
operations do not have any effect, and hence we get noisy ALS updates. Now, using (18), (19), (20), and Lemma 7, we have:

Err(V ∗,V t+1) ≤ 1

4
Err(U∗,U t) + 4κβ. (22)

This proves the lemma.

B.3. Proof of Theorem 2

Using Lemma 7, we have:

Err(V ∗,V t) ≤ 1

4
+ Err(V ∗,V t+1) + α,

where α ≤ Cκ6·µ3r2
√

lnn√
pn

√
m lnn·T ln 1/δ

ε . So, after T = ln Err(V ∗,V 0)
α iterations, Err(V ∗,V T) ≤ 2α.

As Û
T

= arg minÛ ‖M − Û
T

(V T)>‖F , we have:

‖M − Û
T

(V T)>‖F ≤ ‖M −U∗Σ∗(V T)>‖F ≤ ‖M‖F ‖V ∗ − V T ‖2 ≤ 2α‖M‖F , (23)

where last inequality follows from the fact that ‖V ∗ − V T ‖2 ≤ 2Err(V ∗,V).

This shows the second claim of the theorem. The third claim follows similarly while using incoherence of V T .

Lemma 7. Let Û = U∗Σ∗W +E and U = ÛR−1 where Σ∗ is a diagonal matrix, W ∈ Rr×r, and R2 = Û
>
Û . Then,

assuming σmin(Σ∗)σmin(W) > ‖Σ∗‖2‖E(Σ∗)−1‖2, the following holds:

‖(I −U∗(U∗)>)U‖2 ≤
‖E · (Σ∗)−1‖2

σmin(Σ∗)
‖Σ∗‖2 σmin(W)− ‖E(Σ∗)−1‖2

.

That is,

‖(I −U∗(U∗)>)U‖2 ≤
κ‖E‖2

σmin(Σ∗)σmin(W)− κ‖E‖2
.

Proof.

‖(I −U∗(U∗)>)U‖2 ≤ ‖E ·R−1‖2 ≤ ‖E(Σ∗)−1‖2‖Σ∗R−1‖2.

Furthermore, ‖Σ∗R−1‖ ≤ ‖Σ∗‖2‖R−1‖2. Now,

1

‖R−1‖2
= σmin(R) ≥ σmin(Σ∗)σmin(W)− ‖Σ∗‖2‖E(Σ∗)−1‖2.

That is,

‖(I −U∗(U∗)>)U‖2 ≤
‖E · (Σ∗)−1‖2

σmin(Σ∗)
‖Σ∗‖2 σmin(W)− ‖E · (Σ∗)−1‖2

.

B.4. Initialization

In this subsection, we describe the initialization routine used by our method. At a high level, similar to (Jain et al., 2013), we
use the top eigen-vectors of A = PΩ(M)>PΩ(M) to obtain V̂

0
. However, to ensure privacy, we need to add noise to A.

That is, we compute top-r eigenvectors of W = A + G where G is a symmetric Gaussian matrix with standard deviation
σΓ2

M .

Private Alternating Least Squares

Now using Theorem 2 of (Dwork et al., 2014) which is similar to applying Davis-Kahan theorem to W , we get:

Err(V̄ ,V (0)) ≤ 2‖G‖2
λr(A)− λr+1(A)

≤ 2
√
mσΓ2

M

λr(A)− λr+1(A)
.

Furthermore, ‖ 1
pPΩ(M) −M‖2 ≤ ‖M‖2µ2r√

pm . That is, PΩ(M) = pM + pE where ‖E‖2 ≤ ‖M‖2µ2r√
pm . This implies,

A = p2M>M + Ē where ‖Ē‖2 ≤ p2‖M‖2‖E‖2 ≤ p2 ‖M‖22µ
2r√

pm .

Using Weyl’s inequality: λr(A)− λr+1(A) ≥ p2(σ∗r)2 − 2‖Ē‖2 ≥ (1− 1
logn)p2(σ∗r)2 due to assumption on p. So, using

the bound above, we get:

Err(V̄ ,V (0)) ≤ 2
√
mσΓ2

M

p2(σ∗r)2
≤ 2
√
mσ‖M‖22
p2mn

.

Similarly using Davis-Kahan on A = p2M>M + Ē, we get:

Err(V ∗, V̄) ≤ 2‖Ē‖2
p2(σ∗r)2

≤ 2κ2 µ2r
√
pm

.

That is,

Err(V ∗,V (0)) ≤ 2
√
mσ‖M‖22
p2mn

+ 2κ2 µ2r
√
pm

.

The initialization condition is now matched by the assumption on p (Theorem 2) combined with the assumption that
n ≥ Ω̃(m

√
m log 1/δ/ε).

Private Alternating Least Squares

C. Additional Details on Heuristic Improvements
Algorithm 2 summarizes the data pre-processing and sampling heuristics described in Section 5.

Algorithm 2 Data pre-processing heuristics.
Required: PΩ(M): Observed ratings, ΓM : entry clipping parameter, k: maximum
number of ratings per user, σp: standard deviation of the pre-processing noise, β:
fraction of movies to train on.

1 Clip entries in PΩ(M) so that ‖PΩ(M)‖∞ ≤ ΓM

2 Uniformly sample Ω′:
for 1 ≤ i ≤ n do

Ω′i ← sample k items from Ωi uniformly.
end

3 Compute movie counts c̃← Counts(Ω′).
4 Partition movies:

Let Frequent be the dβme movies with the largest c̃, and let Infrequent be the rest.
5 Adaptively sample Ω′′:

for 1 ≤ i ≤ n do
Ω′′i ← the k items in (Ωi ∩ Frequent) with the lowest count c̃.

end
6 Recompute movie counts c̃← Counts(Ω′′)

7 Center the data PΩ′′(M)← PΩ′′(M)− m̃, where m̃ =
∑

(i,j)∈Ω′′ Mij+N (0,kΓ2
Mσ2

p)

|Ω′′|+N (0,kσ2
p)

return PΩ′′(M), c̃

Procedure Counts(Ω)
for 1 ≤ j ≤ m do

c̃j ← |Ωj |+N (0, σ2
p)

return c̃
end

First, we compute differentially private movie counts (Line 3) using a uniform sample Ω′, and use it to partition the movies
(Line 4) and to perform adaptive sampling (Line 5). The final subset used for training is Ω′′, which consists only of Frequent
movies. Finally, to have a more accurate estimate of the counts, we recompute c̃ on Ω′′ (Line 6). We redo this computation
as the counts are also used during optimization, as described in the next section. Note that in both computations of c̃, we use
a subset of Ω that contains at most k movies per user, in order to guarantee user-level differential privacy.

Privacy accounting. As we saw in Theorem 1, Algorithm 1 with random initialization satisfies
(
α, α(kT)

2σ2

)
-joint RDP. The

data processing heuristics in Algorithm 2 satisfy
(
α, α(2k+2)

2σ2
p

)
-RDP. So, by standard composition of RDP, we have the

total privacy cost at any order α > 1 to be:
(
α, α ·

(
kT
2σ2 + k+1

σ2
p

))
. We can obtain the final (ε, δ)-joint differential privacy

guarantee by optimizing for α, similarly to Appendix A.

Loss function. We minimize the following loss in practice.

f(Û , V̂) = ‖PΩ

(
M − Û V̂ >

)
‖2F + λ0‖Û V̂ >‖2F + λ

n∑
i=1

cνi
Z
‖Û i‖2 + λ

m∑
j=1

c̃µj
Z ′
‖V̂ j‖2, (24)

where λ0, λ, µ, and ν are hyper-parameters. The loss function used in the description of Algorithm 1 is a special case of (24)
where λ0 = µ = ν = 0. The additional terms in (24) do not change the essence of the algorithm, but we find that they make
a significant difference in practice.

First, the term λ0‖Û V̂ >‖2F is often used in problems with implicit feedback, as in (Hu et al., 2008). In such problems, the
observed entries are often binary, and minimizing the objective ‖PΩ

(
M − Û V̂ >

)
‖2F can yield a trivial solution – the matrix

of all ones. The addition of the second term penalizes non-zero predictions outside of Ω, leading to better generalization.
One of the benchmarks we use is an implicit feedback task, in which the use of the second term is necessary. As described
in Section 5.2, this results in an additional term K in Line 10 of Aitem , and care is needed when adding privacy protection

Private Alternating Least Squares

to this term, since it involves a sum over all user embeddings. The key observation is that this term is constant for all items,
so we only need to compute a noisy version of K once and use it for all items, thus limiting the privacy loss it incurs.

Second, we use a weighted `2 regularization, where the weights are defined as follows. The weight of movie j is c̃µj /Z
′,

where c̃ is the vector of approximate counts (computed in Algorithm 2), µ is a non-negative hyper-parameter and Z ′ is the
normalizing constant Z ′ = 1

m

∑m
j=1 c̃

µ
j . When µ is positive, this corresponds to applying heavier regularization to more

frequent items, and we found in our experiments that this can significantly help generalization. The weights for the users are
defined similarly, with one main difference: instead of using approximate counts c̃, we use the exact counts c, as this term
only affects the solution in Auser , which is a privileged computation as illustrated in Figure 1.

102 103

User count
101

102

103

104

M
ov

ie
 c

ou
nt

100

101

102

103

(a) ML-10M (unsampled)

102 103

User count
101

102

103

104

M
ov

ie
 c

ou
nt

(b) Uniform sampling (k = 50)

102 103

User count
101

102

103

104

M
ov

ie
 c

ou
nt

(c) Adaptive sampling (k = 50)

Figure 6. Histogram of user and movie counts in ML-10M, in the original data, and under uniform and adaptive sampling. The color bars
in Figures 6b and 6c show the difference in marginal probability compared to the original data in 6a. Red indicates an increase in marginal
probability, while blue indicates a decrease. Note that the probability of frequent movies increases under uniform sampling, and decreases
under adaptive sampling.

Effect of uniform and adaptive sampling. As observed in Figure 2, the movie count distribution of the MovieLens data
set is heavily skewed. We also observed that, perhaps surprisingly, uniformly sampling k items per user tangibly increases
the skew. This can be explained by a negative correlation between user counts and movie counts; we computed a correlation
coefficient of −0.243. This is also visible in Figure 6a, which shows the joint histogram of {(ci, cj), (i, j) ∈ Ω}, where
ci = |Ωi| is the user count (the number of ratings this user produced) and cj = |Ωj | is the movie count (the number of
ratings the movie received). The figure illustrates that infrequent users are more likely to rate frequent movies than the
average user. By uniformly sampling a constant number of movies per user (Figure 6b), we are, by definition, increasing
the probability of infrequent users, hence increasing the probability of frequent movies (due to the negative correlation).
This is made clear by the color bar left of Figure 6b, which shows the change in movie count probability with respect to the
original data set. This increase in the probability of frequent movies aggravates the skew of the movie distribution, as seen
in Figure 2.

Adaptive sampling has the opposite effect: Figure 6c shows that the probability of frequent movies decreases under adaptive
sampling, while that of infrequent movies increases. This leads to a decrease in bias toward frequent movies, as shown in
Figure 2, and results in a significant improvement in the privacy/utility trade-off as discussed in Section 6.3.

D. Additional Details on Experiments
D.1. Details on the Experimental Setup

Table 2 shows the statistics of the MovieLens data sets.

Table 2. Statistics of the experiment data sets.
ML-10M-top400 ML-10M ML-20M

n (number of users) 69,692 69,878 136,677
m (number of items) 400 10,677 20,108

|Ω| (number of observations) 4.49M 10M 9.99M

Private Alternating Least Squares

For each data set, we partition the set of observations Ω into Ω = ΩtraintΩvalidtΩtest. Hyper-parameter tuning is performed
on Ωvalid, and the final results are reported on Ωtest. The pre-processing described in Algorithm 2 is only applied to Ωtrain.

In the ML-10M benchmark, we follow the setup of (Lee et al., 2013) and use a 80-10-10 split (random uniform over Ω). In
the ML-10M-top400 benchmark, we follow the setup of (Jain et al., 2018) and use a 98-1-1 split (random uniform over Ω).
In the ML-20M benchmark, we follow the setup of (Liang et al., 2018) and partition the set by users, that is, a set of 20K
random users are held-out, half of which are used for validation, and the other half for testing. Note that since held-out
users are never seen in training, the protocol is to further split each user’s observations Ωtest

i (uniformly at random) into
Ωtest query
i t Ωtest target

i . At test time, the model is allowed access to Ωtest query
i to compute a user embedding and make a

prediction for the user, and Ωtest target
i is used as the ground truth target. The user embedding Û i is computed at test time

simply by minimizing the loss in Eq. (24) given the learned movie embeddings V̂ , that is,

Û i = arg min
u∈Rr

‖PΩtest query
i

(
M i − uV̂ >

)
‖2F + λ0‖uV̂ >‖2F + λ

cνi
Z ′
‖u‖2.

The resulting Û i is used to generate predictions for user i. Note that this procedure is consistent with the Joint-DP setting:
the computation of Û i corresponds to one step ofAuser in Algorithm 1, and is considered privileged (see Figure 1). Besides,
since the resulting embedding is not further used for training, it is unnecessary to clip the embedding norm. Avoiding norm
clipping at test time could result in better predictions.

Finally the recall for user i is computed as follows. Let Ωprediction
i be the top k items that are not in Ωtest query

i . Then

Recall@k =
|Ωprediction

i ∩Ωtest target
i |

min(k,|Ωtest target
i |) .

D.2. Hyper-Parameter Description and Ranges

Table 3 summarizes the complete list of hyper-parameters used in Algorithm 1, Algorithm 2, and in the loss function (24),
and specifies the ranges used in our experiments. We make several remarks about hyper-parameters:

Table 3. Hyper-parameter description and ranges.

Symbol Description Range

Model and training parameters
r rank [2, 128]
λ `2 regularization coefficient [0.1, 100]
λ0 coefficient of the global penalty term [0.1, 5]
µ item regularization exponent {0, 0.5, 1}
ν user regularization exponent {0, 0.5, 1}
T number of steps [1, 5]

Privacy parameters
Γu row clipping parameter 1
ΓM entry clipping parameter {1, 5}
k maximum number of ratings per user [20, 150]
σ noise standard deviation see remark below

Pre-processing parameters
β fraction of items to train on [0, 1]
σp standard deviation of pre-processing noise [10, 200]

– In the non-private baselines, only the model and training parameters are tuned.

– Pre-processing (Algorithm 2) is not used in synthetic experiments. Indeed, these heuristics are designed to deal with
the non-uniform distribution of observations in practice. In synthetic experiments, the distribution is uniform by design.

– In the MovieLens experiments, the maximum value in M is known by definition of the task: In ML-10M, entries
represent ratings in the interval [0.5, 5], and in ML-20M the entries are binary. Thus, we simply set ΓM to this value
without tuning.

Private Alternating Least Squares

– We find that carefully tuning the model parameters, including the regularization coefficients λ, λ0 and the exponents
µ, ν is important and can have a significant effect.

– For the rating prediction tasks (ML-10M and ML-10M-top400), we find that setting λ0 to a positive number is
detrimental, so we always use 0. For the item recommendation task (ML-20M), using a non-zero λ0 is important.

– The partitioning of the movies into Frequent and Infrequent is important for the private models, especially at lower
values of ε (see Figure 10), but does not help for the non-private baselines.

– To set the standard deviation σ, we use the simple observation that when all hyper-parameters except σ are fixed, ε is a
decreasing function of σ that can be computed in closed form. Therefore, in each experiment, we set a target value of ε
and do a binary search over σ to select the smallest value that achieves the target ε.

– Finally, note that in Algorithm 1, the parameter σ determines the standard deviation of two noise terms: G in Line 8
and g in Line 9. While this is sufficient for the analysis, we find in practice that the model is often more sensitive to g,
thus it can be advantageous to use different scales of noise. We will use the symbols σG, σg to specify the scales of
each term.

The optimal hyper-parameter values for each experiment and each value of ε are given in Table 4. These values are obtained
through cross-validation. We do not include the privacy loss of hyper-parameter search because our main objective is to give
insights into the choice of hyper-parameters at different privacy budgets. In practice, this can be accounted for, for example
by the method in (Liu & Talwar, 2019).

Table 4. Optimal hyper-parameter values for the experiments in Figure 3. The clipping parameter Γu is set to 1 in all experiments.

ML-10M-top400 ML-10M ML-20M

DPALS ALS DPALS ALS DPALS ALS

ε 0.8 4 8 16 - 1 5 10 20 - 1 5 10 20 -

r 50 50 50 50 50 32 128 128 128 128 32 32 32 128 128
λ 90 90 80 80 70 120 80 70 60 70 0.5 0.5 0.1 50 30
λ0 0 0 0 0 0 0 0 0 0 0 2 0.6 0.4 0.4 0.1
µ 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 1 - - - - -
ν 1 1 1 1 1 1 1 1 1 1 - - - - -
T 2 2 2 2 15 2 2 2 2 15 1 3 3 1 15
k 40 50 50 50 - 50 50 50 50 - 60 60 100 60 -
σG 126.9 29.0 11.3 5.86 - 125.9 27.8 15.5 7.5 - 64.0 20.2 14.0 3.5 -
σg 63.4 14.5 11.3 5.86 - 63.0 13.9 7.7 3.8 - 64.0 20.2 14.0 3.5 -
β 1 1 1 1 - 0.05 0.4 0.5 0.6 - 0.05 0.1 0.05 0.05 -
σp 200 200 20 20 - 100 20 10 10 - 100 100 100 100 -

D.3. Standard Deviation

Finally, Table 5 reports the standard deviation of the DPALS metrics in Figure 3. For each data point, we repeat the
experiment 20 times, using the same set of hyper-parameters selected on the validation set, and report the mean and standard
deviation of the metric measured on the test set. In all cases, the standard deviation is less than 0.5% of the mean.

Table 5. Mean and standard deviation of the DPALS metrics in Figure 3.
ML-10M-top400 (test RMSE) ML-10M (test RMSE) ML-20M (test Recall@20)

ε 0.8 4 8 16 1 5 10 20 1 5 10 20
mean 0.8855 0.8321 0.8201 0.8147 0.9398 0.8725 0.8530 0.8373 0.3120 0.3330 0.3368 0.3444
stddev 0.0025 0.0009 0.0011 0.0008 0.0009 0.0006 0.0004 0.0005 0.0016 0.0010 0.0012 0.0013

Private Alternating Least Squares

D.4. Additional Experiments

Convergence plots for DPALS and DPFW. This experiment illustrates the fact that ALS converges faster than FW, both
in its exact and private variants, making it more suitable for training private models. Figure 7 shows the test error (RMSE)
against number of iterations, on the synthetic data set with n = 20K users. We use the vanilla version of DPALS without
the heuristics introduced in Section 5. The hyper-parameters of both methods are tuned on the validation set.

For the non-private baselines, ALS converges significantly faster than FW. For example, the error of ALS after 2 iterations is
lower than the error of FW after 40 iterations. For the private models, we compare the two methods with the same sampling
rate (k = 150) and same noise level (σ = 10 in Figure 7a and σ = 20 in Figure 7b), and tune other parameters. Since
the sampling rate and noise level are fixed, the ε level is directly determined by the number of steps, and the vertical lines
show different levels of ε. We can make the following observations. For both methods, in the presence of noise, the error
decreases for a few iterations at a rate similar to their exact variants, then plateaus at a fixed error. The fixed error for DPALS
the is an order of magnitude lower than DPFW. Furthermore, the error reached by DPALS in 2 iterations is lower than the
error of DPFW after 40 iterations. The faster convergence of DPALS, even in the presence of noise, directly translates to a
better privacy/utility trade-off as demonstrated in Section 6.

0 5 10 15 20 25 30 35 40
step

10−3

10−2

10−1

100

te
st

 e
rro

r (
RM

SE
)

ε
=

10

ε
=

20

DPFW, σ= 10
FW (non-private)
DPALS, σ= 10
ALS (non-private)

(a) σ = 10

0 5 10 15 20 25 30 35 40
step

10−3

10−2

10−1

100

te
st

 e
rro

r (
RM

SE
)

ε
=

5

ε
=

10

DPFW, σ= 20
FW (non-private)
DPALS σ= 20
ALS (non-private)

(b) σ = 20

Figure 7. RMSE against steps on the synthetic data set with n = 20K. Dashed lines correspond to the non-private baselines (without
noise) and solid lines correspond to the private methods with a fixed noise level (left: σ = 10, right: σ = 20).

Varying the number of users. This experiment further illustrates the effect of increasing the number of users. We train
the DPALS on a subset of the ML-10M-top400 data set, obtained by randomly sampling a subset of n users. Figure 8
shows the results for different values of n, and confirms that increasing the number of users (while keeping the number of
movies constant) improves the privacy/utility trade-off. The figure also compares to the DPFW baseline trained on the full
data (n = 69692). Note that DPALS significantly outperforms DPFW even when trained on a small fraction of the users
(n = 16000, or 26.4% of the total users).

0.8 4.0 8.0 12.0 16.0
ε

0.80

0.85

0.90

0.95

1.00

1.05

te
st

 R
M

SE

DPALS, n=4K
DPALS, n=16K
DPALS, n=64K
DPALS, n=69K
DPFW, n=69K

Figure 8. DPALS on ML-10M-top400 with a varying number of users, n.

Private Alternating Least Squares

Effect of the rank. This experiment explores the effect of the rank on the privacy/utility tradeoff. Figure 9 shows the
trade-offs for models of different ranks r on ML-10M and ML-20M. We observe that for non-private ALS, models of higher
rank consistently achieve better performance in the range of ranks that we have tried. This is not always the case for the
private models. For the ML-10M task, the higher rank model (r = 128) performs well for larger values of ε, but not for
ε = 1. On the ML-20M task, the private model with r = 128 gives the best recall for ε ≈ 20 while r = 32 performs the best
for smaller ε. Therefore, unlike in the non-private ALS algorithm where a higher rank is often more desirable given enough
computational and storage resources, when training a private model, one needs to carefully choose the rank to balance model
capacity and utility degradation due to privacy.

1 5 10 15 20
ε

0.80

0.85

0.90

0.95

te
st

 R
M

SE

DPALS, r=32
DPALS, r=64
DPALS, r=128

ALS, r=32
ALS, r=64
ALS, r=128

(a) RMSE on ML-10M (lower is better)

1 5 10 15 20
ε

0.28

0.30

0.32

0.34

0.36

0.38

te
st

 R
ec

al
l@

20

ALS, r=128
ALS, r=64
ALS, r=32

DPALS, r=128
DPALS, r=64
DPALS, r=32

(b) Recall@20 on ML-20M (higher is better)

Figure 9. Privacy/utility trade-off for models of different ranks. For lower values of ε, a lower rank achieves a better privacy/utility.

Training on Frequent movies. This experiment illustrates the effect of partitioning the set movies into (Frequent t
Infrequent) and training only on Frequent movies. Figure 10 shows the test RMSE vs movie fraction, at different levels of
ε. The rank of the model is fixed to r = 32, the sample size is fixed to k = 50, and other hyper-parameters are re-tuned. The
results show that as ε decreases, the optimal fraction of movies decreases. In particular, for ε = 1, the optimal fraction is
5%; note however that this still corresponds to more than 50% of the ratings, as shown on the right sub-figure.

0.0 0.2 0.4 0.6 0.8 1.0
Movie fraction

0.85

0.90

0.95

1.00

1.05

1.10

te
st

 R
M

SE

ε= 1
ε= 5
ε= 10

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Data fraction

0.85

0.90

0.95

1.00

1.05

1.10

te
st

 R
M

SE

ε= 1
ε= 5
ε= 10

Figure 10. RMSE vs movie fraction, for a rank 32 model on ML-10M, at different privacy levels ε. Both figures show the same data,
but with a different x axis. The movie fraction (left figure) is defined as |Frequent |/m. The data fraction (right figure) is defined as
|{(i, j) ∈ Ω : j ∈ Frequent }|/|Ω|. The right figure emphasizes the long-tail distribution of movie counts – a small fraction of Frequent
movies corresponds to a large fraction of data.

Figure 11 shows a similar result for ML-20M. The optimal movie fraction in this example is between 5% and 10% depending
on the rank.

Private Alternating Least Squares

0.00 0.02 0.05 0.10 0.15 0.20
Movie fraction

0.28

0.29

0.30

0.31

0.32

0.33

0.34

0.35

te
st

 R
ec

al
l@

20

DPALS, r=32
DPALS, r=64
DPALS, r=128

Figure 11. Recall@20 vs movie fraction on ML-20M, for ε = 5.

Effect of the regularization exponents. This experiment illustrates the effect of the regularization exponents (ν, µ) in the
loss function (24). We vary (ν, µ) for a rank 128 model with ε = 10 on ML-10M (and re-tune other parameters). The
results are reported in Figure 12. This example indicates that a careful tuning of the `2 regularization can have a significant
impact on utility, and can also make the private models more robust to noise: Notice that with the optimal setting of (ν, µ)
the model can be trained on a much larger fraction of movies, with only a slight degradation in utility.

0.0 0.2 0.4 0.6 0.8 1.0
Movie fraction

0.85

0.90

0.95

1.00

1.05

1.10

te
st

 R
M

SE

ν= 0 μ= 0
ν= . 5 μ= 1
ν= 1 μ= 1
ν= . 5 μ= . 5
ν= 1 μ= . 5

Figure 12. RMSE vs movie fraction on ML-10M, for ε = 10 and r = 128, and for different values of regularization exponents (ν, µ).

