
Supplementary Material for: Learning from Nested Data with Ornstein
Auto-Encoders

Youngwon Choi 1 2 Sungdong Lee 1 Joong-Ho Won 1

1. Proofs
Proof Theorem 3.1. We first need to check if Q is not empty. Consider a distribution QZ0,X0|B having marginals PZ0|B
and PX0|B . A trivial example of such a conditional distribution is PZ0|BPX0|B . Then, we can find a conditional distribution
QZ0|X0,B satisfying that QZ0|X0,BPX0|B = QZ0,X0|B , so that

∫
X QZ0|X0,BdPX0|B = PZ0|B . With this distribution

QZ0|X0,B , we can construct a conditional distribution QZ|X,B such that the joint distribution QZ|X,BPX,B of (X,Z, B)

has a marginal
[∏n

j=1QZ0|X0,B

]
PX1:n,B on (X1:n,Z1:n, B) for any n. Then, its marginal on Z1:n is

∫
Xn×B

[n∏
j=1

QZ0|X0,B

]
dPX1:n,B

=

∫
Xn×B

[n∏
j=1

QZ0|X0,B

]
d
[
PB

n∏
j=1

PX0|B
]

=

∫
B

n∏
j=1

[∫
X
QZ0|X0,BdPX0|B

]
dPB

=

∫
B

[n∏
j=1

PZ0|B
]
dPB

= PZ1:n ,

for any n. From the Kolmogorov extension theorem, it follows that QZ|X,B ∈ Q. Thus Q is not empty.

Recall thatPs(PX, PZ) is the set of all jointly stationary distributions of (X,Z) ∈ X∞×Z∞ havingPX andPZ as marginals.
Let PX,Z,B be the set of all joint distributionsQZ|X,BPX,B of (X,Z, B) ∈ X∞×Z∞×B for anyQZ|X,B ∈ Q, and PX,Z

be the set of marginal distributions on (X,Z) induced by PX,Z,B . For any πX,Z ∈ PX,Z, there exists πX,Z,B ∈ PX,Z,B

such that its marginal is πX,Z. Since any joint distribution in PX,Z,B has marginals PX and PZ, it follows that πX,Z
has marginals PX and PZ. Also, πX,Z,B has a marginal

[∏n
j=1QZ0|X0,B

]
PX1:n,B =

[∏n
j=1 PX0|BQZ0|X0,B

]
PB on

Xn × Zn × B for some QZ0|X0,B and for any n. This means that πX,Z is jointly exchangeable i.e., {(Xj , Yj)}j=∞j=−∞ is
exchangeable, thus stationary. Then, πX,Z ∈ Ps(X,Z), so that Ps(X,Z) ⊃ PX,Z. Now starting from (3), we can conclude

*Equal contribution 1Department of Statistics, Seoul National University. 2Current affiliation: UCLA Center for Vision & Imaging
Biomarkers. Correspondence to: Joong-Ho Won <wonj@stats.snu.ac.kr>.

Proceedings of the 38 th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

main_camera_ready.pdf{}{}{}#theorem.3.1{}{}{}

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

that,

ρ̄(PX,g]PZ) = inf
QZ|X∈QZ|X

EPX
EQZ|Xd

p(X0, [g(Z)]0)

= inf
πX,Z∈Ps(PX,PZ)

EπX,Z
dp(X0, [g(Z)]0)

≤ inf
πX,Z∈PX,Z

EπX,Z
dp(X0, [g(Z)]0)

= inf
πX,Z,B∈PX,Z,B

EπX,Z,B
dp(X0, [g(Z)]0)

= inf
QZ|X,B∈Q

EPX,B
EQZ|X,B

dp(X0, [g(Z)]0).

Proof of Proposition 3.1. For any conditional distributions QZ|X,B ∈ QRI , the joint distribution PX,BQZ|X,B has a
marginal ∫

Xn×Z

[n∏
j=1

QZ0|X0,B

]
dPX1:n,B

=

∫
Xn×Z

[n∏
j=1

QZ0|X0,B

]
d
[
PB

n∏
j=1

PX0|B
]

=

∫
Z

n∏
j=1

[∫
X
QZ0|X0,BdPX0|B

]
dPB

=

∫
Z

[n∏
j=1

PZ0|B
]
dPB

= PZ1:n ,

on Z1:n for any n. The third equality holds because QZ0|X0,B , which promotes QZ|X,B , achieves the constraint (9). Thus
QZ|X,B ∈ Q and we have QRI ⊂ Q.

Proof of Theorem 4.1. Note that QZ0|X0,B fully parameterizes Q, and under model (12), we have QZ0|X0,B =
QB,E0|X0,B = QB|X0,BQE0|X0,B , where QB|X0,B(·|x0, b) is the Dirac measure on b for any b ∈ I. From the con-
struction (12), for b ∈ I and ej ∈ V , j = 1, ..., n,

PZ1:n((b, e1), (b, e2), ..., (b, en))

=

∫
I

[n∏
j=1

PZ0|B((b, ej)|b′)
]
dPB(b′)

=

∫
I

[n∏
j=1

PB,E0|B((b, ej)|b′)
]
dPB(b′)

=

∫
I

[n∏
j=1

PE0|B(ej |b′)PB|B(b|b′)
]
dPB(b′)

=
[n∏
j=1

PE0|B(ej |b)
]
PB(b)

for any n. Also, for any ((b, e1), (b, e2), ..., (b, en)) ∈ I × Vn,
∫ [∏n

j=1QZ0|X0,B

]
dPX1:n,B can be formulated as

PZ1:n((b, e1), (b, e2), ..., (b, en))

main_camera_ready.pdf{}{}{}#theorem.4.1{}{}{}

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

=

∫
Xn×I

[n∏
j=1

QZ0|X0,B((b′, ej)|xj , b)
]
dPX1:n,B(x1, · · · , xn, b′)

=

∫
I

∫
Xn

[n∏
j=1

QZ0|X0,B((b′, ej)|xj , b)
]
dPX1:n|B(x1, ..., xn|b′) dPB(b′)

=

∫
I

 n∏
j=1

∫
X
QZ0|X0,B((b′, ej)|xj , b)dPX0|B(xj |b′)

 dPB(b′)

=

∫
I

 n∏
j=1

∫
X
QB|X0,B(b′|xj , b)QE0|X0,B(ej |xj , b)dPX0|B(xj |b′)PX0|B(xj |b′)

 dPB(b′)

=

 n∏
j=1

∫
X
QE0|X0,B(ej |xj , b)dPX0|B(xj |b)

PB(b),

where QB|X0,B(·|x0, b) is the Dirac measure on b for any b ∈ I. for all n, since QB|X0,B is the Dirac measure on b. Thus∫
X
QE0|X0,BdPX0|B = PE0

a.s. (i)

and QE0|X0,B fully parameterizes Q under the constraint (i) and that B satisfies PX1:n,B =
[∏n

j=1 PX0|B
]
PB for all n.

Thus, DOAE(PX, PY;PZ) has the formulation in terms of a encoder QE0|X0,B :

DOAE(PX, PY;PZ)

= inf
QZ|X,B∈Q

EPX,B
EQZ|X,B

EQY|Zd
p(X0, Y0),

= inf
QE0|X0,B∈QE0

EPX
EPB|XEQE0|X0,B

dp(X0, g(B,E0)),

where QE0
= {QE0|X0,B :

∫
X QE0|X0,BdPX0|B = PE0

}.

2. Implementation details
Conditional adversarial auto-encoders When all the observational units are present in the training data, we compared
the quality of samples from the PSOAE with CAAE as well, by interpreting each unit as a class. We set the CAAE with
conditional Gaussian latent variables:

Zij |{Y i = k} iid∼ N (0, IdZ),

for k = 1, . . . , C where Y is a given class label of X0 and C is the number of subjects. For each class k = 1, . . . , C, the
encoder QZ0|Y X0

of CAAE were designed to be a Gaussian encoder:

Zij |{X0 = xij , Y = k} ∼ N
(
µk(xi, yi), σ2

k(xi, yi)IdZ
)
,

where µk : X × {1, . . . , C} → Z , σ2
k : X × {1, . . . , C} → R++ are parameterized by a deep neural network. The decoder

g : Z × {1, . . . , C} → X was also parameterized by a deep neural network.

Random-intercept OAE For the RIOAE, we followed the recipe in (Choi & Won, 2019). The prior distribution PZ0 was
a random intercept model with Gaussian noise:

Zij |{Bi = bi} iid∼ N (bi, IdZ), Bi
iid∼ N (0, 100IdZ),

and the encoder pair (QZ0|B,X0
, QB|X0

) were designed to be a random-intercept Gaussian encoder pair:

Zij |{B = b̃i, X0 = xij}
iid∼ N (µ(xij) + b̃i, σ2(xij)I), B|{X0 = xij}

iid∼ N (ν(xij), τ
2I),

where the mean functions µ : X → Z , ν : X → Z , the variance function σ2 : X → R++, and the decoder g : Z → X
were parameterized by deep neural networks. The hyperparameter τ was kept small.

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

Algorithm i Random-intercept OAE training
Input: Exchangeable sequences (xi1, ..., x

i
ni

) for i = 1, ..., L
Output: Encoder pair (QB|X0

, QZ0|X0,B) and decoder g
Require: PB , PZ0|B , regularization coefficients λ1, λ2, positive definite kernel κ

1: Initialize: parameters of (QZ0|X0,B , QB|X0
), g, and discriminator f

2: while QB|X0
, QZ0|X0,B , f , g not converged do

3: Sample observational unit i = 1, . . . , n and sequence (xi1, . . . , x
i
mi

) for each unit i from the training set
4: Sample bi from PB for i = 1, . . . , n
5: Sample (zi1, . . . , z

i
mi

) from PZ0|B given bi for i = 1, . . . , n

6: Sample b̂ij ∼ QB|X0
(·|xij) for each j = 1, . . . ,mi and aggregate b̂i = 1

mi

∑mi

j=1 b̂
i
j for i = 1, . . . , n.

7: Sample (ẑi1, · · · , ẑimi
) from QZ0|X0,B given b̂i and (xi1, · · · , ximi

) for i = 1, ..., n.
8: Update QZ0|X0,B , QB|X0

, and g by descending:

1
n

n∑
i=1

1
mi

mi∑
j=1

dp(xij , g(ẑij))− λ1

n

n∑
i=1

1
mi

mi∑
j=1

log f(ẑij)

+ λ2

n(n−1)
(∑
i 6=l

κ(bi, bl) +
∑
i 6=l

κ(b̂i, b̂l)
)
− 2λ2

n2

∑
i,l

κ(bi, b̂l)

9: Update f by ascending:
n∑
i=1

mi∑
j=1

log f(zij) + log(1− f(ẑij))

10: end while

2.1. Architectures

For all the convolutional layers used in the networks, padding and truncated normal initialization were applied.

Imbalanced MNIST Tables i, ii, and iii provide the details of the architecture of the PSOAE. “Batch norm” indicates
whether there was a batch normalization layer (Ioffe & Szegedy, 2015). We used sigmoid activation to decode the image,
and thus its range was transformed from [0,225] to [0,1]. The network architectures for CAAE, WAE, and the RIOAE were
almost the same as the PSOAE except for the output layers of the encoder pair and the input of the decoder; CAAE required
additional input for the one-hot encoding of the label information for both the encoder and the decoder. The encoder-decoder
architecture had 1M parameters and the discriminator architecture had 17k parameters.

VGGFace2 Tables iv through vii summarize the details of the PSOAE architecture trained for the VGGFace2 data. We
transformed image range from [0,225] to [-1,1] and used a hyperbolic tangent activation for the decoder output. For
PSOAE, features of the last 2048 dimensional hidden layer from the pre-trained VGGFace2 classifier (Cao et al., 2018) were
employed as input to the identity encoder QB|X0

(Table iv). This pre-trained VGGFace2 classifier (Cao et al., 2018) has an
ResNet-50-based architecture (He et al., 2016) with squeeze-and-excitation (SE) blocks (Hu et al., 2018). It was trained with
the training set comprised of 8631 identities. Except from the input layer and the last layer, the architectures of encoders and
decoders from the cAAE, WAE, and the RIOAE were mostly the same as the within-unit encoder and the decoder from
PSOAE, respectively; CAAE required additional input for the one-hot encoding of the label information for both the encoder
and the decoder. The encoder-decoder architecture had 19M parameters except CAAE. CAAE had an encoder-decoder
architecture with 24M parameters, mainly because of the 8631 number of class information. The discriminator architectures
had 855K parameters.

2.2. Training details

The Adam optimizer (Kingma & Ba, 2014) was used to train the model, with β1 = 0.9 for updating the first moment
estimate and β2 = 0.999 for updating the second moment estimate.

Details of the imbalanced MNIST training All models were trained for 10,000 iterations with mini-batch of size 600
with no need of the alternating optimization. We updated the models with the learning rates of 0.001 for the encoder-decoder
pair and 0.0005 for the discriminator. Both learning rates were decayed by multiplying 1/1.0001 after every 100 iterations.

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

1 Convolution 64 4x4 2x2 Yes ReLU Input
2 Convolution 64 4x4 1x1 Yes ReLU 1
3 Convolution 128 4x4 2x2 Yes ReLU 2
4 Convolution 128 4x4 1x1 Yes ReLU 3
5 Dense 64 - - Yes ReLU 4
6 Dense 32 - - Yes ReLU 5
7 Dense 16 - - Yes ReLU 6

µB Dense 8 - - No Linear 7
σ2
B Dense 8 - - No Linear 7
8 Dense 32 - - Yes ReLU 5

µE Dense 8 - - No Linear 8, B|X0

σ2
E Dense 8 - - No Linear 8, B|X0

Output (B|X0) Sample B|X0 - - - - - µB , σ2
B

Output (E0|BX0) Sample E0|BX0 - - - - - µE , σ2
E

Table i. MNIST encoder pair (QE0|BX0
, QB|X0

). dI = 8 and dV = 8

.

Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

1 Dense 7x7x128 - - No ReLU Input
2 Reshape to (7,7,128) - - - - - 1
3 Transpose Convolution 64 4x4 2x2 Yes ReLU 2
4 Transpose Convolution 32 4x4 2x2 Yes ReLU 3
5 Transpose Convolution 16 4x4 1x1 Yes ReLU 4

Output Convolution 1 4x4 1x1 No Sigmoid 5

Table ii. MNIST decoder g

Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

1 Dense 64 - - No ReLU Input
2 Dense 64 - - No ReLU 1
3 Dense 64 - - No ReLU 2
4 Dense 64 - - No ReLU 3
5 Dense 64 - - No ReLU 4

Output Dense 1 - - No Sigmoid 5

Table iii. MNIST discriminator f

Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

1 Dense 384 - - Yes ReLU Input
2 Dense 256 - - Yes ReLU 1

µB Dense 64 - - No Linear 2
σ2
B Dense 64 - - No Linear 2

Output (B|X0) Sample B|X0 - - - - - µB , σ2
B

Table iv. VGGFace2 identity encoder QB|X0
; dI = 64

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

1 Convolution 64 5x5 2x2 Yes ReLU Input
2 Convolution 128 5x5 2x2 Yes ReLU 1
3 Convolution 256 5x5 2x2 Yes ReLU 2
4 Convolution 512 5x5 2x2 Yes ReLU 3
5 Convolution 256 3x3 2x2 Yes ReLU 4
6 Dense 128 - - Yes ReLU 5
7 Dense 256 - - Yes ReLU 6, B|X0

8 Dense 128 - - Yes ReLU 6
µE Dense 128 - - No Linear 8
σ2
E Dense 128 - - No Linear 8

Output (E0|BX0) Sample E0|BX0 - - - - - µE , σ2
E

Table v. VGGFace2 within-unit encoder QE|BX0
; dV = 128

Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

1 Dense 8x8x512 - - Yes ReLU Input
2 Reshape to (8,8,512) - - - - - 1
3 Transpose Convolution 256 5x5 2x2 Yes ReLU 2
4 Transpose Convolution 128 5x5 2x2 Yes ReLU 3
5 Transpose Convolution 64 5x5 2x2 Yes ReLU 4
6 Transpose Convolution 32 5x5 2x2 Yes ReLU 5
7 Convolution 32 5x5 1x1 Yes ReLU 6

Output Convolution 3 3x3 1x1 No Hyperbolic tangent 7

Table vi. VGGFace2 decoder g

Layer Operation Filters Kernel Strides Batch norm Activation Linked layer

1 Dense 512 - - No ReLU Input
2 Dense 512 - - No ReLU 1
3 Dense 512 - - No ReLU 2
4 Dense 512 - - No ReLU 3

Output Dense 1 - - No Sigmoid 4

Table vii. VGGFace2 discriminator f

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

We set λ1 = 1, λ2 = 1, and λ3 = 1. On average, 100 iterations took 6 seconds.

Details of the VGGFace2 training We first trained the model with the alternating optimization: 1) Fix the parameters
of the within-unit variation encoder QE0|BX0

and train the identity encoder QB|X0
and decoder g for 10,000 iterations

with λ1 = 100, λ2 = 0, and λ3 = 1000; 2) Fix the parameters of the identity encoder QB|X0
and train the identity encoder

QE0|BX0
and the decoder g for 10,000 iterations with λ1 = 0, λ2 = 100, and λ3 = 1000. We repeated step 1 and 2 for

15 times, then fine-tuned the model, without the alternating optimization, for 30,000 iterations with λ1 = 100, λ2 = 100,
and λ3 = 1000. For total 330,000 iterations, we set the size of the mini-batch to 600 and the learning rates to 0.001 for the
encoder-decoder and 0.001 for the discriminator. On average, 100 iterations took 151 seconds.

Computing infrastructure For the imbalanced MNIST dataset, we trained a single model with 5 Intel(R) Xeon(R) CPU
Silver 4114 @ 2.20GHz processors and one NVIDIA TITAN V GPUs which had 5120 CUDA cores, 640 tensor cores, and
12GB memory. For the VGGFace2 experiments, we trained a single model with 18 CPU processes and 4 NVIDIA TITAN V
GPUs. All the implementations were based on Python 3.6, Tensorflow 1.15.0 and Keras 2.3.1.

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

3. Additional figures from the imbalanced MNIST experiment
In this section, we show a large version of Figure 1 in Section 5.1 for visual aid.

4. Additional figures from the VGGFace2 experiment
In this section, we first provide a large version of Figure 3 in Section 5.2. Then, we present additional figures from the
VGGFace2 experiment in Section 5.2. Figure iii compares quality of sample generation for the people who were not used

Figure i. Large version of Figure 1

main_camera_ready.pdf{}{}{}#figure.1{}{}{}
main_camera_ready.pdf{}{}{}#subsection.5.1{}{}{}
main_camera_ready.pdf{}{}{}#figure.3{}{}{}
main_camera_ready.pdf{}{}{}#subsection.5.2{}{}{}
main_camera_ready.pdf{}{}{}#subsection.5.2{}{}{}
main_camera_ready.pdf{}{}{}#figure.1{}{}{}

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

in training. Additional generated samples are shown in panels A and B. Panels C, D, and E show the t-SNE maps of the
latent variables, encoded identity variable (b̂ij in Algorithm 1), and the encoded within-unit variation (êij in Algorithm 1) in
the representation (latent) space, respectively. Same person is plotted in same color. The PSOAE shows the best quality
in separating observational units in the representation space, while WAE could not provide meaningful separation in the
representation. For the PSOAE, the t-SNE map of the encoded identity (panel D) shows better clustering power than the

Figure ii. Large version of Figure 3

main_camera_ready.pdf{}{}{}#algorithm.1{}{}{}
main_camera_ready.pdf{}{}{}#algorithm.1{}{}{}
main_camera_ready.pdf{}{}{}#figure.3{}{}{}

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

RIOAE. In panel E, the distribution of the encoded within-unit variation of the PSOAE matches well with the reference
samples from the prior distribution, which are plotted in translucent blue dots. Figure iii shows additional generated images
and the representations of the people who were used in training. Comparing Figure iii with iv, quality of the within-unit face
generation of the people not in the training set was similar with that of the people who were in training set, which implies
that both OAEs were well generalized. The PSOAE shows superiority in identity-preservation performance for both known
and unknown people. Panel B also shows that CAAE failed in preserving the identity of the people used in training.

Figure iii. Additional sample generation from VGGFace2 (people not used in training)

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

Figure iv. Additional sample generation from VGGFace2 (people used in training)

Supplementary Material for: Learning from Nested Data with Ornstein Auto-Encoders

References
Cao, Q., Shen, L., Xie, W., Parkhi, O. M., and Zisserman, A. VGGFace2: A dataset for recognising faces across pose and

age. In Proc. 13th IEEE Int. Conf. Automat. Face Gesture Recogn. (FG 2018), pp. 67–74, 2018.

Choi, Y. and Won, J.-H. Ornstein auto-encoders. In Proc. Int. Joint Conf. Artif. Intell. (IJCAI 2019), pp. 2172–2178. AAAI
Press, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778, 2016.

Hu, J., Shen, L., and Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7132–7141, 2018.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In
Proc. Int. Conf. Mach. Learn. (ICML 2015), volume 37, pp. 448–456. PMLR, 2015.

Kingma, D. and Ba, J. Adam: A method for stochastic optimization. Proc. Int. Conf. Learn. Represent. (ICLR 2014), 2014.

