Appendix: Variational Empowerment as Representation Learning
for Goal-Based Reinforcement Learning

A Background: Mutual Information Maximization

We provide a detailed discussion about mutual information objectives as promised in Section 3.1.
State-predictive MI: Given a generative model of the form p™(z,s,s’) = p(2)p™(s]|2)p™(s'|s, z) where p™(s'|s, z) =
J m(als, z)p(s'|s, a)da, we define the state-predictive MI as,
I(s'52|8)=H(s" | s) —H(s' | z,9) (8)
= E( o5 mp(z,5,6) 108D (5" | 5,2) —logp™ (s | 5)] ©)
This is closer to the classic empowerment formulation as in (Klyubin et al., 2005; Jung et al., 2011). Variational bounds

can be derived with respect to actions (Mohamed & Rezende, 2015; Gregor et al., 2017) or to future states (Sharma et al.,
2020b). While this objective enables learning state-conditioned skills, we decide to focus on the other variant in this paper.

State-marginal MI: Similarly, given a generative model of the form p™(z, s) = p(z)p™ (s|z), the MI can be written as,

Z(s;z) = H(z) — H(z|s) (10)
=E.p(z) [~ logp(2)] + E. supm(z,5) [logp(z | 5)] (11
=B, p(2),s~n(z)[logp(z | ) — log p(2)] (12)
> E.op(z),smn(x)l0g aa(z | s) —logp(2)], (13)

where Eq. 13 is a common variational bound for MI (Barber & Agakov, 2003) with a variational posterior gy (z|s)
approximating the intractable posterior p™(z|s). DIAYN (Eysenbach et al., 2019) optimizes for this state-marginal MI
objective in a entropy-regularized RL setting, trained with the SAC algorithm (Haarnoja et al., 2018). We note that an
alternative lower bound of Z(s; z) (a “forward” form of ML, i.e., H(s) — H(s|z)) is also possible (Campos et al., 2020).

B Equivalence between GCRL and Gaussian VGCRL

Full Covariance Gaussian. The Gaussian discriminator (or the variational posterior) ¢y (z|s) should take the following
form:

3 (218) = N (21 6(5), 5(5) (14)
= e (3¢ e o) (15)

Diagonal-Covariance Gaussian. If we assume a diagonal covariance Y(s) = diag(c?(s)), the discriminator will have the
following form:

1

1
q,\(z|s) = —Tw)\gl Hl o exp <— zﬁ: @
log qx(2]s) = —|G| log(V2m) + Z —log(:) + Z (2;(2 — m)Q) (17)

(zi — #z’)2> , where p; = [¢(s)]i, 01 = [o(5)]; (16)

As discussed in Section 4, the intrinsic reward function for training a goal-conditioned policy for a fixed goal z is given by
r(s) = logqa(zls) — log p(z).
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Equivalence to GCRL. It is straightforward to see that for a fixed value of o; (say o; = 1.0), Eq. (17) further reduces to
1
log gx(zs) :ConstJrZ <_2(Zi Ni)2> 8)

up to a constant factor. This can be interpreted as a smooth reward function for reaching a goal z € G, or the squared
distance ||z — u(s)||3 between p(s) and z in the goal space G. A special case of this is when the goal space is set same as
the state space (G = S) and a natural identity mapping p(s) = s is used, where the smooth reward function in standard
goal-conditioned RL (GCRL) is recovered.

C More Experimental Results

In this section, we present additional results for Section 6.3. Table 5 extends Table 4, showing the evaluation metrics for
variants of VGCRL where continuous goal spaces of various dimensions are used. Figure 5 and Figure 6 show learning
curve plots for the VGCRL variants with categorical and Gaussian posterior, respectively.
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HalfCheetah Ant Humanoid
"HER? SN?

ax(zls)  P-HER? SN2 2 "7GR.(s) LGR()| F LGRu(s) LGR(z)| F LGRu(s) LGR(2)
(o) fed®) - | 0305 0900 0166 [-0.128 0398 0242 [-0.047 2394 0199
(u(s).fixed”) 1 0339 0837 0.139 |-0.110 0678 0306 |-0.082 1505 0.194
i © _ | 0830 1177 0063 | 4669 0478 0265 |0.677 0393  0.080
Lt sie?y Y| 0403 0720 0079 | 4575 0289 0263 |2019 0910 0027
o N(s)Z(6)7) T | 2653 1017 0011 | 2060 0453 0038 | 2511 0225 0012
vV v | 2724 1074 0009 | 2352 0511 0023 |2.549 0199  0.012
GMM (K —s) -, - | 088 0707 0188|434 0640 0360 [1141 1637 0072
= v - | 1183 2032 0181 |-3436 0432 0356 | 2076 0993 0026
e fxed®) - | 0932 1005 0159 [-0590 1005 0382 [0239 1461 0202
(u(s).fixed™) o 1 0142 1273 0360 | 0140 2449 0300 | 0.020 1452  0.244
0 ~ [ 0731 1251 0172 [-18490 0306 0427 |-3597 0538  0.147
e siey Y| 2061 1132 0289|0108 2423 0303 1207 0206 0074
o N(s)2()7) T | 5856 0.604 0019 | 2548 0925 0091 |4509 0460 0040
v v | 5803 1352 0017 | 4349 0463 0039 |5203 0203  0.026
GVMM (K —8) -, - | 2046 0766 0325|1619 0367 0486 [3576 0231 0.198
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= ((s).2(s)")  _ o | 3840 1175 0180 | 0.721 0974 0240 |8.134 1275  0.061
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GMM (K — 5) C | -6294 1254 0394 [-11.060 0805 0370 [ 1579 2280 0298
= - | 210647 1725 0397 |-13392 1340 0377 |2339 1740 0284

Table 5: An extended version of Table 4. We present a VGCRL-Gaussian variant where the variance is not learned but kept
constant (fixed, e.g. log o = 0) and a variant where the variance is learned as a function of state s. VGCRL-GMM is when a
Gaussian Mixture Model is used for the discriminator instead of a Gaussian distribution, where means, covariances, and
mixture weights are learned through the neural network.



Variational Empowerment as Representation Learning for Goal-Based RL

Average Empowerment Reward

LGR(z): Top-1 Accuracy

Average Empowerment Reward

LGR(2): Top-1 Accuracy

Average Empowerment Reward

LGR(2): Top-1 Accuracy

15 15 0.90
s e 3 W 0
0s
o = ol — o
=059 — DIAYN + P-HER —— DIAYN + PHER 06 —— DIAYN + P-HER 070
(a) HalfCheetah-v3 (|G| = 10) (b) Ant-v3 (|G| = 10) (c) Humanoid-v3 (|G| = 10)
Average Empowerment Reward LGR(z): Top-1 Accuracy Average Empowerment Reward LGR(2): Top-1 Accuracy Average Empowerment Reward LGR(2): Top-1 Accuracy
o
10 , = .
. .
0s
o0 -2 1
07 -6 06 o6
o] — oanw s -1 — ol 0s
—— DIAYN + P-HER 06 05 —— DIAYN + P-HER
o 0s
TR T e v T A T T B T TR e s T R A R R e
(d) HalfCheetah-v3 (|G| = 20) (e) Ant-v3 (|G| = 20) (f) Humanoid-v3 (|G| = 20)
Average Empowerment Reward LGR(2): Top-1 Accuracy Average Empowerment Reward LGR(2): Top-1 Accuracy . Average Empowerment Reward LGR(2): Top-1 Accuracy
10 “onm 08
08 5 o 0.6
os
-1 04 04
-44 — DiAYN 06 03 —a] — oan
(g) HalfCheetah-v3 (|G| = 50) (h) Ant-v3 (|G| = 50) (i) Humanoid-v3 (|G| = 50)
Average Empowerment Reward LGR(2): Top-1 Accuracy Average Empowerment Reward LGR(2): Top-1 Accuracy Average Empowerment Reward LGR(2): Top-1 Accuracy
0 —— DIAYN 033
° 08 ~—— DIAYN + P-HER 0.30 o 08
5 -10 0.6
06 0.20 -5
~—— DIAYN 0.2 -3 0.05 -1 ~—— DIAYN
(j) HalfCheetah-v3 (|G| = 200) (k) Ant-v3 (|G| = 200) (1) Humanoid-v3 (|G| = 200)
Average Empowerment Reward LGR(2): Top-1 Accuracy Average Empowerment Reward LGR(2): Top-1 Accuracy Average Empowerment Reward LGR(2): Top-1 Accuracy
— DIAYN 05 o omm 0.06 . .
of= Ay
-10 -20 0.04 ° 0.6
0
-30 0.03 -5
_ 0
2 02 o 02 /\/fNW
-10
-30 01 -30 001 02
> sy ! | ———
a0 00 s 0.00 —— DIATN+ PHER [ oo
P e TR AR R e B R T P TR

(m) HalfCheetah-v3 (|G| = 1000)

(n) Ant-v3 (|G| = 1000)

(0) Humanoid-v3 (

G| = 1000)

Figure 5: Extension to Figure 4: Learning curves for VGCRL when discrete, categorical goal spaces are used. The dashed
line denotes the maximum possible reward, achieved when the discriminator g(z|s) is perfect at every time step. Overall, we
can see P-HER improves the learning process of variational empowerment consistently across different environments and
the dimensionality of the goal space.
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Figure 6: Extension to Figure 4: Learning curves for VGCRL when continuous goal spaces and a family of Gaussian
distribution is used for the variational posterior.
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D Details of Environments
D.1 Windy PointMass

Figure 7: Windy PointMass (10-dimensional).

The (windy) point mass environment is a N-dimensional continuous control environment. The observation space is 2/N-
dimensional, each of which describes the position and the velocity per dimension. Each point mass, one per dimension,
can move left and right independently within the arena of range (—1.5, 1.5). The action space is N-dimensional, each of
which denoting the amount of velocity acceleration on each dimension. This generalizes common 2D (planar) point mass
environments (Brockman et al., 2016; Tassa et al., 2018); indeed, it is exactly equivalent to the 2D point mass environments
when N = 2. The positions of point masses are initialized randomly at each episode. Figure 7 shows a target goal location
in overlaying transparent spheres (note that in the experiment we assumed the goal G to be a /N-dimensional vector, same as
the observation space) with p(s) = s.

For the windy point mass used in the experiment, we apply a random external force sampled from an uniform distribution
U(—R;, R;) to the point mass on dimension 14, at every time step. The range of external force gets higher as the dimension
index i increases; we use a profile of R, = 11 x ¢ for N = 10 (i.e., Ry = 0 or no force on dimension 0, and Rg = 99 for
the last dimension ¢ = 9) and [Ry, R1] = [0, 40] for N = 2. With such a large external force, the point mass on dimension
1 = 9 is almost uncontrollable, mostly bouncing around the external perturbation.

D.2 Expert State Generation

To generate target states s** in the latent goal reaching metric Section 6.2, we collected states (observations) ran-
domly sampled from an expert policy’s rollout trajectory. Expert policies are SAC agents successfully trained on
the task with multiple target velocities rather than the standard task (i.e., only moving forward in HalfCheetah, Ant,
Humanoid-v3, etc.). Similar to OpenAl gym’s locomotion tasks (Brockman et al., 2016), we use a custom reward func-
tion 7, = HuberLoss(target  velocity — achieved y velocity) and a similar one for 7, to let the robot move in some
directions with the desired target velocities. The set of target velocities (v, v,) were constructured from the choices of
(—=2,-1,-0.5,0,0.5,1,2). We used the SAC implementation from (Guadarrama et al., 2018) with a default hyperparameter
setting to train expert policies. We sample 6 random states from each expert policy, yielding a total of 72 x 6 = 294 (or
7 x 6 = 42 for HalfCheetah) target states for each environment. Altogether, this dataset provides a set of states where the
agent is posing or moving in diverse direction.
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E Implementation Details

For training the goal-conditioned policy, we used Soft Actor-Critic (SAC) (Haarnoja et al., 2018) algorithm with the default
hyperparameter setting. To represent the discriminator ¢(z|s) with a neural network, we simply used a 2-layer MLP with
(256, 256) hidden units and ReLU activations. The heads y(s) and log o (s) are obtained through a linear layer on top of the
last hidden layer. For Gaussian VGCRLs, we employed an uniform prior p(z) = [—1, 1]19! and also applied tanh bijections
to the variational posterior distribution gy (z|s) to make the domain of z fit [—1, 1]I9. We also clipped the output of log o (s)
with the clip range [log(0.3),log(10.0)] for the sake of numerical stability, so that the magnitude of posterior evaluations
(and hence the reward) does not get too large.

For spectral normalization, we swept hyperparameters o that control the Lipschitz constant over a range of
[0,0.5,0.95,2.0,5.0, 7.0], and chose a single value 0 = 2.0 that worked best in most cases. The number of mixtures
used in Gaussian Mixture Models is i = 8. The heads 1(s), log o(s), mixture weights «/(s) are obtained through a linear
layer on top of the last hidden layer.
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