
Scaling properties of deep residual networks

A. Hyperparameters
We provide in Table 2 the training hyperparameters used in our numerical experiments. In Table 3, we give a short description
of each hyperparameter. For the convolutional architecture, we also use a momentum of 0.9, a weight decay of 0.0005 and a
cosine annealing learning rate scheduler (Loshchilov & Hutter, 2017).

Table 2: Training hyperparameters.

Dataset Layers N B η Lmin Lmax Tmax Nepochs ε

Synthetic Fully-connected 1,024 32 0.01 3 10,321 160 5 0.01

MNIST Fully-connected 60,000 50 0.01 3 942 12,000 10 0.01

CIFAR-10 Convolutional 60,000 128 0.1 8 121 93,800 200 None

Table 3: Description of the values in Table 2. Note that Tmax =
⌈
N
B

⌉
Nepochs.

Parameter Description

N number of training samples

B minibatch size
η learning rate

Lmin smallest network depth

Lmax largest network depth

Tmax max number of SGD updates

Nepochs max number of epochs

ε early stopping value

We report in Table 4 below results for tanh and trainable δ on the synthetic data with different batch sizes and learning rates
(5 different seeds). We observe that the learning rate does affect α and β, but their sum always stays around 1. The batch
size has no effect on the exponents.

Table 4: Average value of α (left) and β (right) for the trained weights, over 5 random initializations, η is the learning rate,
and B the batch size.

α B = 8 B = 32 B = 128

η = .01 .69± .02 .73± .02 .67± .02

η = .003 .59± .05 .60± .01 .58± .01

η = .001 .58± .01 .55± .01 .53± .01

β B = 8 B = 32 B = 128

η = .01 .24± .02 .29± .05 .22± .02

η = .003 .33± .01 .41± .06 .40± .02

η = .001 .39± .02 .43± .02 .41± .01

B. Scaling Analysis of the Biases b(L) in the Fully-Connected Case
We mention in the main text that the behaviour of the trained values of b(L) with the depth L is similar to that of A(L), in the
fully-connected case of Section 3.1. We verify these claims here. To do so, we follow the same methodology outlined in
Section 2.3 for b(L), and we show the results for the tanh case in Figure 9 and for the ReLU case in Figure 10. We observe
that the maximum norm, the scaled norm of the increments and the root sum of squares of b(L) scales in the same way
as A(L) as the depth L increases. In particular, the scaling exponent β for b(L) is equal to the scaling exponent of A(L),
justifying the setup considered in Section 4.1.
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Figure 9: Scaling and hypothesis verification for tanh activation and δ(L) ∈ R. Left: Maximum norm of b(L) with respect to L, in
log-log scale. Middle: we plot in log-log scale the root sum of squares of b(L) in pink and the β−scaled norm of increments of b(L) in
orange. The dashed lines are for the synthetic data and the solid lines are for MNIST. Right: Decomposition of the trained weights b(L)

k,5

with the trend part b and the noise part W b for L = 10321, as defined in (6), for the synthetic dataset.

Figure 10: Scaling and hypothesis verification for ReLU activation and δ(L)
k ∈ R. Left: Maximum norm of |δ(L)|b(L) with respect to L,

in log-log scale. Middle: we plot in log-log scale the root sum of squares of |δ(L)|b(L) in pink and the β−scaled norm of increments
of |δ(L)|b(L) in orange. The dashed lines are for the synthetic data and the solid lines for MNIST. Right: Decomposition of the trained
weights |δ(L)| b(L)

k,6 with the trend part b and the noise part W b for L = 10321, as defined in (6), for the synthetic dataset.

C. Convolutional Network Results on CIFAR-10
We give in Table 5 the final test accuracy of our convolutional residual networks trained on an NVIDIA GeForce RTX 2080
GPU. The results are in line with those of traditional ResNet architectures (He et al., 2016), even though our networks do
not have batch normalization layers (Ioffe & Szegedy, 2015). It is also noteworthy to add that our concept of depth is not
that of traditional ResNets. We define the number of layers L as the number of skip connections in the network, that is the
number of ∆k kernels in (9).
We also note that the test error in Table 5 does not decrease with network depth. This is due to the fact, already mentioned in
Section 3.3, that smaller depths usually suffice to get a good accuracy. In our case, we focus on a simple setting that still
approaches the results obtained in practice. Rather than trying to find a setup that maximizes the accuracy, for instance with
batch normalization or the Adam optimizer (Kingma & Ba, 2014), we aim to understand the scaling of residual networks in
practical cases.

Table 5: Test error in % on CIFAR-10 for each network depth L.

L 8 11 12 14 16 20 24 28
Test error 6.64 6.37 6.32 5.98 6.25 5.98 6.24 7.03

L 33 42 50 65 80 100 121
Test error 6.13 6.21 6.32 6.19 6.30 6.20 6.37

D. Residual Network Architecture
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Figure 11: Residual architecture. There are 4 blocks that are respectively repeated n1, n2, n3 and n4 times. The network depth is
L = n1 + n2 + n3 + n4. The Basic Block architecture is detailed in Figure 12.

Figure 12: Basic Block from Figure 11. See (9) for details.

E. Proofs of Technical Results in Section 4
This appendix outlines the main arguments in the proofs of results stated in Section 4. Further mathematical details are
provided in (Cohen et al., 2021).

E.1. Setup
As specified in Section 4.1, we model the cumulative sum of weights (resp. bias) as Itô processes (WA

t )t≥0 (resp. (W b
t )t≥0)

on some filtered probability space (Ω,F,F = (Ft)t≥0,P). This means WA,W b satisfy

(
dWA

t

)
ij

=
(
UAt
)
ij

dt+

d∑
k,l=1

(
qAt
)
ijkl

(
dBAt

)
kl

for i, j = 1, . . . , d,

dW b
t = U bt dt+ qbtdB

b
t ,

(17)

where (BAt )t≥0, resp. (Bbt )t≥0 are d × d-dimensional, resp. d-dimensional, Brownian motions, and qAt ∈ Rd,⊗4 and
qbt ∈ Rd×d for t ∈ [0, 1]. We set WA

0 = 0, W b
0 = 0. Denote the quadratic variation processes as:

(
ΣAt
)
i1j1i2j2

:=

d∑
k,l=1

(
qAt
)
i1j1kl

(
qAt
)
i2j2kl

, for i1, j1, i2, j2 = 1, . . . , d,

Σbt := qbt
(
qbt
)>
.

(18)

We assume (UAt )t≥0, (U bt )t≥0, (ΣAt )t≥0 and (Σbt)t≥0 are progressively measurable processes satisfying:
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Assumption E.1 (Regularity assumptions). We assume

(i) There exists a constant C1 > 0 such that almost surely

sup
0≤t≤1

∥∥UAt ∥∥+ sup
0≤t≤1

∥∥U bt ∥∥+ sup
0≤t≤1

∥∥ΣAt
∥∥+ sup

0≤t≤1

∥∥Σbt
∥∥ ≤ C1. (19)

(ii) There exist M > 0 and κ > 0 such that ∀s, t ∈ [0, 1] almost surely∥∥UAt − UAs ∥∥2 +
∥∥U bt − U bs∥∥2 +

∥∥ΣAt − ΣAs
∥∥2 +

∥∥Σbt − Σbs
∥∥2 ≤M |t− s|κ (20)∥∥Āt − Ās∥∥2 +

∥∥b̄t − b̄s∥∥2 ≤M |t− s|κ. (21)

Lemma E.2 (Uniform integrability). Under Assumption E.1-(i), we have, for any p0 > 1

E
[

sup
0≤s≤1

∥∥WA
s

∥∥p0] , E
[

sup
0≤s≤1

∥∥W b
s

∥∥p0] <∞. (22)

Lemma E.2 is proven by first applying Minkowski inequality to E
[
sup0≤s≤1

∥∥WA
s

∥∥p0] and then applying Burkholder-

Davis-Gundy inequality to E
[
sup0≤s≤1

∥∥∥∥(∫ s0 ∑d
k,l=1

(
qAt
)
ijkl

(
dBAt

)
kl

)
i,j

∥∥∥∥p0].

Assumption E.3 (Uniform integrability). There exist p1 > 4 and a constant C0 such that for all L,

E
[

sup
0≤k≤L

∥∥∥h(L)k

∥∥∥p1] ≤ C0. (23)

E.2. Proof of Theorem 4.3
We now provide a sketch of the proof for Theorem 4.3 under Assumption 4.2, Assumption E.1 with WA ≡ 0 and
WB ≡ 0, and Assumption E.3. The detailed proof can be found in a companion paper (Cohen et al., 2021). Under
Assumption E.3, there exists C∞ > 0 such that supL∈N maxk=1,2,...,L

∥∥∥h(L)k

∥∥∥ ≤ C∞. Denoting ∆hLk := hLk+1 − hLk and

M
(L)
k (h) := Atkh+ btk , from (13) we have

∆h
(L)
k := h

(L)
k+1 − h

(L)
k = L−ασ

(
L−βM

(L)
k (h

(L)
k )

)
.

For any vector x ∈ Rd, denote (x)i as the i-th component of x. Further denote ∆h
(L),i
k and M (L),i

k the i-th element of
∆h

(L)
k and M (L)

k , respectively. Applying a third-order Taylor expansion of σ around 0 using Assumption 4.2 we get

∆hL,ik = L−1M
(L),i
k (h

(L)
k ) +

1

2
σ′′(0)L−β−1

(
M

(L),i
k (h

(L)
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)2
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1
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M
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(L)
k )

)3
(24)

with |νik| ≤ L−β
∣∣∣(Atkh(L)k + btk

)
i

∣∣∣ under the condition α+ β = 1. Denote {tk = k/L, k = 0, 1, . . . , L} as the uniform

partition of the interval [0, 1]. For t ∈ [tk, tk+1], define

H̃
(L)
t = h

(L)
k + (t− tk)M

(L),i
k (h

(L)
k ) +

1

2
σ′′(0)L−β−1

(
M

(L),i
k (h

(L)
k )

)2
+

1

6
σ′′′(νik)L−2β−1

(
M

(L),i
k (h

(L)
k )

)3
.

Then we have H̃(L)
tk

= h
(L)
k for all k = 0, 1, · · · , L.

Recall Ht the solution to the ODE (14). Denote the differences d(L),1k (t) = H̃
(L)
t − h(L)k and d(L),2k (t) = Ht − H̃(L)

t for

t ∈ [tk, tk+1]. Similarly denote the errors e(L),1k = suptk≤t≤tk+1

∥∥∥d(L),1k (t)
∥∥∥ and e(L),2k = suptk≤t≤tk+1

∥∥∥d(L),2k (t)
∥∥∥. The

proof reduces to showing sup1≤k≤L e
(L),1
k → 0 and sup1≤k≤L e

(L),2
k → 0 when L→∞.

We first bound e(L),1k . Denote c0 := supx∈R |σ′′′(x)| <∞. By definition and direct calculation, we have e(L),1k ≤ D∞L−1
with constant D∞ := AmaxC∞ + bmax + 1

2σ
′′(0)(AmaxC∞ + bmax)2 + 1

6c0(AmaxC∞ + bmax)2. Therefore it holds that
limL→∞ sup1≤k≤L e

(L),1
k = 0.
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We next bound e(L),2k . For t ∈ [tk, tk+1],

d
(L),2
k+1 (t) = d

(L),2
k (tk+1)− (t− tk+1)M

(L),i
k+1 (h

(L)
k+1) +
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(L)
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(L)
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)3
(25)

From (24) and (25) we have

e
(L),2
k+1 ≤ e

(L),2
k + sup

tk+1≤t≤tk+2

∥∥∥∥∥
∫ t

tk+1

((
AsHs + bs

)
−
(
Atk+1

h
(L)
k+1 + btk+1

))
ds

∥∥∥∥∥
+

1

2
|σ′′(0)|L−β−1

∥∥∥M (L)
k+1(h

(L)
k+1)

∥∥∥2 +
1

6
c0L
−2β−1

∥∥∥M (L)
k+1(h

(L)
k+1)

∥∥∥3 .
As β > 0, the last two terms are o(L−1). Also, direct calculation yields, for L big enough and Amax := sup0≤t≤1

∥∥At∥∥ <
∞,

sup
tk+1≤t≤tk+2

∥∥∥∥∥
∫ t

tk+1

((
AsHs + bs

)
−
(
Atk+1

h
(L)
k+1 + btk+1

))
ds

∥∥∥∥∥ ≤ 2AmaxL
−1e

(L),2
k+1 + o(L−1).

Finally, e0 = O(L−1), so by Grönwall’s lemma, we also have sup1≤k≤L e
(L),2
k = O(L−1).

�

E.3. Proof of Theorem 4.4
We provide a sketch of the proof for Theorem 4.4 under Assumptions (4.2), (E.1) and (E.3) for the case α = 0 and β = 1.
Other cases follow similarly. The detailed proof can be found in a companion paper (Cohen et al., 2021).
When α = 0 and β = 1, we define the targeted SDE limit for the discrete scheme (10) as follows:

dHt = µ(t,Ht)dt+ dV At Ht + dV bt , 0 ≤ t ≤ 1, with H0 = x, (26)

in which

µ (t, h) = UAt h+ U bt +Ath+ bt +
1

2
σ′′(0)Q(t, h), dV At =

d∑
k,l=1

(
qAt
)
ijkl

(
dBAt

)
kl
, dV bt = qbt dBbt , (27)

with V A0 = 0 and V b0 = 0. Here the quadratic variation process 1
2σ
′′(0)Q(t, h) is the Itô correction term for the drift.

Euler-Maruyama scheme of the limiting SDE. Denote ∆L = 1
L , {tk = k/L, k = 0, 1, . . . , L} and ∆V Ak = V Atk+1

−
V Atk and ∆V bk = V btk+1

− V btk . The Euler-Maruyama discretization of the SDE (26) is defined as:

ĥ
(L)
k+1 − ĥ

(L)
k = µ

(
tk, ĥ

(L)
k

)
∆L + ∆V Ak ĥ

(L)
k + ∆V bk = ĥ

(L)
k + f (L)

(
k, ĥ

(L)
k

)
(28)

where

f (L)(k, h) = µ (tk, h) ∆L + ∆V Ak h+ ∆V bk . (29)

Define the continuous-time extension of the hidden state dynamics

H
(L)
t = h

(L)
k 1tk≤t<tk+1

, k = 0, . . . , L− 1 (30)

and denote

M
(L)
k (h) =

(
µ (tk, h)− 1

2
σ′′(0)Q(tk, h)

)
∆L + ∆V Ak h+ ∆V bk

=
(
UAtk h+ U btk +Atkh+ btk

)
∆L + ∆V Ak h+ ∆V bk

=: µ̃ (tk, h) ∆L + ∆V Ak h+ ∆V bk ,
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From (13) we thus have
∆h

(L)
k := h

(L)
k+1 − h

(L)
k = σ

(
M

(L)
k (h

(L)
k )

)
.

For any vector x ∈ Rd, denote (x)i as the i-th component of x (i = 1, 2, . . . , d). Further denote ∆h
(L),i
k and M (L),i

k the
i-th element of ∆h

(L)
k and M (L)

k , respectively. Applying a third-order Taylor expansion of σ around 0 with the help of
Assumption 4.2, for i = 1, 2, . . . , d, we get
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with |νi| <
∣∣∣M (L),i

k (h
(L)
k )

∣∣∣. The increment of the hidden state ∆h
(L),i
k has two parts: the increment of the Euler-Maruyama

scheme f (L)i (k, h
(L)
k ) and the residual D(L),i

k (h
(L)
k ) := 1

6σ
′′′(νi)

(
M

(L),i
k (h

(L)
k )

)3
+ N

(L),i
k (h

(L)
k ). It is clear from here

that the Euler-Maruyama scheme of the limiting SDE is different from the ResNet dynamics. Hence classical results on the
convergence of discrete SDE schemes cannot be applied directly.
In our analysis it will be more natural to work with the following continuous-time approximation:

H̃
(L)
t := h

(L)
0 +

∫ t

0

µ
(
tks ,H

(L)
s

)
ds+

∫ t

0

(
dV As H (L)

s + dV bs

)
+
∑
k≤Lt

D
(L)
k

(
h
(L)
k

)
, (31)

where D(L)
k (h) =

(
D

(L),1
k (h), . . . , D

(L),d
k (h)

)>
and ks is the integer for which s ∈ [tks , tks+1) for a given s ∈ [0, 1).

From the above definitions we have H̃(L)
tk

= HL
tk

= h
(L)
k .

Lemma E.4 (Local Lipschitz condition and uniform integrability). Under the assumptions of Theorem 4.4,

1. For each R > 0, there exists a constant CR, depending only on R, such that almost surely we have

‖µ(t, x)− µ(t, y)‖2 ≤ CR ‖x− y‖2 , ∀x, y ∈ Rd with ‖x‖ ∨ ‖y‖ ≤ R, and ∀t ∈ [0, 1], (32)

where µ is defined in (27).

2. There exist constants p > 2 and C > 0 such that

E
[

sup
0≤t≤1

∥∥∥H̃(L)
t

∥∥∥p] ∨ E
[

sup
0≤t≤1

‖Ht‖p
]
≤ C. (33)

Remark E.5. Note that (Higham et al., 2002) assumes the uniform integrability condition for H̃(L)
t , which is difficult to

verify in practice. Here we relax this condition by only assuming the uniform integrability condition for the ResNet dynamics
{h(L)k : k = 0, . . . , L}, see Assumption E.3. We can then prove (33) under Assumption E.3 and some properties of the Itô
processes.

Lemma E.4 is proved by first showing Q(t, x) is locally Lipschiz and then by applying Minkowski inequality to∥∥∥H (L)
s − H̃(L)

s

∥∥∥p with p = 1
2p1 > 2, where p1 is defined in (23).

We are now ready to prove Theorem 4.4.

Proof. Let us define two stopping times to utilize the local Lipschitz property of µ:

τR := inf
{
t ≥ 0 :

∥∥∥H̃(L)
t

∥∥∥ ≥ R} , ρR := inf {t ≥ 0 : ‖Ht‖ ≥ R} , θR := τR ∧ ρR, (34)
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and define the approximation errors

e1(t) := H̃
(L)
t −Ht, and e2(t) := H̃

(L)
t −H (L)

t . (35)

The proof contains two steps. The first step is to show limL→∞ E
[
sup0≤t≤1 ‖e1(t)‖2

]
= 0 and the second step is to show

limL→∞ E
[
sup0≤t≤1 ‖e2(t)‖2

]
= 0.

Step 1: H̃ and H are uniformly close to each other. Following the idea in (Higham et al., 2002), we first show that for
any δ > 0 (to be determined later), by Young’s inequality,

E
[

sup
0≤t≤1

‖e1(t)‖2
]
≤ E

[
sup

0≤t≤1

∥∥∥H̃(L)
t∧θR −Ht∧θR

∥∥∥2]+
2p+1δC

p
+

(p− 2)2C

pδ2/(p−2)Rp
, (36)

where C and p are defined in (33). Now, we bound the first term on the right-hand side of (36). Using the definition of the
targeted SDE limit in (26), the continuous-time approximation (31), and the Cauchy-Schwarz inequality, we get

∥∥∥H̃(L)
t∧θR −Ht∧θR

∥∥∥2 ≤ 4

[∫ t∧θR

0

∥∥∥µ(s,H (L)
s

)
ds− µ (s,Hs)

∥∥∥2 ds

]
+ 4
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0

∥∥∥µ(tks ,H (L)
s

)
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(
s,H (L)

s

)∥∥∥2 ds

]

+4

∥∥∥∥∥
∫ t∧θR

0

dWA
s

(
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s −Hs

)∥∥∥∥∥
2
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∥∥∥∥∥∥
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D
(L)
k

(
h
(L)
k

)∥∥∥∥∥∥
2

.

Therefore, from the local Lipschitz condition (32) and Doob’s martingale inequality (Revuz & Yor, 2013), we have for any
τ ≤ 1,

E
[

sup
0≤t≤τ

∥∥∥H̃(L)
t∧θR −Ht∧θR

∥∥∥2]
≤ 32

(
CR + C2

1

) ∫ τ

0

E
[

sup
0≤r≤s
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∥∥∥2]ds+ 32
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1

)
E
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0
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s − H̃(L)

s

∥∥∥2 ds︸ ︷︷ ︸
1©

+ 4 E

[∫ t∧θR

0

∥∥∥µ(tks ,H (L)
s

)
− µ

(
s,H (L)

s

)∥∥∥2 ds

]
︸ ︷︷ ︸

2©

+ 4E

 sup
0≤t≤τ

∥∥∥∥∥∥
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k≤L(t∧θR)

D
(L)
k

(
h
(L)
k

)∥∥∥∥∥∥
2


︸ ︷︷ ︸
3©

. (37)

Upper bound for 2©. By the Cauchy–Schwarz inequality, the following holds for almost all h ∈ Rd:

‖µ(t, h)− µ(s, h)‖2 ≤ CM |t− s|κ
(

1 + ‖h‖2 + ‖h‖4
)
. (38)

Under Assumption E.3, there exists a constant C̃0 > 0 such that

E
[

sup
0≤t≤1

(∥∥∥H (L)
t

∥∥∥4 +
∥∥∥H (L)

t

∥∥∥2)] ≤ C̃0. (39)

Hence by Tonelli’s theorem,

E

[∫ t∧θR

0

∥∥∥µ(tks ,H (L)
s

)
− µ

(
s,H (L)

s

)∥∥∥2 ds

]
≤
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0

E
[∥∥∥µ(tks ,H (L)

s

)
− µ

(
s,H (L)

s

)∥∥∥2]ds

≤ (C̃0 + 1)CML

(∫ 1/L

0

rκdr

)
=

(C̃0 + 1)CM
1 + κ

L−κ. (40)
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Upper bound for 3©. Define the following discrete filtration Gk := σ
(
UAs , U

A
s , q

A
s , q

b
s, B

A
s , B

b
s : s ≤ tk+1

)
. Note that

h
(L)
k is Gk−1-measurable but not Gk-measurable. Define for k = 0, . . . , L− 1 and for i = 1, . . . , d:

Xi
k :=

((
∆V Ak h

(L)
k

)
i
+
(
∆V bk

)
i

)2
− E

[((
∆V Ak h

(L)
k

)
i
+
(
∆V bk

)
i

)2∣∣∣∣Gk−1]
Y ik := E

[((
∆V Ak h

(L)
k

)
i
+
(
∆V bk

)
i

)2∣∣∣∣Gk−1]−Qi (tk, h(L)k

)
∆L

J ik := µ̃i(t, h)2(∆L)2 + 2µ̃i(t, h)∆L

((
∆V Ak h

)
i
+
(
∆V bk

)
i

)
.

We can then deduce the following bound on 3© by Cauchy-Schwarz.

E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑

k≤L(t∧θR)

D
(L),i
k

(
h
(L)
k

)∣∣∣∣∣∣
2


≤ σ′′(0)2 E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑
k≤Lt

Xi
k1

∥∥∥h(L)
k

∥∥∥≤R
∣∣∣∣∣∣
2
+ σ′′(0)2 E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑
k≤Lt

Y ik1
∥∥∥h(L)

k

∥∥∥≤R
∣∣∣∣∣∣
2


+σ′′(0)2L

L−1∑
k=0

E
[∣∣J ik∣∣2 1∥∥∥h(L)

k

∥∥∥≤R
]

+
(σ′′′(νi))

2

9
L

L−1∑
k=0

E
[∣∣∣M (L),i

k

(
h
(L)
k

)∣∣∣6 1∥∥∥h(L)
k

∥∥∥≤R
]

(41)

We provide an upper bound for each of the four terms in (41). For the first term, denote X̃i
k = Xi

k1
(∥∥h(L)k

∥∥ ≤ R) and

Sik =
∑k
k′=0 X̃

i
k′ so that

(
Sik
)
k=−1,0,...,L−1 is a (Gk)-martingale. Hence, by Doob’s martingale inequality, we have

E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑
k≤Lt

Xi
k1

∥∥∥h(L)
k

∥∥∥≤R
∣∣∣∣∣∣
2
 = E

[
sup

0≤t≤τ

∣∣∣SibLtc∣∣∣2] ≤ 4E
[∣∣∣SibLτc∣∣∣2] . (42)

Fix k = 0, . . . , L− 1. For every i = 1, . . . , d, we compute the following conditional expectation.

E
[(
Sik
)2 ∣∣∣ Gk−1] = E

[(
Sik−1

)2
+ 2X̃i

k

k−1∑
k′=0

X̃i
k′ +

(
X̃i
k

)2 ∣∣∣∣∣ Gk−1
]

=
(
Sik−1

)2
+ E

[(
X̃i
k

)2 ∣∣∣ Gk−1] (43)

The cross-term disappear as E
[
X̃i
k

∣∣∣ Gk−1] = E
[
Xi
k

∣∣ Gk−1]1(∥∥h(L)k

∥∥ ≤ R) = 0 by definition of Xi
k. Furthermore,

conditionally on Gk−1 and on
{∥∥h(L)k

∥∥ ≤ R}, observe that Xi
k is the centered square of a normal random variable whose

variance is O(L−1) uniformly in k by (19), so there exist CR,1 > 0 depending only on R such that

sup
k=0,...,K−1

E
[(
X̃i
k

)2 ∣∣∣ Gk−1] ≤ CR,1L−2.
Hence, plugging back into (42), we obtain

E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑
k≤Lt

Xi
k1

∥∥∥h(L)
k

∥∥∥≤R
∣∣∣∣∣∣
2
 ≤ 4CR,1L

−1. (44)

For the second term involving Y ik , we explicitly compute the conditional expectation using the definition of V in (27) and
the definition of Q in (12).

Y ik =

∫ tk+1

tk

E
[
Σbs,ii − Σbtk,ii

∣∣ Gk−1]+

d∑
j,l=1

h
(L)
k,j h

(L)
k,l E

[
ΣAs,ijil − ΣAtk,ijil

∣∣ Gk−1]
 ds.
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Now, we compute directly the following bound by Cauchy-Schwarz, Tonelli and (20) in Assumption E.1-(ii):

E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑

k≤L(t∧θR)

Y ik1
∥∥∥h(L)

k

∥∥∥≤R
∣∣∣∣∣∣
2
 ≤M(1 +R2)2

(
L

∫ 1/L

0

rκ/2dr

)2

=: CR,2L
−κ, (45)

where CR,2 > 0 depends only on R. Moving to the third term of (41) involving J ik, we get directly from the definition of
V A and V b that there exists CR,3 > 0 depending only on R such that

sup
‖h‖≤R

E
[∣∣J ik∣∣2 1∥∥∥h(L)

k

∥∥∥≤R
]
≤ CR,3L−3. (46)

Finally, we bound the fourth term of (41) using Cauchy-Schwarz, Assumption 4.2 and property (19) of the Itô processes:

σ′′′(νi)
2 sup
‖h‖≤R

E
[(
M

(L),i
k (h)

)6]
≤ m2 CR,4L

−3, (47)

for some constant CR,4 > 0 depending only on R. Combining the results in (44), (45), (46) and (47), we have

E

 sup
0≤t≤τ

∣∣∣∣∣∣
∑

k≤L(t∧θR)

D
(L),i
k

(
h
(L)
k

)∣∣∣∣∣∣
2
 ≤ 4σ′′(0)2CR,1L

−1 + σ′′(0)2CR,2L
−κ + σ′′(0)2CR,3L

−1 +
m2

9
CR,4L

−1

=:
CR,5
4d

L−κ +
CR,6
4d

L−1. (48)

Upper bound for 1©. Given s ∈ [0, T ∧ θR), denote ks as the integer for which s ∈ [tk, tks+1). Then

H (L)
s − H̃(L)

s = h
(L)
ks
−

(
h
(L)
ks

+

∫ s

tks

µ(s,H (L)
s )ds+

∫ s

tks

(
dV As H

(L)
s + dV bs

))
= −µ

(
tks , h

(L)
ks

)
(s− tks)−

(
V As − V Atks

)
h
(L)
ks
−
(
V bs − V btks

)
, (49)

and by the Mean-value Theorem and the continuity of µ. Hence∥∥∥H (L)
s − H̃(L)

s

∥∥∥2 ≤ 3
∥∥∥µ(tks , h(L)ks

)∥∥∥2 (∆L)2 + 3
∥∥∥h(L)ks

∥∥∥2 ∥∥∥V As − V Atks

∥∥∥2 + 3
∥∥∥V bs − V btks

∥∥∥2 . (50)

Now, from the local Lipschitz condition (32), for ‖h‖ ≤ R we have almost surely

‖µ(s, h)‖2 ≤ 2
(
‖µ(s, h)− µ(s, 0)‖2 + ‖µ(s, 0)‖2

)
≤ 2

(
CR ‖h‖2 + ‖µ(s, 0)‖2

)
.

Hence,

(50) ≤ 4

(
CR

∥∥∥h(L)ks

∥∥∥2 + ‖µ(s, 0)‖2 + 1

)(
∆2
L +

∥∥∥V As − V Atks

∥∥∥2 +
∥∥∥V bs − V btks

∥∥∥2) .
Hence, using (33) and the Lyapunov inequality (Platen & Bruti-Liberati, 2010), we get

E
∫ τ∧θR

0

∥∥∥H (L)
s − H̃(L)

s

∥∥∥2 ds ≤ 4

(
CR C

2/p
0 + 1 +

∫ 1

0

‖µ(s, 0)‖2 ds

)(
∆2
L + 4C1∆L

)
. (51)

Combining everything: From (40), (48) and (51), we have in (37) that

E
[

sup
0≤t≤τ

∥∥∥H̃(L)
τ∧θR −Ht∧θR

∥∥∥2] ≤ 128(CR + C2
1 )

(
CR C

2/p
0 + 1 +

∫ 1

0

‖µ(s, 0)‖2 ds

)(
L−2 + 4C1L

−1)
+

(C̃0 + 1)CM
1 + κ

L−κ +
(
CR,5L

−κ + CR,6L
−1)+ 32(CR + C2

1 )

∫ τ

0

E
[

sup
0≤r≤s

∥∥∥H̃(L)
r∧θR −Hr∧θR

∥∥∥2]ds.
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Applying the Grönwall inequality,

E
[

sup
0≤t≤τ

∥∥∥H̃(L)
τ∧θR −Ht∧θR

∥∥∥2] ≤ C9L
−min{1,κ}

(
C2
R + CR,5 + CR,6 + 1

)
e32(CR+C2

1 ), (52)

where C9 is a universal constant independent of L, R and δ. Combining (52) with (36), we have

E
[

sup
0≤t≤1

‖e1(t)‖2
]
≤ C9L

−min{1,κ}
(
C2
R + CR,5 + CR,6 + 1

)
e32(CR+C2

1 ) +
2p+1δC

p
+

(p− 2)2C

pδ2/(p−2)Rp
. (53)

Given any ε > 0, we can choose δ > 0 so that 2p+1δC
p < ε

3 , then choose R so that (p−2)2C
pδ2/(p−2)Rp <

ε
3 , and finally choose L

sufficiently large so that
C9L

−min{1,κ}
(
C2
R + CR,5 + CR,6 + 1

)
e32(CR+C2

1 ) ≤ ε

3
.

Therefore in (53), we have,

E
[

sup
0≤t≤1

‖e1(t)‖2
]
≤ ε. (54)

Step 2: H and H̃ are uniformly close to each other. Recall the relationship between H̃ andH defined in (49): by (19)
we have almost surely that∥∥∥H (L)

s − H̃(L)
s

∥∥∥2 ≤ C10

(∥∥∥h(L)ks

∥∥∥4 +
∥∥∥h(L)ks

∥∥∥2 + 1

)
(∆L)2 + 3

(∥∥∥h(L)ks

∥∥∥2 ∥∥∥V As − V Atks

∥∥∥2 +
∥∥∥V bs − V btks

∥∥∥2) .
Therefore

E
[

sup
0≤s≤1

∥∥∥H (L)
s − H̃(L)

s

∥∥∥2] ≤ C10

(
E
[

sup
0≤s≤1

∥∥∥h(L)ks

∥∥∥4]+ E
[

sup
0≤s≤1

∥∥∥h(L)ks

∥∥∥2]+ 1

)
(∆L)2

+ 3

((
E
[

sup
0≤s≤1

∥∥∥h(L)ks

∥∥∥4] E
[

sup
0≤s≤1

∥∥∥V As − V Atks

∥∥∥4])1/2

+ E
[

sup
0≤s≤1

∥∥∥V bs − V btks

∥∥∥2]) . (55)

By the Power Mean inequality and Doob’s martingale inequality,

E
[

sup
0≤s≤1

∥∥∥V As − V Atks

∥∥∥4] ≤ E

[
L−1∑
k=0

(
sup

tk≤s<tk+1

∥∥∥V As − V Atks

∥∥∥4)] ≤ C11∆L. (56)

Using Hölder’s inequality yields

E
[

sup
0≤s≤1

∥∥∥V As − V Atks

∥∥∥2] ≤ (E [ sup
0≤s≤1

∥∥∥V As − V Atks

∥∥∥4])1/2

≤
√
C11∆

1/2
L . (57)

Combining (39), (56), and (57) in (55), we obtain

E
[

sup
0≤t≤1

‖e2(t)‖2
]

= E
[

sup
0≤t≤1

∥∥∥H (L)
t − H̃(L)

t

∥∥∥2] ≤ C12∆
1/2
L ,

for some constant C12 > 0. By choosing L > (C12/ε)
2, we have

E
[

sup
0≤t≤1

‖e2(t)‖2
]
≤ ε. (58)

Finally, combining (54) and (58) leads to the desired result.


