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Figure S1: Data X = (X1, . . . , Xn) ∼ ASDS(A,µ) as in Figure 2 in main text. (A) F-measure of the MLE ÂS versus µ
for means µ ≥ µdetect. Note that the MLEs ÂS for the connected family S = CG and unstructured family S = Pn have
low F-measure for small means µ, consistent with the Bias(|ÂS |/n) for these families shown in Figure 2. (B) F-measure
of our estimator ÂGMM versus µ for means µ ≥ µdetect. (C) Bias(|ÂS |/n) of the MLE versus µ for means µ ≥ 1 and for
graph cut family S = TG,ρ with different bounds ρ on the cut-size and. (D) Bias(|ÂGMM|/n) of our GMM estimator versus
µ for means µ ≥ 1 and for graph cut family S = TG,ρ with different bounds ρ on the cut-size.

A. Calculating µdetect

µdetect is the smallest mean µ such that the GLR test asymptotically solves the ASD Detection Problem with the probability
of a type 1 or type 2 error going to 0 as n→∞ (Sharpnack et al., 2013a). We empirically determine µdetect by finding the
smallest mean µ such that the Type I and Type II errors of the GLR test statistic t̂S (Equation (2) in the main text) are both
less than 0.01.

B. Additional Experiments
B.1. F-measure

Although Conjecture 1 is about the Bias(|ÂS |/n) of the MLE ÂS , we also observe that larger Bias(|ÂS |/n) reduces the
F-measure between the anomaly A and the MLE ÂS . Using the data described in Section 3.1 in the main text, we find
a noticeable difference in F-measure between anomaly families where |S̆(A)| is exponential — the connected family CG
and the unstructured family Pn — and anomaly families where |S̆(A)| is sub-exponential — the interval family In and the
submatrix familyMN (Figure S1 A).

In contrast, our GMM-based estimator ÂGMM has a much smaller difference in the F-measure for anomaly families where
|S̆(A)| is exponential versus anomaly families where |S̆(A)| is sub-exponential (Figure S1 B). This result is consistent
with the reduced bias of the GMM-based estimator ÂGMM (Figure 2C, main text). Interestingly, even for our reduced bias
estimator, we still observe a mild difference in F-measure between the families with exponential |S̆(A)| versus the families
with sub-exponential |S̆(A)|.

B.2. Graph Cut Family

We examine the Bias(|ÂTG,ρ |/n) of the size of the MLE ÂTG,ρ for the graph cut family TG,ρ, where G is a
√
n × √n

lattice graph, for different values of the bound ρ on the cut-size. For each value of ρ, we select an anomaly A ∈ TG,ρ
with size |A| = 0.05n uniformly at random from TG,ρ. (Note that the cut-size of A is not fixed, as we select A
uniformly at random from the set TG,ρ of all subgraphs of G with cut-size less than ρ.) We then draw a sample
X = (X1, . . . , Xn) ∼ ASDTG,ρ(A,µ) with n = 900 observations and compute the MLE ÂTG,ρ . We repeat for 50

samples to estimate Bias(|ÂTG,ρ |/n).

While the graph cut anomaly family is often studied in the network anomaly literature (Sharpnack et al., 2013b;a; Sharp-
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Figure S2: Left: Graph G = (V,E) with two disjoint connected components: Vpath, a path graph, and Vclique, a clique
graph, with |Vpath| = |Vclique| = n

2 . Right: Bias(|ÂS |/n) versus mean µ for the connected anomaly family S = CG with
n = |V | = 500 vertices and an anomaly A with size |A| = 0.05n, for means µ ≥ µdetect. The blue line corresponds
to an anomaly A ⊆ Vpath and the green line corresponds to an anomaly A ⊆ Vclique. This experiment suggests that the
Bias(|ÂS |/n) is determined by the |S̆(A)|, rather than |S|, consistent with Conjecture 1.

nack, 2013), the cut-size bound ρ is typically left unspecified. When ρ is constant |S̆(A)| is polynomial in n, but when ρ is
close to the number of edges in G then |S̆(A)| is exponential in n (Nagamochi et al., 1994). So by Conjecture 1 we expect
the bias of the MLE ÂTG,ρ to depend on ρ. Indeed, we observe that the Bias(|ÂTG,ρ |/n) of the MLE is small when ρ is
small and the Bias(|ÂTG,ρ |/n) of the MLE is large when ρ is large (Figure S1 C), which is consistent with Conjecture 1.
Our results demonstrate that careful attention to the cut-size bound ρ is required when the MLE ÂTG,ρ is used for anomaly
estimation.

For the same data, we find that our GMM estimator ÂGMM has small bias regardless of the cut-size bound ρ (Figure S1 D).
This is consistent with Corollary 1, and demonstrates that our GMM estimator ÂGMM is a less biased estimator than the
MLE ÂTG,ρ regardless of the cut-size bound ρ.

B.3. Dependence of Bias(|ÂS |/n) on |S̆(A)| versus |S|
In this section, we construct an anomaly family S where |S| is exponential, but |S̆(A)| is exponential for some anomalies
A and sub-exponential for others. We then use this anomaly family S to provide evidence that Bias(|ÂS |/n) depends on
the number |S̆(A)| of subsets in S that contain the anomaly A, rather than the size |S| of the anomaly family.

Let G = (V,E) be a graph whose vertices V = Vpath ∪ Vclique can be partitioned into two disjoint connected components:
Vpath, a path graph, and Vclique, a clique (Figure S2, left). (Note that the path graph Vpath and the clique Vclique are disjoint,
unlike the graph from Figure 2.) Both the path graph Vpath and the clique Vclique have size |Vpath| = |Vpath| = n

2 , where
n = 900.

Let S = CG be the connected family for graph G, and let A ∈ CG be a set of size |A| = 0.05n. The size |S| of the anomaly
family S is exponential in n, as |S| = O(2

n
2 ). However, |S̆(A)| depends on the anomaly A: if the anomaly A ⊆ Vpath is in

the path graph component, then |S̆(A)| = O(n2) is sub-exponential in n. On the other hand, if A ⊆ Vclique is in the clique
graph component, then |S̆(A)| = O(20.45n) is exponential in n.

Empirically, we observe that if µ ≥ µdetect, then Bias(|ÂS |/n) ≈ 0 if A ⊆ Vpath and Bias(|ÂS |/n) > 0 if A ⊆ Vclique

(Figure S2, right). This finding is consistent with Conjecture 1 and demonstrates the dependence of Bias(|ÂS |/n) on
|S̆(A)| rather than |S|.
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B.4. Highway Traffic Data with Edge-Dense Family

We compare our estimator ÂGMM and the MLE ÂS on a real-world highway traffic dataset. This dataset consists of a
highway traffic network G = (V,E) in Los Angeles County, CA with |V | = 1868 vertices and |E| = 1993 edges. The
vertices V are sensors that record the speed of cars passing and the edges E connect adjacent sensors. The observations
X = (Xv)v∈V are p-values (where sensors that record higher average speeds have lower p-values) that are transformed to
Gaussians using the method in Reyna et al. (2020).

For the edge-dense family EG,δ with edge density δ = 0.7, we find that our GMM-based estimator ÂGMM is much smaller
than the MLE ÂEG,δ (|ÂGMM| = 10 versus |ÂEG,δ | = 600) but with higher average score (4.4 for our estimator versus
0.4 for the MLE). While there is no ground-truth anomaly in this dataset, our results show that our estimator ÂGMM yields
a smaller anomaly but with higher average values than the MLE ÂEG,δ , which also suggests that the MLE ÂEG,δ for the
edge-dense family EG,δ is biased.

B.5. Additional Details for NYC Breast Cancer

In the NYC breast cancer incidence data (Boscoe et al., 2016), we are given observed disease counts C = {C1, . . . , Cn}
and expected disease counts B = {B1, . . . , Bn} for each census block i ∈ [n]. As is standard in the disease surveillance
and spatial scan statistic literature, (Kulldorff, 1997; Glaz & Naus, 2010; Neill, 2009; 2012), we model the observed counts
C as being distributed as

Ci ∼
{

Pois(qinBi), if i ∈ A,
Pois(Bi), otherwise,

(1)

where A ∈ S is the anomaly, S is the anomaly family, and qin is the relative risk of census blocks i ∈ A in the anomaly A.

The MLE ÂS for the anomalyA given the observed counts C and the expected counts B — also known as the expectation-
based Poisson scan statistic in the spatial scan statistic literature (Neill, 2009) — is given by

ÂS = argmax
A∈S

[∑

i∈A
(Bi) +

(∑

i∈A
Ci

)
·
(
−1 + log

∑

i∈A
Ci − log

∑

i∈A
Bi

)]
. (2)

We adapt our estimator to the disease count model in Equation (1) by using the EM algorithm to fit the observed counts C
to the Poisson mixture Ci ∼ α · Pois(qinBi) + (1− α) · Pois(Bi). The other components of our estimator are unchanged:
we use this fit to compute the responsibilities r̂i = P (i ∈ A | Ci, Bi) for each census block i ∈ [n], and then estimate the
anomaly using Equation (6) in the main text.

C. Wasserstein Distance between GMM and Unstructured ASD
Let X = (X1, . . . , Xn) with Xi

i.i.d.∼ GMM(µ, α) distributed according to the GMM and let Y = (Y1, . . . , Yn) ∼
ASDPn(A,µ) be distributed according to the unstructured ASD, with α = |A|/n. We empirically observe that
dW

(
1
n

∑n
i=1 1Xi ,

1
n

∑n
i=1 1Yi

)
= O(n−0.5), where dW is the 1-Wasserstein distance, also known as the earth mover’s

distance (Figure S3). We note that our empirical observation matches the result that the Wasserstein distance between the
normal distribution N(µ, σ) and the empirical distribution of n samples from N(µ, σ) is also O(n−0.5) (Rippl et al., 2016;
Weed & Bach, 2019).

D. Regularized MLE for Submatrix ASD
For the submatrix familyMN , Liu & Arias-Castro (2019) show that a regularized version of the MLE is asymptotically
unbiased. Specifically, for a submatrix M ∈ Rp×q of a matrix N ∈ Rm×m, they define the regularized scan statistic

function ΓR(M) = Γ(M) −
√

2 log
(
m2
(
m
p

)(
m
q

))
and the regularized MLE ÂR = argmax

M∈MN

ΓR(M). Liu & Arias-Castro

(2019) then show that ÂR is asymptotically unbiased.

However, our proof of Theorem 1 shows that the MLE ÂMN
for the submatrix ASD, which does not use the above

regularization, is also asymptotically unbiased. Thus, the regularization is not required. Empirically, we find that that the
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Figure S3: 1-Wasserstein distance between the GMM distribution and the unstructured ASD distribution. X =

(X1, . . . , Xn)
i.i.d.∼ GMM(µ, α) is distributed according to the GMM and Y = (Y1, . . . , Yn) ∼ ASDPn(A,µ) is dis-

tributed according to the unstructured ASD, with α = |A|/n. Left: dW
(

1
n

∑n
i=1 1Xi ,

1
n

∑n
i=1 1Yi

)
, the 1-Wasserstein

distance between the empirical distributions of the GMM and unstructured ASD, versus the number n of observations for
various values of µ and |A|/n. Right: 1-Wasserstein distance on log-log scale. We observe that the 1-Wasserstein distance
dW

(
1
n

∑n
i=1 1Xi ,

1
n

∑n
i=1 1Yi

)
is O(n−0.5), as each line is parallel to n−0.5 in the log-log plot.

MLE ÂMN
and the regularized MLE ÂR have similar bias and similar F -measure to the anomaly (Figure S4), suggesting

that the regularization proposed by (Liu & Arias-Castro, 2019) is not necessary to reduce bias or increase performance in
anomaly estimation.

E. Approximating the GMM Estimator for the Submatrix Family and the Connected Family
For the submatrix family S =MN and the connected family S = CG, our GMM estimator

ÂGMM = argmax
S∈S∣∣|S|−α̂GMM

∣∣≤√ logn
n

(∑

i∈S
r̂i

)
(3)

can be inefficient to compute because of the constraint on the size |S| of the subset S. In our experiments, we relax this
constraint by computing the following approximation ÃGMM of our GMM estimator:

ÃGMM = argmax
S∈S

∑

i∈S
(r̂i − τ). (4)

Here, τ > 0 is a positive number that we use to “shift” the estimated responsibilities r̂i to r̂i − τ . We select τ > 0 so that

the number T of positive “shifted” responsibilities r̂i − τ satisfies
∣∣T − α̂GMM

∣∣ ≤
√

logn
n . That is, τ is chosen so that

{i : r̂i − τ > 0} = T , where T satisfies
∣∣T − α̂GMMn

∣∣ ≤
√

logn
n . Because the number of positive shifted responsibilities

is T , we expect our approximate estimator ÃGMM to have size |ÃGMM| ≈ T ≈ α̂GMMn.

F. Proof of Theorem 1
F.1. Preliminary Lemmas

We first prove the following technical lemmas.

Lemma 1. Let {An}n=1,2,... and {Bn}n=1,2,... be two sequences of events in the same probability space. Suppose
lim
n→∞

P (An) = 1 and lim
n→∞

P (Bn) = 1. Then lim
n→∞

P (An ∩Bn) = 1.
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ÂMN

, MLE
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Figure S4: X ∼ ASDMN
(A,µ) is distributed according to the submatrix ASD, where N ∈ R30×30 is a 30 × 30 matrix.

Left: Bias(|ÂMN
|/n) and Bias(|ÂR|/n) versus µ for means µ ≥ µdetect. Right: F -measure of ÂMN

and ÂR versus µ
for means µ ≥ µdetect.

Proof. Let pn = P (An) and qn = P (Bn). Then

P (An ∩Bn) = P (An) + P (Bn)− P (An ∪Bn) = pn + qn − P (An ∪Bn) ≥ pn + qn − 1, (5)

where in the last inequality we use that P (An ∪Bn) ≤ 1. Thus,

lim
n→∞

P (An ∩Bn) ≥ lim
n→∞

(pn + qn − 1) =
(

lim
n→∞

pn

)
+
(

lim
n→∞

qn

)
− 1 = 1.

Since lim
n→∞

P (An ∩Bn) ≤ 1 by definition, it follows that lim
n→∞

P (An ∩Bn) = 1

Lemma 2. Let X1, X2, . . . be a sequence of random variables with Xn < 1 for all n. If lim
n→∞

P (Xn > C) = 0 for some

C > 0, then E[Xn] < 2C for sufficiently large n.

Proof. We have two cases depending on the value of C. First, suppose C ≥ 1. Then Xn < 1 < C for all n, and it follows
that E[Xn] < C < 2C.

Next, suppose C ∈ (0, 1). Let n be sufficiently large so that P (Xn > C) < C
1−C . Then

E[Xn] ≤ C · P (Xn ≤ C) + 1 · P (Xn > C) ≤ C ·
(

1− C

1− C

)
+

C

1− C = 2C.

Lemma 3. Let Xn ∼ N(µn, σn), with µn, σn →∞ as n→∞. Then

lim
n→∞

P
(
µn −

√
2σn log n ≤ Xn ≤ µn +

√
2σn log n

)
= 1. (6)

Proof. We have

P (Xn > µn +
√

2σn log n) = P (Z >
√

2 log n), where Z ∼ N(0, 1),

≤ 1√
2π
· 1√

2 log n
· 1

n
= O

(
1

n

)
,

(7)

where in the last inequality we use the standard bound P (Z ≥ x) ≤ 1√
2π

1
xe
−x2/2. By symmetry, we have

P (Xn < µn −
√

2σn log n) ≤ O
(

1

n

)
(8)
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Thus,

P
(
µn −

√
2σn log n ≤ Xn ≤ µn +

√
2σn log n

)
> 1−O

(
1

n

)
.

Taking the limit as n→∞ proves the result.

Lemma 4. Suppose Xv
i.i.d.∼ N(0, 1) for v = 1, . . . , n. Let S ⊆ Pn be a family of subsets of [n] with size |S| = Ω(n). For

any k ∈ [n] define Sk = {B ∈ S : |B| = k} and Yk = max
B∈Sk

(∑

v∈B
Xv

)
. Then,

lim
n→∞

P
(
Yk ≤

√
2n log |S| for all k = 1, . . . ,

n

2

)
= 1 (9)

Proof. Let t =
√

2n log |S| and let Φ be the CDF of the standard normal distribution. Fix k ∈
{

1, . . . , n2
}

. We have

P (Yk > t) = P

(
max
B∈Sk

∑

v∈B
Xv > t

)

≤
∑

B∈Sk
P

(∑

v∈B
Xv > t

)

= |Sk| · (1− Φ(t/
√
k))

≤ |S| · (1− Φ(t/
√
k)).

(10)

where the first inequality uses a union bound and the second equality uses that
∑
v∈B Xv ∼ N(0, k). Plugging in the

standard bound 1− Φ(x) ≤ 1√
2π

1
xe
−x2/2 gives us:

P

(
max
B∈Sk

∑

v∈B
Xv > t

)
≤ |S| · (1− Φ(t/

√
k))

≤ |S| · 1√
2π

√
k

t
e−t

2/2k

= |S| · 1√
2π
·
√

k

2n · log |S| · e
−n·log |S|k

=

(√
k

4πn

)
· 1√

log |S|
· |S|1−nk

≤
(√

1

4π

)
· 1

|S| ·
√

log |S|
, since k ≤ n

2
.

(11)

Taking a union bound over all k = 1, . . . , n2 gives us

P

(
max
B∈Sk

∑

v∈B
Xv > t for any k = 1, . . . ,

n

2

)
≤

n/2∑

k=1

P

(
max
B∈Sk

∑

v∈B
Xv > t

)

≤ n

2
·
(√

1

4π

)
· 1

|S| ·
√

log |S|
, by Equation (11),

=

(√
1

16π

)
· n

|S| ·
√

log |S|

= O

(
1√

log n

)
as |S| = Ω(n).

(12)
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It follows that for sufficiently large n, there exists a constant C > 0 such that

P

(
max
B∈Sk

∑

v∈B
Xv > t for any k = 1, . . . ,

n

2

)
≤ C√

log n
, (13)

so that

lim
n→∞

P
(
Yk ≤

√
2n log |S| for all k = 1, . . . ,

n

2

)
= 1− lim

n→∞
P
(
Yk >

√
2n log |S| for any k = 1, . . . ,

n

2

)

≥ 1− lim
n→∞

(
C√
log n

)
, by Equation (13),

= 1,

(14)

proving the result.

Lemma 5. Let X ∼ ASDS(A,µ) where |A| = αn for 0 < α < 0.5. Then lim
n→∞

P (|ÂS | ≤ 0.5n) = 1.

Proof. Let S ∈ S be a set with size |S| > 0.5n. To prove the claim, it suffices to show that

1√
|A|

∑

v∈A
Xv >

1√
|S|
∑

v∈S
Xv. (15)

with high probability.

Note that 1√
|A|

> 1√
αn

and 1√
|S|
≤ 1√

0.5n
. Thus, to prove (15) it is sufficient to prove that

1√
0.25n

∑

v∈A
Xv >

1√
0.5n

∑

v∈S
Xv ⇐⇒

∑

v∈A
Xv >

(√
2α
)∑

v∈S
Xv. (16)

with high probability.

By independence of the Xv , we have that
∑
v∈AXv ∼ N(µαn, αn), so by Lemma 3 it follows that

∑
v∈AXv > µαn−√

2αn log n with high probability. Similarly, we have that
∑
v∈S Xv ∼ N(M,βn) where M ≤ µαn (as there are at most

|A| = αn terms in the sum
∑
v∈S Xv with mean µ, and the other terms have mean 0). Thus, by Lemma 3, we also have∑

v∈S Xv < µαn +
√

2|S| log n with high probability. Putting together the lower bound on
∑
v∈AXv and the upper

bound on
∑
v∈S Xv , (16) can be reduced to

µαn−
√

2αn log n >
(√

2α
)

(µαn+
√

2|S| log n)⇐⇒
(

1−
√

2α
)
µαn >

√
n log n

(√
|S|
αn

+
√

2α

)
. (17)

Because α < 0.5, the LHS is Θ(n). Since the RHS is o(n), then (17) holds with high probability. Thus, (15) also holds
with high probability, and the result follows.

F.2. Main Lemmas

Lemma 6. Let X ∼ ASDS(A,µ) where |S| = Ω(n) and |A| = αn with 0 < α < 0.5. Suppose lim
n→∞

P (A ⊆ ÂS) = 1.
Then for sufficiently large n, we have

Bias

(
|ÂS |
n

)
≤ 2α





µαn+

√
2n log |S̆(A)|+√2αn log n

µαn−√2αn log n




2

− 1


+ o(1). (18)

Proof. We will first derive the o(1) term in Equation (18). Let XS =
∑
v∈S Xv , and define the following events:

Dn =
[
|ÂS | ≤

n

2

]
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En = [A ⊆ ÂS ],

Fn =
[
µαn−

√
2αn log n ≤ XA ≤ µαn+

√
2αn log n

]
,

Gn =


 max
B∈S̆(A)
|B|≤n2

XB\A ≤
√

2n log |S̆(A)|


 .

Let Hn = Dn ∩ En ∩ Fn ∩Gn. We claim that lim
n→∞

P (Hn) = 1.

To prove this claim, first note that lim
n→∞

P (Dn) = 1 by Lemma 5 and lim
n→∞

P (En) = 1 by assumption. Moreover, because

XA ∼ N(µαn, αn), it follows from Lemma 3 that lim
n→∞

P (Fn) = 1. Finally, by applying Lemma 4 with the anomaly

family S̆(A), we have that lim
n→∞

P (Gn) = 1. Thus, by a repeated application of Lemma 1, we have lim
n→∞

P (Hn) =

lim
n→∞

P (Dn ∩ En ∩ Fn ∩Gn) = 1.

Now define pn = P (Hn). Then, we have

Bias

(
|ÂS |
n

)
= pn · Bias

(
|ÂS |
n

∣∣∣∣∣ Hn

)
+ (1− pn) · Bias

(
|ÂS |
n

∣∣∣∣∣ H
c
n

)

≤ Bias

(
|ÂS |
n

∣∣∣∣∣ Hn

)
+ (1− pn)

= Bias

(
|ÂS |
n

∣∣∣∣∣ Hn

)
+ o(1),

(19)

where in the second line we use that pn ≤ 1 and Bias
(
|ÂS |
n

∣∣∣ Hc
n

)
≤ 1, and in the third line we use that lim

n→∞
P (Hn) = 1.

To complete the proof, we will bound Bias
(
|ÂS |
n

∣∣∣ Hn

)
. Since the bias term conditions on Hn = Dn ∩ En ∩ Fn ∩ Gn,

for the rest of the proof we will assume that the events Dn, En, Fn, and Gn hold.

Since En holds, we have that

Γ(A) =
1√
|A|

∑

v∈A
Xv =

1√
αn

XA

Γ(ÂS) =
1√
|ÂS |

∑

v∈ÂS

Xv =
1√
|ÂS |

(
XA +XÂS\A

)
,

We will find lower and upper bounds for XÂS\A in terms of |ÂS |, and use those bounds to derive (18).

We start by finding a lower bound for XÂS\A. Since Fn holds, we have:

µαn−
√

2αn log n ≤ XA ≤ µαn+
√

2αn log n. (20)

Combining (20) and the fact that Γ(A) ≤ Γ(ÂS) yields

1√
αn

(µαn−
√

2αn log n) ≤ Γ(A) ≤ Γ(ÂS) ≤ 1√
|ÂS |

(
µαn+

√
2αn log n+XÂS\A

)
. (21)

By assumption, ÂS \A 6= ∅. Thus, solving for XÂS\A gives us a lower bound on XÂS\A:

XÂS\A ≥

√
|ÂS |
αn

(
µαn−

√
2αn log n

)
− µαn−

√
2αn log n. (22)
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Next, we find an upper bound for XÂS\A. Since Dn holds, we have |ÂS | ≤ n
2 . Since Gn also holds, we have

XÂS\A ≤ max
B∈S̆(A)
|B|≤n2

XB\A ≤
√

2n log |S̆(A)|. (23)

Combining the lower bound from (22) and the upper bound from (23) yields
√
|ÂS |
αn

(
µαn−

√
2αn log n

)
− µαn−

√
2αn log n ≤ XÂS\A ≤

√
2n log |S̆(A)| (24)

Thus, the LHS of (24) is less than the RHS of (24), i.e.
√
|ÂS |
αn

(
µαn−

√
2αn log n

)
− µαn−

√
2αn log n ≤

√
2n log |S̆(A)|. (25)

Rearranging (25) yields

|ÂS |
n
− α ≤ α





µαn+

√
2n log |S̆(A)|+√2αn log n

µαn−√2αn log n




2

− 1


 . (26)

So by Lemma 2, we have

Bias

(
|ÂS |
n

∣∣∣∣∣ Hn

)
= E

[
|ÂS |
n
− α

∣∣∣∣∣ Hn

]
≤ 2α





µαn+

√
2n log |S̆(A)|+√2αn log n

µαn−√2αn log n




2

− 1


 . (27)

The result follows by combining Equations (19) and (27).

Lemma 7. Let X ∼ ASDS(A,µ) where |S| = Ω(n) and |A| = αn with 0 < α < 0.5. Assume lim
n→∞

P (A ⊆ ÂS) = 1. If

Bias(|ÂS |/n) ≥ γ, then
|S̆(A)| ≥ (Cµ,γ,α)n · e−Θ(

√
n logn) (28)

for sufficiently large n, where Cµ,α,γ = exp
(

1
2µ

2α2
(√

1 + γ
4α − 1

)2)
.

Proof. By Lemma 6, we have

γ ≤ Bias(|ÂS |/n) ≤ 2α





µαn+

√
2n log |S̆(A)|+√2αn log n

µαn−√2αn log n




2

− 1


+ o(1). (29)

Thus, the LHS of (29) is less than the RHS of (29), i.e.

γ ≤ 2α





µαn+

√
2n log |S̆(A)|+√2αn log n

µαn−√2αn log n




2

− 1


+ o(1) (30)

Let n be sufficiently large so that the o(1) term in (30) is less than γ
2 . Then, solving for |S̆(A)| in (30):

γ ≤ 2α





µαn+

√
2n log |S̆(A)|+√2αn log n

µαn−√2αn log n




2

− 1


+

γ

2
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⇒
√

γ

4α
+ 1 ≤

µαn+

√
2n log |S̆(A)|+√2αn log n

µαn−√2αn log n

⇒ µαn

(√
γ

4α
+ 1− 1

)
−Θ(

√
n log n) ≤

√
2n log |S̆(A)|

⇒ |S̆(A)| ≥
[

exp

(
1

2
µ2α2

(√
γ

4α
+ 1− 1

)2
)]n

· e−Θ(
√
n logn)

completing the proof.

F.3. Proof of Theorem

Using the above lemmas, we are now ready to prove Theorem 1 from the main text.

Theorem 1. Let X = (X1, . . . , Xn) ∼ ASDS(A,µ) where S = Ω(n) and |A| = αn with 0 < α < 0.5. Suppose |S̆(A)|
is sub-exponential in n and lim

n→∞
P (A ⊆ ÂS) = 1. Then lim

n→∞
Bias(|ÂS |/n) = 0.

Proof. Let γ > 0 and let Cµ,α,γ be as defined in Lemma 7. Note that because Cµ,α,γ > 1, we have 2Cµ,α,γ
1+Cµ,α,γ

> 1.

Because |S̆(A)| is sub-exponential, there exists sufficiently large n so that

|S̆(A)| <
(

2Cµ,α,γ
1 + Cµ,α,γ

)n
. (31)

We also note that because Cµ,α,γ > 1, then 2
1+Cµ,α,γ

< 1. For sufficiently large n, e−Θ(
√

logn/n) will get arbitrarily close
to 1. Thus, we have

e−Θ(
√

logn/n) ≥ 2

1 + Cµ,α,γ
. (32)

Combining both (31) and (32) gives us

Cnµ,α,γ · e−Θ(
√
n logn) =

(
Cµ,α,γ · e−Θ(

√
logn/n)

)n
≥
(
Cµ,α,γ ·

2

1 + Cµ,α,γ

)n
> |S̆(A)|, (33)

for sufficiently large n, where the first inequality follows by (32) and the second inequality follows by (31).

Thus, by the contrapositive of Lemma 7, it follows that Bias(|ÂS |/n) < γ for sufficiently large n. Taking the limit as
n→∞ yields

lim
n→∞

Bias(|ÂS |/n) ≤ γ. (34)

Because (34) holds for all γ > 0, it follows that lim
n→∞

Bias(|ÂS |/n) ≤ 0. Furthermore, because lim
n→∞

P (A ⊆ ÂS) = 1,

we also have lim
n→∞

Bias(|ÂS |/n) ≥ 0. Thus, lim
n→∞

Bias(|ÂS |/n) = 0, as desired.

G. Proof of Theorem 2
In the following proof, we slightly abuse notation and assume that all statements of the form lim

n→∞
Rn = Y , where Rn and

Y are random variables, hold almost surely.

Theorem 2. Let X ∼ ASDPn(A,µ) where |A| = αn with 0 < α < 0.5. Then lim
n→∞

Bias(|ÂPn |/n) > 0.

Proof. From Proposition 1 in the main text, we have

ÂPn = argmax
S⊆[n]

1√
|S|
∑

v∈S
Xv. (35)
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Because the maximum is taken over all subsets of [n], an equivalent formulation of the above is ÂPn = {v : Xv > T̂S},
where

T̂S = argmax
T∈R


 1√

#{v ∈ [n] : Xv > T}
∑

v∈[n]:Xv>T

Xv


 . (36)

We start by showing that lim
n→∞

T̂S is finite. To do so, we will find an expression for the RHS as n→∞. Let MT = {v ∈
[n] : Xv > T, v ∈ A} and NT = {v ∈ [n] : Xv > T, v 6∈ A}. Additionally, let νµ,T be the mean of a N(µ, 1) distribution
that is truncated to be above T . Then

∑

v∈[n]:Xv>T

Xv =

(∑
v∈MT

Xv

|MT |

)
· |MT |+

(∑
v∈NT Xv

|NT |

)
· |NT | (37)

By the strong law of large numbers, lim
n→∞

∑
v∈MT

Xv

|MT |
= νµ,T and lim

n→∞

∑
v∈MT

Xv

|MT |
= ν0,T . Similarly,

lim
n→∞

|MT |
αn · (1− Φ(T − µ))

= 1 and lim
n→∞

|NT |
(1− α)n · (1− Φ(T ))

= 1, where Φ is the CDF of a standard normal. Plug-

ging these limits into (37) gives us

lim
n→∞

∑
v∈[n]:Xv>T

Xv

νµ,T · (αn(1− Φ(T − µ)) + ν0,T · ((1− α)n(1− Φ(T ))
= 1. (38)

A similar calculation yields

lim
n→∞

√
#{v ∈ [n] : Xv > T}√

αn(1− Φ(T − µ)) + (1− α)n(1− Φ(T ))
= 1. (39)

Plugging in Equations (38) and (39) into Equation (36) yields

lim
n→∞

T̂S = lim
n→∞

[
argmax
T∈R

(
νµ,T · (αn(1− Φ(T − µ)) + ν0,T · ((1− α)n(1− Φ(T ))√

αn(1− Φ(T − µ)) + (1− α)n(1− Φ(T ))

)]

= lim
n→∞

[
argmax
T∈R

(
νµ,T · (α(1− Φ(T − µ)) + ν0,T · ((1− α)(1− Φ(T ))√

α(1− Φ(T − µ)) + (1− α)(1− Φ(T ))
· √n

)]

= argmax
T∈R

(
νµ,T · (α(1− Φ(T − µ)) + ν0,T · ((1− α)(1− Φ(T ))√

α(1− Φ(T − µ)) + (1− α)(1− Φ(T ))

)
.

(40)

Thus lim
n→∞

T̂S is finite.

Next, define T ∗ = lim
n→∞

T̂S . To complete the proof, we use T ∗ to derive an expression for lim
n→∞

|ÂPn |
n

, and then use that

expression to bound lim
n→∞

Bias

(
|ÂPn |
n

)
.

Since the fraction of observations Xi such that i ∈ A and Xi > T̂S is asymptotically |A|n · (1−Φ(T̂S −µ)), it follows that

lim
n→∞

|A ∩ ÂPn |
n

= lim
n→∞

( |A|
n
· (1− Φ(T̂S − µ))

)
= α · (1− Φ(T ∗ − µ)). (41)

Similarly, the fraction of observations Xi such that i 6∈ A and Xi > T̂S is asymptotically
(

1− |A|n
)
· (1− Φ(T̂S)), so we

have

lim
n→∞

|Ac ∩ ÂPn |
n

= lim
n→∞

((
1− |A|

n

)
· (1− Φ(T̂S))

)
= (1− α) · (1− Φ(T ∗)). (42)
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Combining Equations (41) and (42) gives us

lim
n→∞

|ÂPn |
n

= α · (1− Φ(T ∗ − µ)) + (1− α) · (1− Φ(T ∗)) (43)

Thus, the asymptotic bias of the MLE ÂS is

lim
n→∞

Bias(|ÂPn |/n) = lim
n→∞

E[|ÂPn |/n]− α

= α · (1− Φ(T ∗ − µ)) + (1− α) · (1− Φ(T ∗))− α.

Since the above expression is always positive for α < 0.5, so it follows that lim
n→∞

Bias(|ÂPn |/n) > 0.

H. Proof of Theorem 3 and Corollaries 1, 2
To prove Theorem 3, we require the following Lemma.

Lemma 8. Let X1, . . . , Xn
i.i.d.∼ N(µ, σ2). Then

P

(
max
i∈[n]

Xi ≤ µ+ 2σ
√

log n

)
≥ 1− 1

n
. (44)

Proof. For fixed i ∈ [n] we have

P (Xi > µ+ 2σ
√

log n) = P (Z > 2
√

log n),where Z ∼ N(0, 1)

≤ 1√
2π
· 1

2
√

log n
· 1

n2
<

1

n2

(45)

where in the second line we use the standard bound P (Z ≥ x) ≤ 1√
2π
· 1
xe
−x2/2. Thus, P (Xi ≤ µ+2σ

√
log n) ≥ 1− 1

n2 .
By a union bound, it follows that

P (Xi ≤ µ+ 2σ
√

log n for all i ∈ [n]) ≥ 1− 1

n
, (46)

which implies the desired result.

Theorem 3. Let X = (X1, . . . , Xn) ∼ ASDS(A,µ), where |A| = αn for 0 < α < 0.5 and µ ≥ C
√

log n for a
sufficiently large constant C > 0. For sufficiently large n, we have that

|α̂GMM − α| ≤
√

log n

n
and |µ̂GMM − µ| ≤ 3

√
log n

n

with probability at least 1− 1
n .

Proof. For α̃ ∈ (0, 1) and µ̃ > 0, let Lα̃,µ̃(x) = log
(
α̃ · exp

(
− 1

2 (x− µ̃)2
)

+ (1− α̃) · exp
(
− 1

2x
2
))

be the (scaled)
log-likelihood function for the mixture distribution α̃ ·N(µ̃, 1)+(1− α̃) ·N(0, 1), and define Lα̃,µ̃(X) =

∏n
i=1 Lα̃,µ̃(Xi).

Then
α̂GMM, µ̂GMM = argmax

α̃∈(0,1)
µ̃∈(0,∞)

Lα̃,µ̃(X) (47)

To prove the claim, it suffices to show that if |α̂GMM − α̃| >
√

logn
n or |µ̂GMM − µ̃| > 3

√
logn
n , then Lα,µ(X) > Lα̃,µ̃(X)

with probability at least 1− 1
n .

We will prove the following equivalent formulation: if κ, τ are real numbers such that |κ| >
√

logn
n or |τ | > 3

√
logn
n ,

then
Lα,µ(X) > Lα+κ,µ+τ (X) (48)
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with probability at least 1− 1
n .

We proceed by a case analysis based on whether κ and τ also satisfy the following additional conditions:

1

n2
< α+ κ < 1− 1

n2
, (49)

µ2

τ2
> 100. (50)

Briefly, the intuition for the above conditions is that if κ and τ satisfy (49) and (50), then we can derive a simplified formula
for the likelihood Lα+κ,µ+τ (X).

In all cases, we assume that µ− 2
√

log n ≤ Xi ≤ µ + 2
√

log n for i ∈ A and −2
√

log n ≤ Xi ≤ 2
√

log n for i 6∈ A, as
these events hold with probability at least 1− 1

n by Lemma 8.

Case 1: κ satisfies (49) and τ satisfies (50). The log-likelihood Lα+κ,µ+τ (X) can be written as

Lα+κ,µ+τ (X) = log

(
n∏

i=1

(
(α+ κ) · exp

(
−1

2
(Xi − µ− τ)2

)
+ (1− α− κ) · exp

(
−X

2
i

2

)))

=

n∑

i=1

log

(
(α+ κ) · exp

(
−1

2
(Xi − µ− τ)2

)
+ (1− α− κ) · exp

(
−X

2
i

2

)) (51)

Let T1 = (α + κ) · exp
(
− 1

2 (Xi − µ− τ)2
)

be the first term in the logarithm and let T2 = (1− α− κ) · exp
(
−X

2
i

2

)
be

the second term. We claim that if i ∈ A, then T1 + T2 = (1 + o(n−1))T1, while if i 6∈ A then T1 + T2 = (1 + o(n−1))T2.

To show that T1 + T2 = (1 + o(n−1))T1 for i ∈ A, we compute T2

T1
:

T2

T1
=

(1− α− κ) · exp
(
−X

2
i

2

)

(α+ κ) · exp
(
− 1

2 (Xi − µ− τ)2
)

=

(
1− α− κ
α+ κ

)
· exp

(
−Xi(µ+ τ) +

1

2
(µ+ τ)2

)

≤
(

1− α− κ
α+ κ

)
· exp

(
−(µ− 2

√
log n)(µ+ τ) +

1

2
(µ+ τ)2

)

=

(
1− α− κ
α+ κ

)
· exp

(
−1

2
µ2 +

1

2
τ2 + 2µ

√
log n+ 2τ

√
log n

)

≤ n2 · exp

(
−1

2
µ2 +

1

2

(
µ2

100

)
+ 2µ

√
log n+ 2

( µ
10

)√
log n

)

= n2 · exp

(
− 99

200
µ2 +

11

5
µ
√

log n

)
,

(52)

where the first inequality uses that Xi ≥ µ − 2
√

log n and the second inequality uses that τ ≤ µ
10 (which follows from

(50)).

Now − 99
200 t

2 + 11
5 t
√

log n is a concave quadratic with a maximum at t = 20
9

√
log n. Since µ ≥ C

√
log n > 20

9

√
log n

(for sufficiently large C), it follows that − 99
200µ

2 + 11
5 µ
√

log n ≤ − 99
200 (C

√
log n)2 + 11

5 (C
√

log n) · √log n. Plugging
this into the above equation yields

n2 · exp

(
− 99

200
µ2 +

11

5
µ
√

log n

)
≤ n2 · exp

(
− 99

200
(C
√

log n)2 +
11

5
(C
√

log n) ·
√

log n

)

= n2 · n− 99
200C

2+ 440
200C

= o(n−1) for sufficiently large C.

(53)
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Thus, T2

T1
= o(n−1), which implies T1 + T2 = (1 + o(n−1))T1 for i ∈ A. By a similar derivation, we also have that

T1 + T2 = (1 + o(n−1))T2 for i 6∈ A.

Using these relationships between T1 and T2, we rewrite the log-likelihood in Equation (51) as

Lα+κ,µ+τ (X) =
∑

i∈A
log
(
(1 + o(n−1)) · T1

)
+
∑

i 6∈A
log
(
(1 + o(n−1)) · T2

)

=
∑

i∈A
log

(
(1 + o(n−1)) · (α+ κ) exp

(
−1

2
(Xi − µ− τ)2

))
+
∑

i 6∈A
log

(
(1 + o(n−1)) · (1− α− κ) exp

(
−X

2
i

2

))

= αn · log(α+ κ) + (1− α)n · log(1− α− κ)− 1

2

∑

i∈A
(Xi − µ− τ)2 − 1

2

∑

i 6∈A
X2
i + o(1).

(54)

Plugging in κ = τ = 0 into (54) yields the following expression for the log-likelihood Lα,µ(X) with the true parameters
α, µ:

Lα,µ(X) = αn · logα+ (1− α)n · log(1− α)− 1

2

∑

i∈A
(Xi − µ)2 − 1

2

∑

i6∈A
X2
i + o(1). (55)

So after equating equations (54) and (55) and simplifying, we have that Lα,µ(X) > Lα+κ,µ+τ (X) is equivalent to

Lα,µ(X) > Lα+κ,µ+τ (X)

⇔ α log

(
α

α+ κ

)
+ (1− α) log

(
1− α

1− α− κ

)
+
τα

2

(
τ − 2

∑
i∈A(Xi − µ)

αn

)
+ o(n−1) > o(n−1),

To prove that Lα,µ(X) > Lα+κ,µ+τ (X) and complete the proof, it suffices to show that

α log

(
α

α+ κ

)
+ (1− α) log

(
1− α

1− α− κ

)
+
τα

2

(
τ − 2

∑
i∈A(Xi − µ)

αn

)
= Ω(n−1). (56)

To bound the above inequality, we first note that the first two terms α log
(

α
α+κ

)
+ (1 − α) log

(
1−α

1−α−κ

)
are the KL-

divergence between a Bern(α) random variable and a Bern(α+ κ) random variable. By Pinsker’s inequality, we have

α log

(
α

α+ κ

)
+ (1− α) log

(
1− α

1− α− κ

)
= DKL (Bern(α) || Bern(α+ κ))

≥ 2
[
dTV

(
Bern(α),Bern(α+ κ)

)]2

= 2κ2.

(57)

Second, we note that
∑
i∈A(Xi−µ)

αn ∼ N(0, 1
αn ), so by Lemma 8, we have that

∑
i∈A(Xi−µ)

αn <
√

logn
αn with high probability.

Thus,

α log

(
α

α+ κ

)
+ (1− α) log

(
1− α

1− α− κ

)
+
τα

2

(
τ − 2

∑
i∈A(Xi − µ)

αn

)
≥ 2κ2 +

τα

2

(
τ − 2

√
log n

n

)
(58)

To prove that the RHS of (58) is Ω(n−1), we use casework depending on whether |κ| >
√

logn
n or |τ | > 3

√
logn
n .

Case 1, Sub-case 1: |κ| >
√

logn
n .
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We bound the RHS of (58) as

2κ2 +
τα

2

(
τ − 2

√
log n

n

)
≥ 2

log n

n
+
τα

2

(
τ − 2

√
log n

n

)

≥ 2
log n

n
− α

2
· log n

n

=
log n

n
·
(

2− α

2

)

= Ω(n−1),

(59)

where the second inequality uses that τα2

(
τ − 2

√
logn
n

)
is a quadratic in τ whose minimum is −α2

logn
n .

Case 1, Sub-case 2: |τ | > 3
√

logn
n .

Note that the condition on τ implies that either τ > 3
√

logn
n or τ < −3

√
logn
n .

We also note that τα2

(
τ − 2

√
logn
n

)
is a quadratic in τ that is decreasing for τ <

√
logn
n and is increasing for τ >

√
logn
n .

Depending on the value of τ , we lower bound τα
2

(
τ − 2

√
logn
n

)
as follows:

τ > 3

√
log n

n
=⇒ τα

2

(
τ − 2

√
log n

n

)
>
α

2

(
3

√
log n

n

)(
3

√
log n

n
− 2

√
log n

n

)
=

3α

2

log n

n

τ < −3

√
log n

n
=⇒ τα

2

(
τ − 2

√
log n

n

)
>
α

2

(
−3

√
log n

n

)(
−3

√
log n

n
− 2

√
log n

n

)
=

15α

2

log n

n
.

In either case, we have that τα2

(
τ − 2

√
logn
n

)
> 3α

2
logn
n . Thus the RHS of (58) is

2κ2 +
τα

2

(
τ − 2

√
log n

n

)
≥ 3α

2

log n

n
= Ω(n−1), (60)

as desired.

Case 2: κ does not satisfy (49), τ satisfies (50). This means that either α + κ < 1
n2 or α + κ > 1 − 1

n2 . We will treat
each of these sub-cases separately.

Before doing so, we require the following lower bound on Lα,µ(X): for sufficiently large n, Lα,µ(X) > −n. To prove
this lower bound, from (55) we have

Lα,µ(X) = n · log(1 + o(n−1)) + αn · logα+ (1− α)n · log(1− α)− 1

2

∑

i∈A
(Xi − µ)2 − 1

2

∑

i 6∈A
X2
i

= n

(
log(1 + o(n−1)) +H(α)− α

2

(∑
i∈A(Xi − µ)2

αn

)
− 1− α

2

(∑
i6∈AX

2
i

(1− α)n

))

≥ n
(
−α

2

(∑
i∈A(Xi − µ)2

αn

)
− 1− α

2

(∑
i 6∈AX

2
i

(1− α)n

))
.

(61)

whereH(α) is the binary entropy function. By standard tail bounds on χ2 random variables (see e.g. Lemma 1 of (Laurent

& Massart, 2000)), we have that
∑
i∈A(Xi−µ)2

αn ≤ 2 and
∑
i6∈A(Xi−µ)2

(1−α)n ≤ 2 with probability at least 1− 1
n3 , for sufficiently
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large n. Plugging these upper bounds into (61) yields

Lα,µ(X) ≥ n
(
−α

2

(∑
i∈A(Xi − µ)2

αn

)
− 1− α

2

(∑
i 6∈AX

2
i

(1− α)n

))
≥ n (−α− (1− α)) = −n. (62)

Case 2, Sub-case 1: α+ κ < 1
n2 .

Our strategy for this sub-case, as well as the subsequent ones, will be to upper bound Lα+κ,µ+τ (X) and show that
Lα+κ,µ+τ (X) < −n ≤ Lα,µ(X).

We have

Lα+κ,µ+τ (X) =

n∑

i=1

log

(
(α+ κ) · exp

(
−1

2
(Xi − µ− τ)2

)
+ (1− α− κ) · exp

(
−X

2
i

2

))

≤
∑

i∈A
log

(
(α+ κ) · exp

(
−1

2
(Xi − µ− τ)2

)
+ (1− α− κ) · exp

(
−X

2
i

2

))
.

(63)

We upper bound the first term (α+ κ) · exp
(
− 1

2 (Xi − µ− τ)2
)

in the logarithm by

(α+ κ) · exp

(
−1

2
(Xi − µ− τ)2

)
≤ α+ κ <

1

n2
. (64)

We upper bound the second term (1− α− κ) · exp
(
−X

2
i

2

)
in the logarithm as

(1− α− κ) · exp

(
−X

2
i

2

)
≤ exp

(
−X

2
i

2

)

≤ exp

(
−1

2
(µ− 2

√
log n)2

)

≤ exp

(
−1

2
(C
√

log n− 2
√

log n)2

)
,

= n−(C−2)2/2

≤ n−2 for sufficiently large C,

(65)

where the first inequality follows from the assumption that, Xi > µ− 2
√

log n and the second inequality follows the fact
that µ ≥ C√log n > 2

√
log n and − 1

2 (µ− 2
√

log n)2 is decreasing for µ > 2
√

log n.

Combining the upper bounds in (64) and (65) gives us the following upper bound on Lα+κ,µ+τ (X):

Lα+κ,µ+τ (X) ≤
∑

i∈A
log(n−2 + n−2) = αn(log(2n−2)) = −Θ(n log n). (66)

Thus, for sufficiently large n, we have that Lα+κ,µ+τ (X) ≤ αn(log(2n−2)) < −n = Lα,µ(X), as desired.

Case 2, Sub-case 2: α+ κ > 1− 1
n2 .

As in the previous sub-case, we will prove that Lα+κ,µ+τ (X) < −n ≤ Lα,µ(X).
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Since (50) holds, we have that µ
2

τ2 > 100, or equivalently 9
10µ < µ+ τ < 11

10µ. We upper bound Lα+κ,µ+τ (X) as

Lα+κ,µ+τ (X) ≤
∑

i 6∈A
log

(
(α+ κ) · exp

(
−1

2
(Xi − µ− τ)2

)
+ (1− α− κ) · exp

(
−X

2
i

2

))

≤
∑

i 6∈A
log

(
exp

(
−1

2
(Xi − (µ+ τ))2

)
+

1

n2

)

≤
∑

i 6∈A
log

(
exp

(
−1

2
(2
√

log n− 9

10
C
√

log n)2

)
+

1

n2

)

=
∑

i 6∈A
log
(
n−

1
2 (2− 9

10C)
2

+ n−2
)

≤
∑

i 6∈A
log
(
n−2 + n−2

)
for sufficiently large C

= (1− α)n log(2n−2),

(67)

where the second inequality follows from the assumption that 1− 1
n2 < α + κ < 1, and the third inequality follows from

the fact that Xi ≤ 2
√

log n ≤ 9
10C
√

log n ≤ 9
10µ ≤ µ+ τ for sufficiently large C.

For sufficiently large n, we have that Lα+κ,µ+τ (X) ≤ (1−α)n log(2n−2) = −Θ(n log n) < −n ≤ Lα,µ(X), as desired.

Case 3: τ does not satisfy (50).

Since τ does not satisfy (50), we have that either µ+τ > 11
10µ or µ+τ < 9

10µ. We treat each of these sub-cases separately.
In each sub-case, we use the bound Lα,µ(X) > −n derived in Case 2.

Case 3, Sub-case 1: µ+ τ > 11
10µ.

As before, we will show that Lα+κ,µ+τ (X) < −n ≤ Lα,µ(X). We upper bound Lα+κ,µ+τ (X) as

Lα+κ,µ+τ (X) =

n∑

i=1

log

(
(α+ κ) · exp

(
−1

2
(Xi − µ− τ)2

)
+ (1− α− κ) · exp

(
−X

2
i

2

))

≤
∑

i∈A
log

(
exp

(
−1

2

(
Xi − (µ+ τ)

)2
)

+ exp

(
−X

2
i

2

))

≤
∑

i∈A
log

(
exp

(
−1

2

(
µ+ 2

√
log n− 11

10
µ

)2
)

+ exp

(
−1

2
(µ− 2

√
log n)2

))

=
∑

i∈A
log

(
exp

(
−1

2

(
1

10
µ− 2

√
log n

)2
)

+ exp

(
−1

2
(µ− 2

√
log n)2

))

≤
∑

i∈A
log

(
exp

(
−1

2

(
1

10
C
√

log n+ 2
√

log n

)2
)

+ exp

(
−1

2
(C
√

log n− 2
√

log n)2

))

=
∑

i∈A
log
(
n−

1
2 ( C10 +2)

2

+ n−
1
2 (C−2)2

)

≤
∑

i∈A
log
(
n−2 + n−2

)
for sufficiently large C,

(68)

The first inequality uses that α+κ ≤ 1 and 1−α−κ ≤ 1. The second inequality uses thatXi ≤ µ+2
√

log n < 11
10µ < µ+τ

(where µ+ 2
√

log n < 11
10µ⇔ µ ≥ 20

√
log n holds for sufficiently large C), and Xi ≥ µ− 2

√
log n. The third inequality

uses that 1
10µ ≥ 1

10C
√

log n > 2
√

log n and µ ≥ C√log n > 2
√

log n (for sufficiently large C).

Thus, for sufficiently large n we have Lα+κ,µ+τ (X) ≤ −αn log(2n−2) < −n = Lα,µ(X), as desired.

Case 3, Sub-case 2: µ+ τ < 9
10µ.
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As before, we will show that Lα+κ,µ+τ (X) < −n ≤ Lα,µ(X). We upper bound Lα+κ,µ+τ (X) as

Lα+κ,µ+τ (X) =

n∑

i=1

log

(
(α+ κ) · exp

(
−1

2
(Xi − µ− τ)2

)
+ (1− α− κ) · exp

(
−X

2
i

2

))

≤
∑

i∈A
log

(
exp

(
−1

2

(
Xi − (µ+ τ)

)2
)

+ exp

(
−X

2
i

2

))

≤
∑

i∈A
log

(
exp

(
−1

2

(
(µ− 2

√
log n)− 9

10
µ

)2
)

+ exp

(
−1

2
(µ− 2

√
log n)2

))

=
∑

i∈A
log

(
exp

(
−1

2

(
1

10
µ− 2

√
log n

)2
)

+ exp

(
−1

2
(µ− 2

√
log n)2

))

≤
∑

i∈A
log

(
exp

(
−1

2

(
1

10
C
√

log n− 2
√

log n

)2
)

+ exp

(
−1

2
(C
√

log n− 2
√

log n)2

))

=
∑

i∈A
log
(
n−

1
2 ( C10−2)

2

+ n−
1
2 (C−2)2

)

≤
∑

i∈A
log
(
n−2 + n−2

)
for sufficiently large C.

(69)

The first inequality uses that α+κ ≤ 1 and 1−α−κ ≤ 1. The second inequality uses that µ+τ < 9
10µ < µ−2

√
log n ≤ Xi

(where the middle inequality 9
10µ < µ−2

√
log n⇔ µ > 20

√
log n holds for sufficiently large C) andXi > µ−2

√
log n.

The third inequality uses that 1
10µ >

1
10C
√

log n > 2
√

log n and µ > C
√

log n > 2
√

log n for sufficiently large C.

So as before, for sufficiently large n we have Lα+κ,µ+τ (X) ≤ −αn log(2n−2) < −n = Lα,µ(X), as desired.

H.1. Proofs of Corollaries

Corollary 1. Let X = (X1, . . . , Xn) ∼ ASDS(A,µ), where |A| = αn for 0 < α < 0.5 and µ ≥ C
√

log n for a
sufficiently large constant C > 0. Then lim

n→∞
Bias(|ÂS |/n) = 0.

Proof. Let Bn be the event that
∣∣∣ |ÂS |n − |A|

∣∣∣ ≤
√

logn
n . By Theorem 3, P (Bn) ≥ 1 − 1

n . Note that when Bn does not

hold, then
∣∣∣ |ÂS |n − |A|

∣∣∣ ≤ 1. So we have

|Bias(|ÂS |/n)| ≤ E
[∣∣∣ |ÂS |

n
− |A|

∣∣∣ | Bn
]

+ E

[∣∣∣ |ÂS |
n
− |A|

∣∣∣ | Bcn

]

≤
(√

log n

n

)
· P (Bn) + 1 · P (Bcn)

≤
√

log n

n
+

1

n
.

(70)

It follows that lim
n→∞

Bias(|ÂS |/n) = lim
n→∞

(√
log n

n
+

1

n

)
= 0.

Corollary 2. Let X = (X1, . . . , Xn) ∼ ASDPn(A,µ), where |A| = αn for 0 < α < 0.5 and µ ≥ C
√

log n for a

sufficiently large constant C > 0. Then |A4ÂGMM|
|A| ≤ 2

α

√
logn
n = o(1) with probability at least 1− 1

n .
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Proof. By Lemma 8, with probability at least 1− 1
n we have that Xi ≤ 2

√
log n for i 6∈ A and Xj ≥ (C + 2)

√
log n for

j ∈ A. Thus Xi ≤ 2
√

log n < (C + 2)
√

log n ≤ Xj for all i 6∈ A and j ∈ A, which means A consists of the αn largest
observations Xi.

Moreover, because the responsibilities r̂i are sorted in the same order as the observations Xi, we have that ÂGMM consists
of the |ÂGMM| largest observations Xi. Thus, by Theorem 3, we have

|ÂGMM4A| =
∣∣∣|ÂGMM| − αn

∣∣∣ ≤
∣∣∣|ÂGMM| − α̂GMMn

∣∣∣+ |α̂GMM − α| ≤ 2
√
n log n. (71)

with probability at least 1 − 1
n , for sufficiently large n. Since |A| = αn, it follows that |ÂGMM4A|

|A| ≤ 2
α

√
logn
n = o(1) as

desired.
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