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Abstract
Residual networks (ResNets) have displayed im-
pressive results in pattern recognition and, re-
cently, have garnered considerable theoretical in-
terest due to a perceived link with neural ordinary
differential equations (neural ODEs). This link
relies on the convergence of network weights to a
smooth function as the number of layers increases.
We investigate the properties of weights trained
by stochastic gradient descent and their scaling
with network depth through detailed numerical
experiments. We observe the existence of scaling
regimes markedly different from those assumed
in neural ODE literature. Depending on certain
features of the network architecture, such as the
smoothness of the activation function, one may
obtain an alternative ODE limit, a stochastic dif-
ferential equation or neither of these. These find-
ings cast doubts on the validity of the neural ODE
model as an adequate asymptotic description of
deep ResNets and point to an alternative class of
differential equations as a better description of the
deep network limit.

1. Introduction
Residual networks, or ResNets, are multilayer neural net-
work architectures in which a skip connection is introduced
at every layer (He et al., 2016). This allows deep networks
to be trained by circumventing vanishing and exploding gra-
dients (Bengio et al., 1994). The increased depth in ResNets
has lead to commensurate performance gains in applications
ranging from speech recognition (Heymann et al., 2016;
Zagoruyko & Komodakis, 2016) to computer vision (He
et al., 2016; Huang et al., 2016).

A residual network with L layers may be represented as

h
(L)
k+1 = h

(L)
k + δ

(L)
k σd

(
A

(L)
k h

(L)
k + b

(L)
k

)
, (1)

1 InstaDeep 2Mathematical Institute, University of Oxford.
Correspondence to: Alain Rossier <rossier@maths.ox.ac.uk>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

where h(L)k is the hidden state at layer k = 0, . . . , L, h(L)0 =

x ∈ Rd the input, h(L)L ∈ Rd the output, σ : R→ R is a non-
linear activation function, σd(x) = (σ(x1), . . . , σ(xd))

> its
component-wise extension to x ∈ Rd, and A(L)

k , b(L)k , and
δ
(L)
k are trainable network weights for k = 0, . . . , L− 1.

1.1. Connection to previous work

ResNets have been the focus of several theoretical studies
due to a perceived link with a class of differential equa-
tions. The idea, put forth in (Haber & Ruthotto, 2018; Chen
et al., 2018), is to view (1) as a discretization of a system of
ordinary differential equations

dHt

dt
= σd

(
AtHt + bt

)
, (2)

where A : [0, 1] → Rd×d and b : [0, 1] → Rd are appropri-
ate smooth functions and H(0) = x. This may be justi-
fied (Thorpe & van Gennip, 2018) by assuming that

δ(L) ∼ 1/L, A
(L)
k → At, b

(L)
k → bt (3)

as L increases and k/L → t. Such models, named neu-
ral ordinary differential equations or neural ODEs (Chen
et al., 2018; Dupont et al., 2019), have motivated the use of
optimal control methods to train ResNets (E et al., 2019a).

However, the precise link between deep ResNets and the
neural ODE model (2) is unclear: in practice, the weights
A(L) and b(L) result from training, and the validity of the
scaling assumptions (3) for trained weights is far from ob-
vious and has not been verified. As a matter of fact, there
is empirical evidence showing that using a scaling factor
δ(L) ∼ 1/L can deteriorate the network accuracy (Bach-
lechner et al., 2020). Also, there is no guarantee that weights
obtained through training have a non-zero limit which de-
pends smoothly on the layer, as (3) would require. In fact,
we present numerical experiments which point to the con-
trary for many ResNet architectures used in practice. These
observations motivate an in-depth examination of the actual
scaling behavior of weights with network depth in ResNets
and of its impact on the asymptotic behavior of those net-
works.
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Figure 1: Trained weights as a function of k for k = 0, . . . , L and L = 9100. Left: rescaled weights LβA(L)

k,(0,0) for a tanh network

with β = 0.2. Center: weights A(L)

k,(0,0) for a ReLU network. Right: cumulative sum
∑k−1
j=0 A

(L)

j,(0,0)for a ReLU network.

1.2. Our contributions

We systematically investigate the scaling behavior of trained
ResNet weights as the number of layers increases and ex-
amine the consequences of this behavior for the asymp-
totic properties of deep ResNets. Our code is publicly
available at https://github.com/instadeepai/
scaling-resnets.

Our main contributions are twofold. Using the methodology
described in Section 2, we design detailed numerical experi-
ments to study the scaling of trained network weights across
a range of ResNet architectures and datasets, showing the
existence of at least three different scaling regimes, none of
which correspond to (3). In Section 4, we show that in two
of these scaling regimes, the properties of deep ResNets may
be described in terms of a class of ordinary or stochastic
differential equations, albeit different from the neural ODEs
studied in (Chen et al., 2018; Haber & Ruthotto, 2018; Lu
et al., 2020). Those novel findings on the relation between
ResNets and differential equations complement previous
work (Thorpe & van Gennip, 2018; E et al., 2019b; Frei
et al., 2019; Ott et al., 2021). In particular, our findings
question the validity of the neural ODE (2) as a description
of deep ResNets with trained weights.

1.3. Notations

‖y‖ denotes the Euclidean norm of a vector y. For a ma-
trix x, x> denotes its transpose, Diag(x) its diagonal vec-
tor, Tr(x) its trace and ‖x‖F =

√
Tr(x>x) its Frobenius

norm. buc denotes the integer part of a positive number
u. N(m, v) denotes the Gaussian distribution with mean
m and (co)variance v, ⊗ denotes the tensor product, and
Rd,⊗n = Rd × · · · × Rd (n times). vec: Rd1×···×dn →
Rd1···dn denotes the vectorisation operator, and 1S the in-
dicator function of a set S. C0 is the space of continuous
functions, and for ν ≥ 0, Cν is the space of ν-Hölder con-
tinuous functions.

2. Methodology
We identify the possible scaling regimes for the network
weights, introduce the quantities needed to characterize the
deep network limit, and describe the step-by-step procedure
we use to analyze our numerical experiments.

2.1. Scaling hypotheses

As described in Section 1, the neural ODE limit assumes

δ(L) ∼ 1

L
and A

(L)
bLtc

L→∞−→ At, b
(L)
bLtc

L→∞−→ bt, (4)

for t ∈ [0, 1] where A : [0, 1] → Rd×d and b : [0, 1] →
Rd×d are smooth functions (Thorpe & van Gennip, 2018).
Our numerical experiments, detailed in Section 3, show
that the weights generally shrink as L increases (see for
example Figures 2 and 4), so one cannot expect the above
assumption to hold, and weights need to be renormalized
in order to converge to a non-zero limit. We consider here
the following more general situation which includes (4) but
allows for shrinking weights:

Hypothesis 1. There exist A ∈ C0
(
[0, 1],Rd×d

)
and β ∈

[0, 1] such that

∀s ∈ [0, 1], As = lim
L→∞

Lβ A
(L)
bLsc. (5)

Properly renormalized weights may indeed converge to a
continuous function of the layer in some cases, as shown
in Figure 1 (left) which displays an example of layer de-
pendence of trained weights for a ResNet (1) with fully
connected layers and tanh activation function, without ex-
plicit regularization (see Section 3.1).

However it is not always the case that network weights con-
verge to a smooth function of the layer, even after rescaling.
For example, network weights A(L)

k are usually initialized
to random, independent and identically distributed (i.i.d.)
values, whose scaling limit would then correspond to a
white noise, which cannot be represented as a function of
the layer. Such scaling behaviour also occurs for trained

https://github.com/instadeepai/scaling-resnets
https://github.com/instadeepai/scaling-resnets
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weights, as shown in Figure 1 (center). In this case, the
cumulative sum

∑k−1
j=0 A

(L)
j of the weights behaves like a

random walk, which does have a well-defined scaling limit
W ∈ C0

(
[0, 1] ,Rd×d

)
. Figure 1 (right) shows that, for a

ReLU ResNet with fully-connected layers, this cumulative
sum of trained weights converges to an irregular, that is,
non-smooth function of the layer.

This observation motivates the consideration of an alterna-
tive hypothesis where the weights A(L)

k are represented as
the increments of a continuous function WA.

Combining such terms with the ones considered in Hypoth-
esis 1, we consider the following, more general, setting:

Hypothesis 2. There exist β ∈ [0, 1), A ∈
C0
(
[0, 1],Rd×d

)
, and WA ∈ C0([0, 1],Rd×d) non-zero

such that WA
0 = 0 and

A
(L)
k = L−βAk/L +WA

(k+1)/L −W
A
k/L. (6)

The above decomposition is unique. Indeed, for s ∈ [0, 1],

Lβ−1
bLsc−1∑
k=0

A
(L)
k = L−1

bLsc−1∑
k=0

Ak/L + Lβ−1WA
bLsc/L

→
∫ s

0

Ardr, asL→∞. (7)

The integral ofA is thus uniquely determined by the weights
A

(L)
k when L is large, soA can be obtained by discretization

and WA by fitting the residual error in (7). In addition, Hy-
potheses 1 and 2 are mutually exclusive since Hypothesis 2
requires WA to be non-zero.

Remark 2.1 (IID initialization of weights). In the special
case of independent Gaussian weights

A
(L)
k,mn

i.i.d∼ N
(
0, L−1d−2

)
and b

(L)
k,n

i.i.d∼ N
(
0, L−1d−1

)
where A(L)

k,mn is the (m,n)-th entry of A(L)
k ∈ Rd×d and

b
(L)
k,n is the n-th entry of b(L)k ∈ Rd, we can represent the

weights {A(L), b(L)} as the increments of a matrix Brown-
ian motion

A
(L)
k = d−1

(
WA

(k+1)/L −W
A
k/L

)
,

which is a special case of Hypothesis 2.

2.2. Smoothness of weights with respect to the layer

A question related to the existence of a scaling limit is
the degree of smoothness of the limits A or WA, if they
exist. To quantify the smoothness of the function mapping
the layer number to the corresponding network weight, we
define in Table 1 several quantities which may be viewed as

discrete versions of various (semi-)norms used to measure
the smoothness of functions.

Table 1: Quantities associated to a tensor A(L) ∈ RL×d×d.

Quantity Definition

Maximum norm maxk

∥∥∥A(L)
k

∥∥∥
F

β-scaled norm
of increments

Lβ maxk

∥∥∥A(L)
k+1 −A

(L)
k

∥∥∥
F

Cumulative sum norm
∥∥∥∑k A

(L)
k

∥∥∥
F

Root sum of squares
(∑

k

∥∥∥A(L)
k

∥∥∥2
F

)1/2

The first two norms relate to Hypothesis 1: if A(L) sat-
isfy (5), then the maximum norm scales like L−β and the
β-scaled norm of increments scales like L−ν if the limit
functionA is ν-Hölder-continuous.
The last two norms relate to Hypothesis 2: if A(L) satisfy
(6), then the cumulative sum norm scales like L−β . Further-
more, the root sum of squares gives us the regularity of WA.
Indeed, define the quadratic variation tensor of WA by

[
WA

]
s

= lim
L→∞

bLsc−1∑
k=0

(
WA

k+1
L

−WA
k
L

)
⊗
(
WA

k+1
L

−WA
k
L

)>
.

Then, using (6) and Cauchy-Schwarz, we estimate

∣∣∣∣∣∣[WA
]
s

∣∣∣∣∣∣ ≤ 2 · lim
L→∞

bLsc−1∑
k=0

∥∥∥A(L)
k

∥∥∥2
F

+ L1−2β ∥∥A∥∥2
L2

(8)
where |||·||| is the Hilbert-Schmidt norm. AsA is continuous
on a compact domain, its L2 norm is finite. Hence, if β ≥
1/2, the fact that the root sum of squares of A(L) is upper
bounded as L→∞ implies that the quadratic variation of
WA is finite.

2.3. Procedure for numerical experiments

Note that Hypotheses 1 and 2 are mutually exclusive since
Hypothesis 2 requires WA to be non-zero. In order to ex-
amine whether one of these hypotheses, or neither, holds for
the trained weights A(L) and b(L), we proceed as follows.

Step 1: We perform a logarithmic regression of the maxi-
mum norm of δ(L) with respect to L to deduce the scaling
δ(L) ∼ L−α.

Step 2: To obtain the exponent β ∈ [0, 1), we perform a
logarithmic regression of the cumulative sum norm of A(L)

with respect to L. Indeed, (7) for s = 1 indicates that the
cumulative sum norm explodes with a slope of 1− β.
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Step 3: After identifying the correct exponent β for the
weights, we compute the β-scaled norm of increments of
A(L) to check Hypothesis 1 and measure the smoothness of
the trained weights. On one hand, if the β-scaled norm of
increments ofA(L) does not vanish asL→∞, it means that
the rescaled weights cannot be represented as a continuous
function of the layer, as in Hypothesis 1. On the other hand,
if the β-scaled norm of increments of A(L) vanishes (say,
as L−ν) when L increases, it supports Hypothesis 1 with a
Hölder-continuous limit functionA ∈ Cν([0, 1],Rd×d).

Step 4: To discriminate between Hypothesis 1 and Hypoth-

esis 2, we decompose the cumulative sum
∑k−1
j=0 A

(L)
j of

the trained weights into a trend component A and a noise
component WA, as shown in (7). The presence of non-
negligible noise term WA favors Hypothesis 2.

Step 5: Finally, we estimate the regularity of the term WA

under Hypothesis 2. If β ≥ 1/2 and the root sum of squares
of A(L) is finite, we deduce by (8) that WA is of finite
quadratic variation. It happens for example when WA has
a diffusive behavior, as in the example of i.i.d. random
weights.

The same procedure is used for b(L). Note that the scaling
exponent β may be different for A(L) and b(L).

Remark 2.2. Note that σ = ReLU is homogeneous of
degree 1, so we can write

δ · σd (Ah+ b) = sign(δ) · σd (|δ|Ah+ |δ| b) .

Hence, when analyzing the scaling of trained weights in the
case of a ReLU activation with fully-connected layers, we
look at the quantities

∣∣δ(L)∣∣A(L) and
∣∣δ(L)∣∣ b(L), as they

represent the total scaling of the residual connection.

3. Numerical Experiments
We investigate the scaling properties and asymptotic behav-
ior of trained weights for residual networks as the number
of layers increases. We focus on two types of architectures:
fully-connected and convolutional networks.

3.1. Fully-connected layers

Architecture. We consider a regression problem where
the network layers are fully-connected. We consider the
network architecture (1) for two different setups:

(i) σ = tanh, δ(L)k = δ(L) ∈ R+ trainable,

(ii) σ = ReLU, δ(L)k ∈ R trainable.

We choose to present these two cases for the following
reasons. First, both tanh and ReLU are widely used in
practice. Further, having δ(L) scalar makes the derivation

of the limiting behavior simpler. Also, since tanh is an odd
function, the sign of δ(L) can be absorbed into the activa-
tion. Therefore, we can assume that δ(L) is non-negative for
tanh. Regarding ReLU, having a shared δ(L) would hinder
the expressiveness of the network. Indeed, if for instance
δ(L) > 0, we would get h(L)k+1 ≥ h

(L)
k element-wise since

ReLU is non-negative. This would imply that h(L)L ≥ x,
which is not desirable. The same argument applies to the
case δ(L) < 0. Thus, we let δ(L)k ∈ R depend on the layer
number for ReLU networks.

Datasets and training. We consider two datasets. The
first one is synthetic: fix d = 10 and generate N i.i.d sam-
ples xi coming from the d−dimensional uniform distribu-
tion in [−1, 1]d. Let K = 100 and simulate the following
dynamical system:{

zxi
0 = xi

zxi

k = zxi

k−1 +K−1/2 tanhd
(
gd
(
zxi

k−1, k,K
))
,

where gd(z, k,K) := sin(5kπ/K)z+cos(5kπ/K)1d. The
targets yi are defined as yi = zxi

K / ‖z
xi

K ‖. The motivation
behind this low-dimensional dataset is to be able to train
very deep residual networks on a problem where the op-
timal input-output map lies inside the class of functions
represented by (1).

The second dataset is a low-dimensional embedding of the
MNIST handwritten digits dataset (LeCun et al., 1998). Let
(x̃, c) ∈ R28×28 × {0, . . . , 9} be an input image and its cor-
responding class. We transform x̃ into a lower dimensional
embedding x ∈ Rd using an untrained convolutional projec-
tion, where d = 25. More precisely, we stack two convolu-
tional layers initialized randomly, we apply them to the input
and we flatten the downsized image into a d−dimensional
vector. Doing so reduces the dimensionality of the prob-
lem while allowing very deep networks to reach at least
99% training accuracy. The target y ∈ Rd is the one-hot
encoding of the corresponding class.

The weights are updated by stochastic gradient descent
(SGD) on the unregularized mean-squared loss using
batches of size B and a constant learning rate η. We per-
form SGD updates until the loss falls below ε, or when the
maximum number of updates Tmax is reached. We repeat
the experiments for several depths L varying from Lmin to
Lmax. All the hyperparameters are given in Appendix A.

Results. For the case of a tanh activation (i), we observe
in Figure 2 that for both datasets, δ(L) ∼ L−0.7 clearly
decreases as L increases, and the cumulative sum norm
of A(L) slightly increases when L increases. We deduce
that β = 0.2 for the MNIST dataset and β = 0.3 for the
synthetic dataset.
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Figure 2: Scaling for tanh activation and δ(L) ∈ R. Left: Maxi-
mum norm of δ(L) with respect to L. Right: Cumulative sum norm
of A(L) with respect to L. The dashed lines are for the synthetic
data and the solid lines are for MNIST. The plots are in log-log
scale.

Next, we verify which of Hypothesis 1 or Hypothesis 2 holds
for A(L). We observe in Figure 3 (left) that the β-scaled
norm of increments of A(L) decreases like L−1/2, suggest-
ing that Hypothesis 1 holds, with A being 1/2−Hölder
continuous. This is confirmed in Figure 3 (right), as the
trend partA is visibly continuous and even of class C1. The
noise part WA is negligible. This observation is even more
striking given that the weights are trained without explicit
regularization.

Figure 3: Hypothesis verification for tanh activation and δ(L) ∈ R.
Left: in pink we plot in log-log scale the root sum of squares of
A(L), and in orange the β-scaled norm of increments ofA(L). The
dashed lines are for the synthetic data and the solid lines are for
MNIST. Right: Decomposition of the trained weights A(L)

k,(9,7)

with the trend part A and the noise part WA for L = 10321, as
defined in (6), for the synthetic dataset.

Regarding the case of a ReLU activation function (ii), we
observe in Figure 4 (left) that the cumulative sum norm
of the residual connection

∣∣δ(L)∣∣A(L) scales like L0.2 for
the synthetic dataset and like L0.1 for the MNIST dataset,
so β = 0.8, resp. 0.9 in this case. We see in Figure 4
(right) that keeping the sign of δ(L)k is important, as the
sign oscillates considerably throughout the network depth
k = 0, . . . , L− 1.

We verify now which of Hypothesis 1 or Hypothesis 2
holds for

∣∣δ(L)∣∣A(L). Figure 5 (left) shows that the β-
scaled norm of increments scales like L0.2 and L0.4 as the
depth increases. This suggests that there exists a noise part
WA. Following (8), the fact that the root sum of squares
of
∣∣δ(L)∣∣A(L) is upper bounded as L → ∞ implies that

WA has finite quadratic variation. These claims are also

Figure 4: Scaling for ReLU activation and δ(L)
k ∈ R. Left: Cumu-

lative sum norm of |δ(L)|A(L) with respect to L, in log-log scale.
Right: trained values of δ(L)

k as a function of k, for L = 9100 and
for the synthetic dataset.

supported by Figure 5 (right): there is a non-zero trend part
A, and a non-negligible noise part WA.

Figure 5: Hypothesis verification for ReLU activation and δ(L)
k ∈

R. Left: in pink we plot in log-log scale the root sum of squares
of |δ(L)|A(L), and in orange the β-scaled norm of increments
of |δ(L)|A(L). The dashed lines are for the synthetic data and
the solid lines for MNIST. Right: Decomposition of the trained
weights |δ(L)|A(L)

k,(7,7) with the trend part A and the noise part
WA for L = 10321, as defined in (6), for the synthetic dataset.

Given the scaling behavior of the trained weights, we con-
clude that Hypothesis 1 seems to be a plausible description
for the tanh case (i), but Hypothesis 2 provides a better
description for the ReLU case (ii).

The same conclusions hold for b(L) as well, see Appendix B.

Role of the noise term WA. A legitimate question to ask
at this point is whether the noise partWA plays a significant
role in the accuracy of the network. To test this, we create a
residual network with denoised weights Ã(L)

k := L−βAk/L,
compute its training error and we compare it to the original
training error. We observe in Figure 6 (left) that for tanh,
the noise part WA is negligible and does not influence the
loss. However, for ReLU, the loss with denoised weights
is one order of magnitude above the original training loss,
meaning that the noise part WA plays a significant role in
the accuracy of the trained network.

3.2. Convolutional layers

We now consider the original ResNet with convolutional
layers introduced in (He et al., 2016). This architecture is
close to the state-of-the-art methods used for image recog-
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Figure 6: Loss value, as a function of L, in black for the trained
weights A(L)

k and in green for the denoised weights Ã(L)
k =

L−βAk/L. Left: tanh activation and δ(L) ∈ R. Right: ReLU ac-
tivation and δ(L)

k ∈ R. Note that these curves are for the synthetic
dataset and that we plot them in log-log scale. Also, we show in
off-white the loss value range in which we consider our networks
to have converged.

nition. In particular, we do not include batch normaliza-
tion (Ioffe & Szegedy, 2015) since it only slightly improves
the performance of the network while making the analysis
significantly more complicated.

Setup. The precise architecture is detailed in Appendix D.
Most importantly, our network still possesses the key skip
connections from (1). Simply, the update rule for the hidden
state reads

hk+1 = σ (hk + ∆k ∗ σ (Ak ∗ hk) + Fk ∗ hk) (9)

for k = 0, . . . , L − 1, where σ = ReLU. Here, ∆k, Ak,
and Fk are kernels and ∗ denotes convolution. Note that ∆k

plays the same role as δ(L)k from (1). To lighten the notation,
we omit the superscripts x (the input) and L (the number of
layers).

We train our residual networks at depths ranging from
Lmin = 8 to Lmax = 121 on the CIFAR-10 (Krizhevsky
et al.) dataset with the unregularized cross-entropy loss.
Here, the depth is the number of residual connections. We
underline that a network with Lmax = 121 is already very
deep. As a comparison, a standard ResNet-152 (He et al.,
2016) has depth L = 50 in our framework.

Figure 7: Scaling of ∆(L) (left) and A(L) (right) against the net-
work depth L for convolutional architectures on CIFAR-10. In
blue, we plot the spectral norm of the kernels ∆

(L)
k , resp. A(L)

k ,
for k = 0, . . . , L−1. The red line is the maximum of these values
over k, namely the maximum norm, defined in Table 1. The plots
are in log-log scale.

Results. As in Section 3.1, we investigate how the weights
scale with network depth and whether Hypothesis 1 or Hy-
pothesis 2 holds for a convolutional networks. To that end,
we compute the spectral norms, of the linear operators de-
fined by the convolutional kernels ∆

(L)
k and A(L)

k using the
method described in (Sedghi et al., 2019). Figure 7 shows
the maximum norm, and hence the scaling of ∆(L) andA(L)

against the network depth L. We observe that ∆(L) ∼ L−α
and A(L) ∼ L−β with α = 0.1 and β = 0.

Figure 8: Testing of Hypotheses 1 and 2 for ∆(L) (left) and A(L)

(right). We plot in pink the root sum of squares and in orange the
α-scaled norm of increments of ∆(L) (left) and the β-scaled norm
of increments of A(L) (right). Plots are in log-log scale. The root
sum of squares and the scaled norm of increments are defined in
Table 1. We obtain α and β from Figure 7.

We then use the values obtained for α and β to verify our
hypotheses. Figure 8 shows that both the α-scaled norm of
increments of ∆(L) and the β-scaled norm of increments of
A(L) seem to have lower bounds as the depth grows. This
suggests that Hypothesis 1 does not hold for convolutional
layers.

We also observe that the root sum of squares stays in the
same order as the depth increases. Coupled with the fact
that the maximum norms of ∆(L) and A(L) are close to
constant order as the depth increases, this suggests that the
scaling limit is sparse with a finite number of weights being
of constant order in L.

3.3. Summary: three scaling regimes

Our experiments show different scaling behaviors depending
on the network architecture, especially the smoothness of
the activation function. In Section 3.1, for fully-connected
layers with tanh activation and a common pre-factor δ(L)

across layers, we observe a behavior consistent with Hypoth-
esis 1 for both the synthetic dataset and MNIST. In contrast,
a ResNet with fully-connected layers with ReLU activation
and δ(L)k ∈ R shows behavior compatible with Hypothesis 2
both for the synthetic dataset and MNIST.

In the case of convolutional architectures trained on CIFAR-
10 (Section 3.2) we observe that the maximum norm of the
trained weights does not decrease with the network depth
and the trained weights display a sparse structure, indicating
a third scaling regime corresponding to a sparse structure
for both ∆(L) and A(L). These results are consistent with
previous evidence on the existence of sparse CNN represen-
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tations for image recognition (Mallat, 2016). We stress that
the setup for our CIFAR-10 experiments has been chosen to
approach state-of-the-art test performance with our generic
architecture, as shown in Appendix C.

Note that the reason we consider networks with many layers
(up to L = 10321) is to investigate the behavior of coeffi-
cients as depth varies, not because of any claim that very
deep networks are more robust or generalize better than
shallower ones. In fact, most of the networks exhibit good
accuracy for depths L ≥ 15.

4. Deep Network Limit
In this section, we analyze the scaling limit of the residual
network (1) under Hypotheses 1 and 2.

4.1. Setup and assumptions

We consider δ(L) = L−α for some α ≥ 0 and

h
(L)
0 = x,

h
(L)
k+1 = h

(L)
k + L−α σd

(
A

(L)
k h

(L)
k + b

(L)
k

)
,

(10)

with

A
(L)
k = L−βAk/L +WA

(k+1)/L −W
A
k/L,

b
(L)
k = L−βbk/L +W b

(k+1)/L −W
b
k/L,

where (WA
t )t∈[0,1] and (W b

t )t∈[0,1] are Itô processes (Re-
vuz & Yor, 2013) with regularity conditions specified in
Appendix E.1.

Remark 4.1. Hypothesis 1 corresponds to the case WA ≡
0 and W b ≡ 0. Hypothesis 2 corresponds to the case where
WA and W b are non-zero.

We use the following notation for the quadratic variation of
WA and W b:[

WA
]
t

=

∫ t

0

ΣAu du,
[
W b
]
t

=

∫ t

0

Σbudu, (11)

where ΣA and Σb are bounded processes with values respec-
tively in Rd,⊗4 and Rd×d. Let Qi : [0, 1]×Rd → R be the
(random) quadratic form defined by

Qi(t, x) :=

d∑
j,k=1

xjxk
(
ΣAt
)
ijik

+ Σbt,ii. (12)

and Q(t, x) = (Q1(t, x), . . . , Qd(t, x)). Our analysis fo-
cuses on smooth activation functions.

Assumption 4.2 (Activation function). The activation func-
tion σ is in C3(R,R) and satisfies σ(0) = 0, σ′(0) = 1.
Moreover, σ has a bounded third derivative σ′′′.

Most smooth activation functions, including tanh, satisfy
this condition. Also, the boundedness of the third derivative
σ′′′ could be further relaxed to some exponential growth
condition, see (Peluchetti & Favaro, 2020).

Finally, we assume that the hidden state dynamics
(h

(L)
k , k = 1, . . . , L) given by (1) is uniformly integrable.

(For a precise statement see Assumption E.3 in Appendix.)
This is a reasonable assumption since both the inputs and
the outputs of the network are uniformly bounded.

4.2. Informal derivation of the deep network limit

We first provide an informal analysis on the derivation of
the deep network limit. Denote tk = k/L and define for
s ∈ [tk, tk+1]:

M (L),k
s =

(
WA
s −WA

tk

)
h
(L)
k +W b

s −W b
tk

+ L1−βAtkh
(L)
k (s− tk) + L1−βbtk(s− tk).

When β = 0, we need α = 1 to obtain a non-trivial limit.
In this case, the noise terms in M (L),k

s are vanishing as L
increases, and the limit is the Neural ODE. See Lemma 4.6
in (Thorpe & van Gennip, 2018).

When β > 0 we can apply the Itô formula (Itô, 1944) to
σ
(
M

(L),k
s

)
for s ∈ [tk, tk+1) to obtain the approximation

h
(L)
k+1−h

(L)
k = δ(L)σ

(
M

(L),k
tk+1

)
= D1+D2+D3+o (1/L)

(13)
where

D1 = L−α
((
WA
tk+1
−WA

tk

)
h
(L)
k +

(
W b
tk+1
−W b

tk

))
D2 =

1

2
L−ασ′′(0)Q

(
tk, h

(L)
k

)
(tk+1 − tk)

D3 = L1−β−α
(
Atkh

(L)
k (tk+1 − tk) + btk(tk+1 − tk)

)
.

When α = 0, we see from D1 that (13) admits a diffusive
limit, that is with non-vanishing noise terms WA and W b.
In this case, D2 stays bounded when L increases, and D3

does not explode only when β ≥ 1. The case α = 0, β ≥ 1
corresponds to a stochastic differential equation (SDE) limit.

When α > 0, D1 and D2 vanish in the limit L → ∞, and
we need β = 1− α to obtain a non-trivial ODE limit.

We provide precise mathematical statements of these results
in the next section.

4.3. Statement of the results

The following results describe the different scaling limits of
the hidden state dynamics (h

(L)
k , k = 1, . . . , L) for various

values of scaling exponents α and β.

First, we show that Hypothesis 1 with a smooth activation
function leads to convergence in sup norm to an ODE limit
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that is different from the neural ODE behavior described
in (Chen et al., 2018; Thorpe & van Gennip, 2018; Haber &
Ruthotto, 2018).

Theorem 4.3 (Asymptotic behavior under Hypothesis 1). If
the activation function satisfies Assumption 4.2, 0 < α < 1
and α + β = 1, then the hidden state converges to the
solution to the ODE

dHt

dt
= AtHt + bt, H0 = x, (14)

in the sense that

lim
L→∞

sup
0≤t≤1

∣∣∣∣∣∣Ht − h(L)btLc
∣∣∣∣∣∣ = 0.

In particular, this implies the convergence of the hidden
state process for any typical initialization, i.e almost-surely
with respect to the initialization.

Note that in Theorem 4.3, the limit (14) defines a linear
input-output map behaving like a linear network (Arora
et al., 2019). This is different from the neural ODE (2),
where the activation function σ appears in the limit. Inter-
estingly, the limit is a controlled ODE where the control
parameters are linear in the derivative of the state. Their
expressivity is discussed in (Cuchiero et al., 2020).

We show that under Hypothesis 2, we may obtain either an
SDE or an ODE limit. In the latter case, the limiting ODE
is found to be different from the neural ODE (2).

Theorem 4.4 (Asymptotic behavior under Hypothesis 2).
Let σ be an activation function satisfying Assumption 4.2.
α = 0 and β ≥ 1: diffusive limit. Let H be the solution to
the SDE

dHt = Ht dWA
t + dW b

t +
1

2
σ′′(0)Q(t,Ht) dt

+ 1β=1(AtHt + bt) dt,
(15)

with initial condition H0 = x. If there exists p2 > 2 such
that E

[
sup0≤t≤1 ‖Ht‖p2

]
<∞, then the hidden state con-

verges uniformly in L2 to the solution H of (15):

lim
L→∞

E
[

sup
0≤t≤1

∥∥∥h(L)btLc −Ht

∥∥∥2] = 0.

0 < α < 1, α+ β = 1: ODE limit. The hidden state con-
verges uniformly in L2 to the solution of the ODE

dHt

dt
= AtHt + bt, (16)

with initial condition H0 = x:

lim
L→∞

E
[

sup
0≤t≤1

∥∥∥h(L)btLc −Ht

∥∥∥2] = 0.

Note that we prove uniform convergence in L2, also known
as strong convergence.

The detailed assumptions and a sketch of the proof for The-
orems 4.3 and 4.4 are given in Appendix E. Further details
and some extensions may be found in the companion pa-
per (Cohen et al., 2021).

The idea of the proof is to view the ResNet as a nonlinear
Euler discretization of the limit equation, and then bound
the difference between the hidden state and a classical Euler
discretization. Then, using an extension of the techniques
in (Higham et al., 2002) to the case of equations driven by
Itô processes, we show strong convergence in the following
way. We first show that the drift term of (15) is locally
Lipschitz (Appendix E.3). We then prove the strong conver-
gence of the hidden state dynamics (10) by bounding the
difference between the hidden state and an Euler scheme for
the limiting equation. It is worth mentioning that the con-
vergence results in (Higham et al., 2002) hold for a class of
time-homogeneous diffusion processes whereas our result
holds for general Itô processes. This distinction is important
for training neural networks since the diffusion assumption
involves the Markov property which cannot be expected to
hold after training with backpropagation.

In addition, we also relax a technical condition
from (Higham et al., 2002), which is difficult to verify in
practice. See Remark E.5.

4.4. Remarks on the results

Interestingly, when the activation function σ is smooth, all
limits in both Theorems 4.3 and 4.4 depend on the activation
only through σ′(0) (assumed to be 1 for simplicity) and
σ′′(0). Hypotheses 1 and 2 lead to the same ODE limit
when 0 < α < 1 and α + β = 1. In contrast to the
neural ODE (2), the characteristics of σ away from 0 are
not relevant to this limit. In addition, our proof relies on
the smoothness of σ at 0. If the activation function is not
differentiable at 0, then a different limit should be expected.

The caseA ≡ 0, b ≡ 0, α = 0, and β = 1 in Theorem 4.4 is
considered in (Peluchetti & Favaro, 2020), who prove weak
convergence under the additional assumption that WA and
W b are Brownian motions with constant drift. In our setup,
WA andW b are allowed to be arbitrary Itô processes, whose
increments, i.e. the network weights, are not necessarily
independent nor identically distributed. This allows for a
general distribution and dependence structure of weights
across layers.

The concept of weak convergence used in (Peluchetti &
Favaro, 2020) corresponds to convergence of quantities av-
eraged across many random IID weight initializations. In
practice, as the training is done only once, the strong con-
vergence, shown in Theorems 4.3 and 4.4 is a more relevant
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notion for studying the asymptotic behavior of deep neural
networks.

4.5. Link with numerical experiments

Let us now discuss how the analysis above sheds light on
the numerical results in Section 3.1 and Section 3.2.

Figure 2 shows that β ≈ 0.3 and α ≈ 0.7 for the synthetic
dataset with fully-connected layers and tanh activation func-
tion, and Figure 3 suggests that Hypothesis 1 is more likely
to hold. This corresponds to the assumptions of Theorem 4.3
with the ODE limit (14). This is also consistent with the
estimated decomposition in Figure 3 (right) where the noise
part tends to be negligible.

In the case of ReLU activation with fully-connected layers,
we observe that β + α ≈ 1 from Figure 4 (left). Since
ReLU is homogeneous of degree 1 (see Remark 2.2), |δ(L)|
can be moved inside the activation function, so without loss
of generality we can assume α = 0 and β ≈ 1. If we
replace the ReLU function by a smooth version σε, then the
limit is described by the stochastic differential equation (15).
The ReLU case would then correspond to a limit of this
equation as ε→ 0. The existence of such a limit is, however,
nontrivial.

From the experiments with convolutional architectures, we
observe that the maximum norm (Figure 7), the scaled norm
of the increments, and the root sum of squares (Figure 8) are
upper bounded as the number of layers L increases. This
indicates that the weights become sparse when L is large.
In this case, there is no continuous ODE or SDE limit and
Hypotheses 1 and 2 both fail. This emergence of sparse
representations in convolutional networks is consistent with
previous results on such networks (Mallat, 2016).

5. Conclusion
We study the scaling behavior of trained weights in deep
residual networks. We provide evidence for the existence
of at least three different scaling regimes that encompass
differential equations and sparse scaling limits. We also
theoretically characterize the ODE and SDE limits for the
hidden state dynamics in deep fully-connected residual net-
works.

Our work contributes to a better understanding of the behav-
ior of residual networks and the role of network depth. Our
findings point to interesting questions regarding the asymp-
totic behavior of such networks in the case of non-smooth
activation functions and more complex architectures.
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