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Abstract

Anomaly estimation, or the problem of finding
a subset of a dataset that differs from the rest of
the dataset, is a classic problem in machine learn-
ing and data mining. In both theoretical work
and in applications, the anomaly is assumed to
have a specific structure defined by membership
in an anomaly family. For example, in temporal
data the anomaly family may be time intervals,
while in network data the anomaly family may
be connected subgraphs. The most prominent
approach for anomaly estimation is to compute
the Maximum Likelihood Estimator (MLE) of
the anomaly; however, it was recently observed
that for normally distributed data, the MLE is
a biased estimator for some anomaly families.
In this work, we demonstrate that in the normal
means setting, the bias of the MLE depends on
the size of the anomaly family. We prove that
if the number of sets in the anomaly family that
contain the anomaly is sub-exponential, then the
MLE is asymptotically unbiased. We also pro-
vide empirical evidence that the converse is true:
if the number of such sets is exponential, then
the MLE is asymptotically biased. Our analysis
unifies a number of earlier results on the bias of
the MLE for specific anomaly families. Next, we
derive a new anomaly estimator using a mixture
model, and we prove that our anomaly estimator
is asymptotically unbiased regardless of the size
of the anomaly family. We illustrate the advan-
tages of our estimator versus the MLE on disease
outbreak data and highway traffic data.

1Department of Computer Science, Princeton University,
Princeton, New Jersey, USA 2Department of Computer Science,
Brown University, Providence, Rhode Island, USA. Correspon-
dence to: Benjamin J. Raphael <braphael@princeton.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction
Anomaly identification — the discovery of rare, irregular,
or otherwise anomalous behavior in data — is a funda-
mental problem in machine learning and data mining with
numerous applications (Chandola et al., 2009). In tempo-
ral/sequential data, applications of anomaly identification
include change-point detection and inference (Page, 1955;
Hinkley, 1970; Adams & MacKay, 2007; Zhai et al., 2016);
in matrix data, applications include bi-clustering (Hartigan,
1972; Tanay et al., 2005; Kolar et al., 2011) and gene expres-
sion analysis (Ideker et al., 2002; Dittrich et al., 2008); in
spatial data, applications include disease outbreak and event
detection (Neill & Moore, 2004; Neill et al., 2005; Neill,
2012); and in network data, applications include large-scale
network surveillance (Arias-Castro et al., 2011; Sharpnack
et al., 2013b;a) and outbreak detection (Wong et al., 2003;
Leskovec et al., 2007). In many applications, the anomalous
behavior is assumed to have a specific structure described by
membership in an anomaly family. For example, in tempo-
ral data the anomaly family may be time intervals; in matrix
data the anomaly family may be submatrices; and in network
data the anomaly family may be connected subgraphs.

Anomaly identification can be divided into two different but
closely related problems: anomaly detection and anomaly
estimation. Given a dataset, the goal of anomaly detection
is to decide whether or not there exists an anomaly, or a
subset of the data, that is distributed according to a different
probability distribution compared to the rest of the data. The
goal of anomaly estimation is to determine the data points
in the anomaly. The distinction between anomaly detec-
tion and anomaly estimation is analogous to the distinction
between property testing and proper learning in statistical
learning theory (Goldreich et al., 1998): just as property
testing is “easier" than proper learning (with difficulty mea-
sured by sample complexity), anomaly detection is easier
than anomaly estimation (with difficulty measured by the
separation between the distributions of the anomaly and the
rest of the data). Different choices of the anomaly family
give rise to different versions of the anomaly detection and
estimation problems; e.g. change-point detection versus
change-point inference in temporal data (Arias-Castro et al.,
2005; Hinkley, 1971; Jeng et al., 2010), or submatrix detec-
tion versus submatrix estimation in matrix data (Hajek et al.,
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2017; Butucea & Ingster, 2013; Ma & Wu, 2015; Brennan
et al., 2019; Chen & Xu, 2016; Banks et al., 2018; Liu &
Arias-Castro, 2019; Gamarnik et al., 2019).

Most of the theoretical literature on anomaly detection and
estimation focuses on structured normal means problems
(Sharpnack et al., 2013a; Krishnamurthy, 2016). In this
setting, each data point is drawn from one of two normal
distributions, with the data points from the anomaly drawn
from the normal distribution with the higher mean; the struc-
ture of the anomaly is determined by the anomaly family.
Normal means problems have a long history in statistics
and machine learning as many statistical tests commonly
used in scientific disciplines are asymptotically normal, e.g.
see Arias-Castro et al. (2011); Donoho & Jin (2004); Cai
et al. (2007); Kolar et al. (2011); Sharpnack et al. (2013a);
Chen & Xu (2016); Liu & Arias-Castro (2019). In this pa-
per we also focus on the structured normal means setting,
but we emphasize that our results algorithms can be readily
extended to other probability distributions from the expo-
nential family as in earlier works (Butucea & Ingster, 2013;
Liu & Arias-Castro, 2019).

The most widely used techniques for both anomaly detection
and anomaly estimation problems are likelihood models:
the generalized likelihood ratio (GLR) test for the detection
problem, and the maximum likelihood estimator (MLE)
for the estimation problem. Both the GLR test statistic
and the MLE can be expressed using a scan statistic, or
the maximization of a function across all members of the
anomaly family (Kulldorff, 1997; Glaz & Naus, 2010). In
fact, as we note in Theorem 1, both the GLR test statistic
and the MLE involve the maximization of the same function.

Despite this close relationship between the GLR test and the
MLE, the two quantities have different theoretical guaran-
tees for their respective problems. The GLR test is known
to be asymptotically “near-optimal" for solving the anomaly
detection problem across many different anomaly families,
including intervals (Arias-Castro et al., 2005), submatrices
(Butucea & Ingster, 2013), subgraphs with small cut-size
(Sharpnack et al., 2013a), and connected subgraphs (Qian
& Saligrama, 2014). In contrast, the MLE is known to
be asymptotically near-optimal for solving the anomaly es-
timation problem only when the anomaly family is inter-
vals (Jeng et al., 2010) or submatrices (Liu & Arias-Castro,
2019). In fact, Reyna et al. (2020) recently observed that the
MLE is a biased estimator of the size of the anomaly when
the anomaly family is connected subgraphs of a biological
network.

These varying results for anomaly estimation across dif-
ferent anomaly families suggest that the bias of the MLE
depends on the anomaly family, and thus raise the follow-
ing two questions: (1) For which anomaly families is the
MLE biased? (2) Are there anomaly estimators that are less

biased than the MLE?

In this work we address both of these questions. First, we
show that the bias in the MLE depends on the size of the
anomaly family.1 We prove that if the number of sets in the
anomaly family that contain the anomaly is sub-exponential,
then the MLE is an asymptotically unbiased estimator. We
also provide empirical evidence that the converse is true
by examining many common anomaly families including
intervals, submatrices, connected subgraphs, and subgraphs
with low-cut size. Our results unify a number of previous
results in the literature including the asymptotic optimality
of the MLE when the anomaly family is intervals (Jeng
et al., 2010) or submatrices (Liu & Arias-Castro, 2019), and
the observation that the MLE is biased when the anomaly
family is connected subgraphs (Reyna et al., 2020).

Next, we derive a reduced-bias estimator of the anomaly
based on a Gaussian mixture model (GMM). Our estimator
is motivated by previous work that models unstructured
anomalies using GMMs (Cai et al., 2007; Donoho & Jin,
2004). We prove that our GMM-based estimator is asymp-
totically unbiased, regardless of the size of the anomaly
family or the number of sets containing the anomaly. We
empirically demonstrate the small bias of our estimator for
several anomaly families including intervals, submatrices,
and connected subgraphs. We illustrate the advantages of
our estimator versus the MLE on both disease outbreak data
and a highway traffic dataset.

2. Background: Structured Anomalies and
Maximum Likelihood Estimation

2.1. Problem Formulation

Suppose one is given observations (X1, . . . , Xn), where a
subset A ⊆ {1, . . . , n} of these observations, the anomaly,
are drawn from a normal distribution N(µ, 1) with elevated
mean and the remaining observations are drawn from the
standard normal distribution N(0, 1). Using the notation
[n] = {1, . . . , n} and Pn for the power set of [n], or the set
of all subsets of [n] for a positive integer n, we define the
distribution of the observations (X1, . . . , Xn) as follows.

Anomalous Subset Distribution (ASD). Let µ > 0, let
S ⊆ Pn be a family of subsets of [n] and let A ∈ S . We say
X = (X1, . . . , Xn) is distributed according to the Anoma-
lous Subset Distribution ASDS(A,µ) provided the Xi are
independently distributed as

Xi ∼
{
N(µ, 1), if i ∈ A,
N(0, 1), otherwise.

(1)

The distribution ASDS(A,µ) has three parameters: the
anomaly family S, the anomaly A, and the mean µ.

1All proofs are given in the Supplement.
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Figure 1: Observations (X1, . . . , Xn) from the Anomalous Subset Distribution ASDS(A,µ) for three anomaly families S .

The goal of anomaly estimation is to learn the anomaly A,
given data X ∼ ASDS(A,µ) and anomaly family S. We
formalize this problem as the following estimation problem.

ASD Estimation Problem. Given X = (X1, . . . , Xn) ∼
ASDS(A,µ) and S, find A.

A related problem is the decision problem of deciding
whether or not data X contains an anomaly. We formalize
this problem as the following hypothesis testing problem.

ASD Detection Problem. Given X = (X1, . . . , Xn) ∼
ASDS(A,µ) and S , test between the hypotheses H0 : A =
∅ and H1 : A 6= ∅.

The ASD Detection and Estimation Problems are also called
structured normal means problems (Krishnamurthy, 2016;
Sharpnack et al., 2013a), where the structure comes from
the choice of the anomaly family S.

Many well-known problems in machine learning correspond
to the ASD Detection and Estimation Problems for different
anomaly families S. In particular, we note the following
examples.

• S = In, the set of all intervals {i, i+1, . . . , j} ⊆ [n]. We
call In the interval family, and we call ASDIn(A,µ) the
interval ASD. The interval ASD is used to model change-
points, or abrupt changes, in sequential data including
time-series and DNA sequences (Hinkley, 1970; 1971;
Basseville & Nikiforov, 1993; Jeng et al., 2010).

• S = CG, the set of all connected subgraphs of a graph
G = (V,E) with vertices V = {1, . . . , n}. We call
CG the connected family, and we call ASDCG(A,µ) the
connected ASD. The connected ASD is used to model

anomalous behavior in different types of networks in-
cluding social networks, sensor networks and biological
networks (Qian & Saligrama, 2014; Aksoylar et al., 2017;
Ideker et al., 2002; Reyna et al., 2020). Note that the in-
terval family In is a special case of the connected family
CPn for the path graph Pn with n vertices.

• S = TG,ρ, the set of all subgraphs H of a graph G with
|{(i, j) ∈ E : i ∈ H, j 6∈ H}| ≤ ρ. We call TG,ρ the
graph cut family, and we call ASDTG,ρ(A,µ) the graph
cut ASD. The graph cut ASD is also used to model anoma-
lous behavior in networks (Sharpnack et al., 2013b;a;
Sharpnack et al., 2016).

• S = EG,δ, the set of all subgraphs H of a graph G with
edge-density at least δ. We call EG,δ the edge-dense
family, and we call ASDEG,δ(A,µ) the edge-dense ASD.
The edge-dense ASD is also used to model anomalous
behavior in networks (Cadena et al., 2018b).

• S =MN , the set of all submatrices of a square matrix
N with n entries (each observation Xi corresponds to an
entry of N ). We callMN the submatrix family, and we
call ASDMN

(A,µ) the submatrix ASD. The clustering
literature often uses the submatrix ASD to model biclus-
ters in matrix data (Kolar et al., 2011; Butucea & Ingster,
2013; Brennan et al., 2019; Liu & Arias-Castro, 2019).

• S = BP,ε, the set of all ε-balls of points P =
{p1, . . . , pn} ⊆ Rd in space. We call BP,ε the ε-ball
family. The spatial scan statistic is a standard tool for
solving the ASD Estimation Problem with the ε-ball fam-
ily BP,ε (Kulldorff, 1997; Glaz & Naus, 2010).

• S = Pn, the power set of {1, . . . , n}. We call Pn the
unstructured family, and we call ASDPn(A,µ) the un-
structured ASD.
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2.2. Maximum Likelihood Anomaly Estimation

A standard approach in statistics for solving a hypothesis
testing problem is to use the generalized likelihood ratio
(GLR) test, which the Neyman-Pearson lemma (Lehmann
& Romano, 2005) shows is the most powerful test for any
significance level. Likewise, a standard approach for solving
an estimation problem is to compute a maximum likelihood
estimator (MLE). For the ASD Detection and Estimation
problems, the GLR test statistic and the MLE, respectively,
have explicit formulas that involve the maximization of the
same function, Γ(S) = 1√

S

∑
v∈S Xv. We write out these

formulas below; see Arias-Castro et al. (2011); Sharpnack
et al. (2013a); Reyna et al. (2020) for proofs.

Proposition 1. Let X ∼ ASDS(A,µ) be distributed ac-
cording to the ASD. The Generalized Likelihood Ratio
(GLR) test statistic t̂S for the ASD Detection Problem is

t̂S = max
S∈S

Γ(S) = max
S∈S

1√
|S|
∑

v∈S
Xv. (2)

The Maximum Likelihood Estimator (MLE) ÂS of the
anomaly A is

ÂS = argmax
S∈S

Γ(S) = argmax
S∈S

1√
|S|
∑

v∈S
Xv. (3)

A key question in the statistics literature is: for what
anomaly families S and means µ (i.e. parameters of the
ASD) do the GLR test and the MLE solve the ASD Detec-
tion and Estimation problems, respectively?

For many anomaly families S, it has been shown that the
GLR test is asymptotically “near-optimal". This means that
there exists a value µdetect > 0 such that the following is
true: if µ ≥ µdetect then the GLR test asymptotically solves
the ASD Detection Problem with the probability of a type 1
or type 2 error going to 0 as n→∞, while if µ is not much
smaller than µdetect then there does not exist any test with
such guarantees on its type 1 or type 2 error probabilities.
Anomaly families S for which the GLR test is known to
be asymptotically near-optimal include the interval family
S = In (Arias-Castro et al., 2005), the submatrix family
S =MN (Butucea & Ingster, 2013), the graph cut family
S = TG,ρ (Sharpnack et al., 2013b;a), and the connected
family S = CG (Qian & Saligrama, 2014; Qian et al., 2014).

For a few anomaly families S, the MLE ÂS has also been
shown to optimally solve the ASD Estimation Problem. For
the interval family S = In, Jeng et al. (2010) showed that
if µ ≥ µdetect, then lim

n→∞
P (ÂIn 6= A) = 0. Liu & Arias-

Castro (2019) proved an analogous result for the submatrix
family S =MN using a regularized MLE. Note that these
results require µ ≥ µdetect, as it is not possible to estimate
the anomaly without first detecting the anomaly’s presence.

The MLE ÂS is also used in the bioinformatics literature
to solve the ASD Estimation Problem for the connected
family S = CG, where G is a biological network (Ideker
et al., 2002; Dittrich et al., 2008). However, the MLE ÂCG
for the connected family CG does not have any theoretical
guarantees, unlike the previously mentioned results for the
interval and submatrix families. In fact, Nikolayeva et al.
(2018) and Reyna et al. (2020) empirically observed that the
size |ÂCG | of the MLE ÂCG is a biased estimate of the size
|A| of the anomaly, in the sense of the following definition.

Definition 1. Given data X = (X1, . . . , Xn), let θ̂ = θ̂(X)
be an estimator of a parameter θ of the distribution of X.
The quantity Biasθ(θ̂) = E[θ̂]−θ is the bias of the estimator
θ̂. We say that θ̂ is a biased estimator of θ if Biasθ(θ̂) 6= 0,
and that θ̂ is an unbiased estimator of θ otherwise. When
it is clear from context, we omit the subscript θ and write
Bias(θ̂) for the bias of estimator θ̂.

Reyna et al. (2020) also empirically observed a similar bias
for the MLE ÂPn for the unstructured family S = Pn.

We note that while many papers in statistics study the bias of
MLEs for different distributions (e.g. Firth (1993); Mardia
et al. (1999); Giles et al. (2013)), to our knowledge, the
bias of the MLE ÂS for the ASD has previously only been
studied in Reyna et al. (2020).

3. Relating MLE Bias to Size of the Anomaly
Family

The observations in the previous section lead to the fol-
lowing question: for which anomaly families S is the
size |ÂS | of the MLE ÂS a biased estimate of the size
|A| of the anomaly A? In this section, we provide the-
oretical and experimental evidence that the key quantity
that determines the bias of the MLE ÂS is the quantity
S̆(A) = {S ∈ S : S ⊇ A}, or the collection of sets in the
anomaly family S that contain the anomaly A.

First, we show that if the number |S̆(A)| of sets containing
the anomaly A is sub-exponential in n, then the size |ÂS |
of the MLE ÂS is asymptotically unbiased.

Theorem 1. Let X = (X1, . . . , Xn) ∼ ASDS(A,µ)
where |S| = Ω(n) and |A| = αn with 0 < α < 0.5.
Suppose |S̆(A)| is sub-exponential in n. If lim

n→∞
P (A ⊆

ÂS) = 1, then lim
n→∞

Bias(|ÂS |/n) = 0.

A key component of our proof of Theorem 1 is the following
Lemma relating the Bias(|ÂS |/n) of the MLE ÂS to the
number |S̆(A)| of sets containing the anomaly A.

Lemma 1. Let X ∼ ASDS(A,µ) where |S| = Ω(n) and
|A| = αn with 0 < α < 0.5. Assume lim

n→∞
P (A ⊆ ÂS) =
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Figure 2: Bias in estimators of the size |A| of the anomaly A computed from n = 900 samples X = (X1, . . . , Xn) ∼
ASDS(A,µ) from the ASD for different choices of anomaly family S . In each sample, the anomaly A of size |A| = 0.05n

is chosen uniformly at random from S. (A) Bias(|ÂS |/n) of the MLE vs µ for means µ ≥ µdetect. For small µ, the MLE
shows positive bias for the connected family CG and unstructured family Pn, consistent with Conjecture 1 and Theorem 2.
(B) Bias(|ÂS |/n) vs n for µ = 3 for the connected family S = CG, whereG = (V,E) is a graph whose vertices V = P ∪C
are partitioned into a path graph P and a clique C. Dotted lines indicate first and third quartiles in the estimate of the bias.
The positive bias for |C| = Θ(n) does not decrease as n increases, consistent with Conjecture 1. (C) Bias(|ÂGMM|/n) of
GMM-based estimator vs µ for means µ ≥ µdetect. In contrast to (A), the bias is zero for all anomaly families and sufficiently
large mean µ, consistent with Corollary 1. (D) Bias(|ÂGMM|/n) vs n for µ = 3 and the same connected anomaly family as
in (B). The GMM-based estimator appears to be unbiased for sufficiently large n, consistent with Corollary 1.

1. If n is sufficiently large and Bias(|ÂS |/n) ≥ γ, then

|S̆(A)| ≥ (Cµ,γ,α)n · e−Θ(
√
n logn), (4)

where Cµ,α,γ = exp
(

1
2µ

2α2
(√

1 + γ
4α − 1

)2)
.

We make two mild assumptions in Theorem 1. First, we
assume the proportion α = |A|

n of anomalous observations
is a positive constant independent of n. Second, we assume
that the anomaly family S has size |S| = Ω(n); this assump-
tion is satisfied by many commonly-used anomaly families
including the interval family S = In, the submatrix family
S =MN , the connected family S = CG for any graph G,
and the unstructured family S = Pn.

We also require that limn→∞ P (A ⊆ ÂS) = 1, which
is a technical condition needed for the proof of Theorem
1. We conjecture that this condition can be replaced by
the condition µ ≥ µdetect. This conjecture is based on the
empirical observation that if µ ≥ µdetect, then the MLE ÂS
contains most of the elements in A (Figure 3), suggesting
that the condition µ ≥ µdetect is only a slightly weaker
condition than limn→∞ P (A ⊆ ÂS) = 1.

Theorem 1 generalizes earlier results showing that the MLEs
ÂIn and ÂMN

for the interval family In and submatrix fam-
ilyMN are asymptotically unbiased (Jeng et al., 2010; Liu
& Arias-Castro, 2019) as these families satisfy the condi-
tions of Theorem 1. Moreover, Theorem 1 implies that
the regularization of the MLE used in Liu & Arias-Castro

(2019) is not necessary to prove asymptotic unbiasedness
(see Supplement).

Informally, Theorem 1 says that if the number |S̆(A)| of
subsets that contain the anomaly A is sub-exponential in n,
then the MLE ÂS is an asymptotically unbiased estimator
of the size |A| of the anomalyA. Next, we prove that for the
unstructured family Pn, where |S̆(A)| is exponential in n,
the MLE ÂPn is asymptotically biased for all µ. This result
settles a conjecture posed by Reyna et al. (2020).

Theorem 2. Let X ∼ ASDPn(A,µ) where |A| = αn with
0 < α < 0.5. Then limn→∞ Bias(|ÂPn |/n) > 0.

We prove Theorem 2 by deriving an explicit formula for the
asymptotic bias limn→∞ Bias(|ÂPn |/n) of the MLE.

We conjecture that Theorems 1 and 2 describe the only two
possible values for the asymptotic bias of the MLE ÂS , and
furthermore that the technical conditions in Theorem 1 can
be relaxed to the simpler condition µ ≥ µdetect. Thus we
conjecture that MLE ÂS is asymptotically biased if and
only if |S̆(A)| is exponential in n.

Conjecture 1. Let X ∼ ASDS(A,µ) with µ ≥ µdetect.
Then limn→∞ Bias(|ÂS |/n) > 0 if |S̆(A)| is exponential
in n, and limn→∞ Bias(|ÂS |/n) = 0 otherwise.

Conjecture 1 generalizes Theorems 1 and 2, and is consistent
with the prior work noted in Section 2.2 on the bias of the
MLE ÂS for different anomaly families S:
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Figure 3: Normalized intersection |A∩ÂS |
|A| between anomaly

A and MLE ÂS for means µ ≥ µdetect for different anomaly
families S. Data generated as in Figure 2. For µ ≥ µdetect
and different anomaly families S, the normalized intersec-
tion |A∩ÂS |

|A| > 0.85, i.e. the MLE ÂS contains at least 85%

of the elements in the anomaly A. This suggests that the
condition lim

n→∞
P (A ⊆ ÂS) = 1 in Theorem 1 is not much

stronger than the condition µ ≥ µdetect.

• S = In, the interval family: |S̆(A)| ≤ |S| = O(n2)

is sub-exponential, so |ÂIn | is asymptotically unbiased
(Jeng et al., 2010).
• S = MN , the submatrix family: |S̆(A)| ≤ |S| =

O(22
√
n) is sub-exponential, so |ÂMN

| is asymptotically
unbiased (Liu & Arias-Castro, 2019).

• S = CG, the connected family: When G has minimum
degree 3, |S̆(A)| is exponential (Vince, 2017), so |ÂCG |
is asymptotically biased (Reyna et al., 2020).

• S = Pn, the unstructured family: When |A| < 0.5n,

|S̆(A)| = 2n(1− |A|
n ) = Ω

(
20.5n

)
is exponential, so

|ÂPn | is asymptotically biased.

3.1. Experimental Evidence for Conjecture 1

We provide empirical evidence for Conjecture 1 by exam-
ining the bias of the MLE for several different anomaly
families. For each anomaly family S , we select an anomaly
A ∈ S with size |A| = 0.05n uniformly at random from
S. We draw a sample X = (X1, . . . , Xn) ∼ ASDS(A,µ)

with n = 900 observations, and compute the MLE ÂS .
We repeat for 50 samples to estimate Bias(|ÂS |/n). We
perform this process for a range of means µ ≥ µdetect (see
Supplement for details on empirically calculating µdetect.)

We compute Bias(|ÂS |/n) for the following anomaly fami-
lies: S = In, the interval family; S =MN , the submatrix
family with matrix N ∈ R30×30; S = CG, the connected
family with an Erdős-Rényi random graphG (edge probabil-

ity = 0.01); and S = Pn, the unstructured family. |S̆(A)|
is sub-exponential for the interval family In and the sub-
matrix familyMN , and is exponential for the connected
family CG (with high probability (Vince, 2017)) and for the
unstructured family Pn.

For the interval family In and submatrix familyMN , where
|S̆(A)| is sub-exponential, we find that Bias(|ÂS |/n) ≈ 0
for all means µ ≥ µdetect (Figure 2A). In contrast, for the
connected family CG and unstructured family Pn, where
|S̆(A)| is exponential, we observe that Bias(|ÂS |/n) > 0
for µ ∈ [µdetect, 5] (Figure 2A). (Because n is fixed, the
Bias(|ÂS |/n) will be zero for sufficiently large µ.) These
observations provide evidence in support of Conjecture 1 for
these families. Moreover, although Conjecture 1 is about the
Bias(|ÂS |/n) of the MLE ÂS , we also observe that larger
Bias(|ÂS |/n) reduces the F-measure between the anomaly
A and the MLE ÂS (see Supplement).

Next, we examine the Bias(|ÂS |/n) of the MLE ÂS in the
limit n→∞, and find that the bias of the MLE ÂS appears
to converge to positive values only when |S̆(A)| is exponen-
tial. We specifically examine the connected anomaly family
CG for the graph G = (V,E) whose vertices V = P ∪ C
are partitioned into two sets: a path graph P and a clique
C, with |P ∩ C| = 1. (When |P | = |C|, G is known as
the “lollipop graph" (Zhang et al., 2009).) By varying the
sizes |P |, |C| of the path graph P and clique C, respectively,
we can affect the value of |S̆(A)|: |S̆(A)| is exponential if
|C| = Θ(n) and is sub-exponential if |C| = o(n). We
observe that limn→∞ Bias(|ÂS |/n) > 0 if |C| = Θ(n),
and limn→∞ Bias(|ÂS |/n) = 0 if |C| = o(n) (Figure 2B),
which aligns with Conjecture 1.

In the Supplement, we describe two more experiments that
support Conjecture 1. In the first experiment, we construct
an anomaly family S where |S| is exponential, while |S̆(A)|
is exponential for some anomalies A and sub-exponential
for others. We observe that the MLE ÂS is biased if and only
if |S̆(A)| is exponential, providing evidence for Conjecture
1 by showing that Bias(|ÂS |/n) depends on the number
|S̆(A)| of sets containing the anomaly rather than the size
|S| of the anomaly family. In the second experiment, we
empirically demonstrate that the bias of the MLE ÂTG,ρ for
the graph cut family S = TG,ρ has a strong dependence on
the cut-size bound ρ. This aligns with Conjecture 1 since
|S̆(A)| is polynomial when ρ is constant in n while |S̆(A)|
is exponential when ρ is close to the number |E| of edges
in G (Nagamochi et al., 1994).

4. Reducing Bias using Mixture Models

In the previous section, we showed that the MLE ÂS yields
a biased estimate of the size |A| of the anomaly A when
the number |S̆(A)| of sets in the anomaly family S that
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contain A is exponential in n. In this section, we derive an
anomaly estimator that is less biased than the MLE. Our
anomaly estimator leverages a connection between the ASD
and the Gaussian mixture model (GMM), and is motivated
by previous work that uses GMMs to estimate unstructured
anomalies (Cai et al., 2007; Donoho & Jin, 2004).

Recall the following latent variable representation of the
ASD: given a sample X = (X1, . . . , Xn) ∼ ASDS(A,µ)
from the ASD, we define a corresponding sequence Z =
(Z1, . . . , Zn) of latent variables Zi = 1(i ∈ A). Estimating
the anomalyA is equivalent to estimating the latent variables
Z. The bias of the MLE ÂS corresponds to overestimating
the sum |A| = ∑n

i=1 Zi of latent variables.

This latent variable representation of the ASD is reminiscent
of the latent variable representation of a Gaussian mixture
model (GMM), defined as follows.
Gaussian Mixture Model (2 components, unit variance).
Let µ > 0 and α ∈ (0, 1). X is distributed according to the
Gaussian Mixture Model GMM(µ, α) provided

X ∼ αN(µ, 1) + (1− α)N(0, 1). (5)

Associated with X is a latent variable Z, where Z = 1 if X
is drawn from the N(µ, 1) distribution and Z = 0 if X is
drawn from the N(0, 1) distribution.

Note that n independent observations Xi
i.i.d.∼ GMM(µ, α)

from the GMM are not equal in distribution to a sample
Y = (Y1, . . . , Yn) ∼ ASDS(A,µ) from the ASD. In par-
ticular, in the GMM all of the data points Xi are identically
distributed, while in the ASD exactly |A| of the data points
Yi are drawn from the N(µ, 1) distribution. Nevertheless,
we observe that the empirical distributions of the unstruc-
tured ASD and the GMM converge in Wasserstein distance
as n→∞ (see Supplement). In anomaly estimation, some
previous approaches model unstructured anomalies with a
GMM (Cai et al., 2007; Donoho & Jin, 2004). However,
existing work on estimating structured anomalies typically
models the data with the ASD (Arias-Castro et al., 2011;
Sharpnack et al., 2013b).

Another difference between the ASD and GMM is that one
can use maximum likelihood estimation to accurately esti-
mate the sum

∑n
i=1 Zi of latent variables Zi from GMM

observations Xi
i.i.d.∼ GMM(µ, α) (Bishop, 2006), unlike

with the ASD. Specifically, Kalai et al. (2010) showed that
the following algorithm gives accurate estimates of the indi-
vidual latent variablesZi: (1) estimate the GMM parameters
µ and α and (2) set Zi = 1 if the estimated responsibility
ri = P (Zi = 1 | Xi), or probability of Xi being drawn
from the N(µ, 1) distribution, is greater than 0.5.

In practice, the parameter estimation in step (1) is often done
by computing the MLEs µ̂GMM and α̂GMM of the GMM pa-
rameters µ and α, respectively. For dataXi

i.i.d.∼ GMM(µ, α)

drawn from a GMM, the MLEs µ̂GMM and α̂GMM are effi-
ciently computed via the EM algorithm (Daskalakis et al.,
2017; Xu et al., 2016) and are asymptotically unbiased esti-
mators of µ and α, respectively (Chen, 2017).

Motivated by the connection between the latent variable
representations of the ASD and GMM, we prove an anal-
ogous result on the asymptotic unbiasedness of the MLEs
µ̂GMM and α̂GMM for data drawn from the ASD. Specifi-
cally, we prove that given data X ∼ ASDS(A,µ) with
sufficiently large mean µ, then the GMM MLEs µ̂GMM and
α̂GMM obtained by fitting a GMM to data X are asymptoti-
cally unbiased estimators of µ and |A|/n, respectively. This
result settles a conjecture of Reyna et al. (2020).
Theorem 3. Let X = (X1, . . . , Xn) ∼ ASDS(A,µ),
where |A| = αn for 0 < α < 0.5 and µ ≥ C

√
log n for

a sufficiently large constant C > 0. For sufficiently large

n, we have that |α̂GMM − α| ≤
√

logn
n and |µ̂GMM − µ| ≤

3
√

logn
n with probability at least 1− 1

n .

A sketch of our proof of Theorem 3 is as follows. Let

B =

{
(α̂, µ̂) : |α| >

√
logn
n or |µ̂− µ| >

√
logn
n

}
be the

set of all “bad" estimators (α̂, µ̂) of the true GMM pa-
rameters (α, µ). We show that with high probability, the
GMM likelihood for all (α̂, µ̂) ∈ B is less than the GMM
likelihood for (α, µ), which implies that the GMM MLE
(α̂GMM, µ̂GMM) is not in B.

4.1. A GMM-based Anomaly Estimator

Motivated by Theorem 3, we use a GMM fit to derive an
asymptotically unbiased anomaly estimator for any anomaly
family S. Our approach generalizes the algorithm given
in (Reyna et al., 2020) for the connected family S = CG.
Our approach is inspired by both the GMM literature dis-
cussed above and by classical statistical techniques such as
the False Discovery Rate (FDR) (Benjamini & Hochberg,
1995) and the Higher Criticism (Donoho & Jin, 2004) thresh-
olding procedures, which identify unstructured anomalies
in z-score distributions by first estimating the size of the
anomalies (Jin & Cai, 2007; Cai et al., 2007; Meinshausen
& Rice, 2006; Benjamini, 2010; Brennan et al., 2020).

Given data X ∼ ASDS(A,µ), we first use the EM al-
gorithm to fit a GMM to the data X. This fit yields es-
timates µ̂GMM, α̂GMM of the GMM parameters µ, α, re-
spectively, as well as estimates r̂i of the responsibilities
ri = P (Zi = 1 | Xi). Our estimator ÂGMM is the set

S ∈ S with size
∣∣|S| − α̂GMMn

∣∣ ≤
√

logn
n and having the

largest total responsibility:

ÂGMM = argmax
S∈S∣∣|S|−α̂GMMn
∣∣≤√ logn

n

(∑

i∈S
r̂i

)
. (6)
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Figure 4: (A) An anomaly A containing 11 connected counties is implanted into a graph of counties in the Northeast USA
(Cadena et al., 2019). (B) The MLE ÂCG greatly overestimates the size of the anomaly with 59 false positives (F -measure =
0.24). (C) The GMM estimator ÂGMM identifies 7/11 counties correctly with only 1 false positive (F -measure = 0.73).

By Theorem 3, our constraint on the size |S| in (6) ensures
that the size |ÂGMM| of the GMM-based estimator ÂGMM
has asymptotically zero bias for sufficiently large µ. We
formalize this in the following Corollary.

Corollary 1. Let X = (X1, . . . , Xn) ∼ ASDS(A,µ),
where |A| = αn for 0 < α < 0.5 and µ ≥
C
√

log n for a sufficiently large constant C > 0. Then
limn→∞ Bias(|ÂS |/n) = 0.

In addition, for the unstructured family S = Pn, we show
our estimator ÂGMM has small normalized error |A4ÂGMM|

|A| ,
as studied by Castro (2014); Castro & Tánczos (2017),
where4 is the symmetric set difference.

Corollary 2. Let X = (X1, . . . , Xn) ∼ ASDPn(A,µ),
where |A| = αn for 0 < α < 0.5 and µ ≥ C

√
log n for

a sufficiently large constant C > 0. Then |A4ÂGMM|
|A| ≤

2
√

logn
n = o(1) with probability at least 1− 1

n .

Another useful property of our estimator ÂGMM is that
the objective

∑
i∈S r̂i in (6) is linear, in contrast to the

non-linear objective
∑
i∈S Xi/

√
|S| for the MLE ÂS in

Equation (3). Thus, our estimator ÂGMM can be effi-
ciently computed for many anomaly families S. For
the unstructured family Pn, ÂGMM can be computed in
O(n log n) time by sorting the data points and returning
the bα̂GMMn +

√
log n/nc largest ones. For the interval

family In, ÂGMM can be computed in O(n) time by scan-
ning over all intervals of size bα̂GMMn +

√
log n/nc. For

the graph cut family TG,ρ, Sharpnack et al. (2013a) shows
that (6) can be efficiently solved with a convex program
through the use of Lovász extensions (Bach, 2010).

More generally, when the constraint S ∈ S can be expressed
with linear constraints, one can compute ÂGMM with an Inte-
ger Linear Program (ILP). This is true for anomaly families
including the submatrix familyMN , the graph cut family
TG,ρ (Sharpnack et al., 2013b), and the connected family

CG (Dittrich et al., 2008; Reyna et al., 2020). In practice, we
found that directly computing (6) via ILP could sometimes
be inefficient for the submatrix and connected families, and
in the Supplement we derive an approximation to (6) that
can be efficiently computed for these families.

4.2. Experiments

First, we compare the performance of our estimator ÂGMM
to the MLE ÂS for the anomaly families S from Section
3.1. We observe that Bias(|ÂGMM|/n) ≈ 0 for all means
µ ≥ µdetect and across many anomaly families S (Figure
2C). We also observe that limn→∞ Bias(|ÂGMM|/n) = 0
no matter if |S̆(A)| is exponential or sub-exponential (Fig-
ure 2D). This empirically demonstrates Theorem 3 by show-
ing that |ÂGMM| is an asymptotically unbiased estimator of
the anomaly size |A| for sufficiently large µ regardless of
the number |S̆(A)| of sets containing the anomaly A.

Next, we simulate a disease outbreak on the Northeastern
USA Benchmark (NEast) graph, a standard benchmark for
estimating spatial anomalies (Cadena et al., 2018a; 2019).
The NEast graph G = (V,E) is a graph whose nodes
are the n = 244 counties in the northeastern part of the
USA (Kulldorff et al., 2003) with edges connecting adjacent
counties. Similar to (Cadena et al., 2018a; Aksoylar et al.,
2017; Qian & Saligrama, 2014), we implant a connected
anomaly A ∈ CG of size |A| = 11 and we draw a sample
X ∼ ASDCG(A, 2). Because existing methods for esti-
mating anomalous subgraphs typically compute the MLE
ÂCG (Chen & Neill, 2014; Qian & Saligrama, 2014; Cadena
et al., 2019), we also compare our estimator to the MLE. We
find (Figure 4) that the MLE ÂCG greatly overestimates the
size |A| of the anomaly A, with many more false positives
compared to the GMM estimator ÂGMM.

We also compare our estimator ÂGMM and the MLE ÂS on
a real-world highway traffic dataset; similar to the NEast
graph, this dataset is also often studied in the scan statistic
literature (Zhou & Chen, 2016; Cadena et al., 2018a; 2019).
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Figure 5: Comparison of the MLE, also known as the graph
scan statistic (left), and our estimator (right) in estimating
connected disease clusters in data of breast cancer incidence
in Manhattan. Our estimator computes a smaller cluster
than the MLE/graph scan statistic but with a 20% higher
average incidence ratio (relative risk).

This dataset consists of a highway traffic network G =
(V,E) in Los Angeles County, CA with |V | = 1868 vertices
and |E| = 1993 edges. The vertices V are sensors that
record the speed of cars passing and the edges E connect
adjacent sensors. The observations X = (Xv)v∈V are p-
values (where sensors that record higher average speeds
have lower p-values) that are transformed to Gaussians using
the method in Reyna et al. (2020).

For the connected family CG, we find that our estimator
ÂGMM is much smaller than the MLE ÂCG (|ÂGMM| = 17

versus |ÂCG | = 140) but with higher average score (2.6
for our estimator versus 0.55 for the MLE). While there is
no ground-truth anomaly in this dataset, our results show
that our estimator ÂGMM yields a smaller anomaly but with
higher average values than the MLE ÂCG , consistent with
the theoretical results in Section 3 that the MLE ÂCG is a
biased estimator. In the Supplement, we show similar results
comparing our estimator ÂGMM and the MLE ÂS for the
edge-dense family S = EG,0.7. Since the goal of anomaly
estimation in this application is to identify portions of roads
with or without high traffic volume, the large and biased
anomaly estimates produced by the MLE may not be useful
for traffic studies.

We also compared our estimator and the MLE on a dataset
of breast cancer incidence in census blocks in Manhattan
(Boscoe et al., 2016) using the connected family CG. This
dataset is typically modeled with Poisson distributions, and
we accordingly adapted the MLE and our estimator to such
Poisson distributions (see Supplement for details). In this

setting, the MLE is also known as a graph scan statistic
(Cadena et al., 2019). We find that our estimator identifies a
much smaller connected cluster of breast cancer cases com-
pared to the MLE/graph scan statistic (182 census blocks vs
382 Figure 5) but with a 20% higher cancer incidence rate,
again demonstrating the bias of the MLE.

5. Conclusion
We study the problem of estimating structured anomalies.
We formulate this problem as the problem of estimating
a parameter of the Anomalous Subset Distribution (ASD),
with the structure of the anomaly described by an anomaly
family. We demonstrate that the Maximum Likelihood Esti-
mator (MLE) of the size of this parameter is biased if and
only if the number of sets in the anomaly family containing
the anomaly is exponential. These results unify existing
results for specific anomaly families including intervals,
submatrices, and connected subgraphs. Next, we develop an
asymptotically unbiased estimator using a Gaussian mixture
model (GMM), and empirically demonstrate the advantages
of our estimator on both simulated and real datasets.

Our work opens up a number of future directions. First, it
would be highly desirable to provide a complete proof of
Conjecture 1. A second direction is to generalize the ASD to
more than one anomaly in a dataset by building on existing
work for the interval family (Jeng et al., 2010) and the sub-
matrix family (Chen & Xu, 2016). One potential algorithm
for identifying multiple anomalies is to fit a k-component
GMM to the data and sequentially compute each anomaly.
A third direction is to generalize our theoretical results to
other distributions, e.g. Poisson distributions, which are
commonly used to model anomalies in integer-valued data
(Cadena et al., 2019; Liu & Arias-Castro, 2019; Kulldorff,
1997). While our GMM-based estimator is easily adapted
to other distributions, one challenge in studying bias is that
the MLE does not necessarily have a simple form like it
does for Gaussian distributions. These directions would
strengthen the theoretical foundations for further applica-
tions of anomaly estimation.
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