
Continuous Recursive Neural Networks

Dataset

Initial
Embedding

Size
(dinitial embed)

Hidden Size
(dh or dembed)

Input
Dropout

Output
Dropout

Hidden
Dropout

Logical Infer. 200 200 0.1 0.3 0.1
ListOps 128 128 0.3 0.2 0.1
SST2 300 300 0.3 0.2 0.4
SST5 300 300 0.3 0.2 0.4
SNLI 300 300 0.4 0.1 0.1
MNLI 300 300 0.4 0.1 0.1

Table 9. Hyperparameter details for CRvNN.

A. Architecture Details
For every task used in our experiments we use an initial
affine transformation where the initial embeddings of size
dinitial embed are transformed into the size dembed. Typi-
cally, we set dembed as dh. See Table 9 for their values.

We treat the last representation in the sequence after being
processed by CRvNN as the sentence encoding constructed
by CRvNN.

For classification tasks, we classify the sentence encoding
by transforming it into logits for the classes after passing it
through a series of affine layers (typically, 1 or 2). Interme-
diate layers have dh neurons where dh is also the dimension
of the sentence encoding.

For inference tasks (requiring sequence-pair comparison),
like logical inference or SNLI and MNLI, we use a Siamese
framework. Concretely, we first encode (using the same
encoder with same parameters) both the premise and hy-
pothesis (separately) into sentence vectors, say, s1 and s2
respectively (both with dh dimensions). Then, we construct
a classification feature vector o as:

o = [s1; s2; |s1 − s2|; s1 � s2] (19)

Here, [;] indicates concatenation. We send o to a Multi
Layer Perceptron (MLP) to classify the sequence relation-
ship. The final layer activation is Softmax, but if there
are intermediate MLP layers, we use GeLU for them. We
use a dropout (hidden dropout) in the gated recursive cell
(after its first affine transformation). We use a dropout (input
dropout) on the input just before sending it to CRvNN. We
use another dropout (output dropout) in between the final
MLP layers. All our models were trained on AWS p3.2×
instance (Nvidia v100).

B. Implementation Details
For all experiments, as an optimizer, we use Ranger (Wright,
2019) or Rectified (Liu et al., 2020) Adam (Kingma & Ba,
2015) with lookahead (k = 5, α = 0.8) (Zhang et al., 2019)
and decorrelated weight decay (Loshchilov & Hutter, 2019)

(1e − 2) with a learning rate of 1e − 3. We used GloVe
(300 dimensions, 840B) (Pennington et al., 2014) as un-
trainable embeddings for natural language data. We set the
cell size (dcell as referred in §3.3.3) as 4 · dh (dh is the
hidden size). We set the size of transition features (ds as
referred in §3.4.2) as 64. For convolution in the decision
function, we always use a window size of 5. For halt penalty
in §3.4.3, we set γ as 0.01. Generally, we use a two-layered
MLP on the sentence encoding from CRvNN. However, on
ListOps, we used a single-layer. We use a batch size of 128
for all tasks. We describe other hyperparameters of CRvNN
in Table 9. We cut the learning rate by half if the validation
loss does not decrease for 3 contiguous epochs.

C. Hyperparameter Search
On ListOps, we tune different dropouts among
{0.1, 0.2, 0.3, 0.4} separately using grid search (we
ran for 10 epochs and 50, 000 subsamples). For the Logical
Inference task (length generalization task), we tune the
different dropouts among {0.1, 0.2, 0.3} for 7 epochs per
trial using grid search. We use the same hyperparamters
for systematicity splits. For SST5, we tune the dropouts
in {0.2, 0.3, 0.4} for 3 epochs. For SNLI, we tune the
different dropouts among {0.1, 0.2, 0.3, 0.4} for 5 epochs,
using a sub-sample of 100K examples, and for a maximum
of 20 trials using Tree of Parzen Estimators (TPE) (Bergstra
et al., 2011). We use Hyperopt (Bergstra et al., 2013) for
hyperparameter tuning. For other components we mostly
use similar hyperparameters as Shen et al. (2019a) or
default settings. We share the hyperparameters found for
SST5 with SST2 and we also share the hyperparameters
found for SNLI with MNLI.

D. Datasets
For all datasets, we use the standard splits as used by prior
work. For training efficiency, we filter out training samples
of sequence size > 150 from MNLI. We filter out training
samples with sequence length > 100 from ListOps. We use
the 90K sample version of ListOps similar to prior work.

