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Abstract

Clustering is a fundamental problem in data analysis. In differentially private clustering,
the goal is to identify k cluster centers without disclosing information on individual data points.
Despite significant research progress, the problem had so far resisted practical solutions. In this
work we aim at providing simple implementable differentially private clustering algorithms that
provide utility when the data is ”easy,” e.g., when there exists a significant separation between
the clusters.

We propose a framework that allows us to apply non-private clustering algorithms to the easy
instances and privately combine the results. We are able to get improved sample complexity
bounds in some cases of Gaussian mixtures and k-means. We complement our theoretical
analysis with an empirical evaluation on synthetic data.
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1 Introduction

Differential privacy [DMNS06] is a mathematical definition of privacy, that aims to enable statistical
analyses of databases while providing strong guarantees that individual-level information does not
leak. Privacy is achieved in differentially private algorithms through randomization and the intro-
duction of “noise” to obscure the effect of each individual, and thus differentially private algorithms
can be less accurate than their non-private analogues. In most cases, this loss in accuracy is studied
theoretically, using asymptotic tools. As a result, there is currently a significant gap between what
is known to be possible theoretically and what can be done in practice with differential privacy. In
this work we take an important step towards bridging this gap in the context of clustering related
tasks.

The construction of differentially private clustering algorithms has attracted a lot of attention
over the last decade, and many different algorithms have been suggested.1 However, to the best of
our knowledge, none of these algorithms have been implemented: They are not particularly simple
and suffer from large hidden constants that translate to a significant loss in utility, compared to
non-private implementations.

Question 1.1. How hard is it to cluster privately with a practical implementation?

We take an important step in this direction using the following approach. Instead of directly
tackling “standard” clustering tasks, such as k-means clustering, we begin by identifying a very
simple clustering problem that still seems to capture many of the challenges of practical imple-
mentations (we remark that this problem is completely trivial without privacy requirements). We
then design effective (private) algorithms for this simple problem. Finally, we reduce “standard”
clustering tasks to this simple problem, thereby obtaining private algorithms for other tasks.

In more detail, we introduce the following problem, called the k-tuple clustering problem.

Definition 1.2 (informal, revised in Definition 3.7). An instance of the k-tuple clustering problem is
a collection of k-tuples. Assuming that the input tuples can be partitioned into k “obvious clusters”,
each consisting of one point of each tuple, then the goal is to report k “cluster-centers” that correctly
partition the input tuples into clusters. If this assumption on the input structure does not hold, then
the outcome is not restricted.

Remark 1.3.

1. By “obvious clusters” we mean clusters which are far away from each other.

2. The input tuples are unordered. This means, e.g., that the “correct” clustering might place
the first point of one tuple with the fifth point of another tuple.

3. Of course, we want to solve this problem while guaranteeing differential privacy. Intuitively,
this means that the outcome of our algorithm should not be significantly effected when arbi-
trarily modifying one of the input tuples.

Observe that without the privacy requirement this task is trivial: We can just take one arbitrary
input tuple (x1, ..., xk) and report it. With the privacy requirement, this task turns out to be non-
trivial. It’s not that this problem cannot be solved with differential privacy. It can. It’s not even

1[BDMN05a; NRS07; FFKN09; McS09; GLM+10; MTS+12; WWS15; NCBN16; SCL+16; NSV16; FXZR17;
BDL+17; NS18; HL18b; KS18; Ste20; SSS20; GKM20; Ngu20]
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that the problem requires large amounts of data asymptotically. It does not. However, it turns out
that designing an implementation with a practical privacy-utility tradeoff, that is effective on finite
datasets (of reasonable size), is quite challenging.

1.1 Our algorithms for the k-tuple problem

We present two (differentially private) algorithms for the k-tuple clustering problem, which we call
PrivatekAverages and PrivatekNoisyCenters. Both algorithms first privately test if indeed the in-
put is partitioned into k obvious clusters and quit otherwise. They differ by the way they compute
the centers in case this test passes. Algorithm PrivatekAverages privately averages each identi-
fied cluster. Algorithm PrivatekNoisyCenters, on the other hand, does not operate by averaging
clusters. Instead, it selects one of the input k-tuples, and then adds a (relatively small) Gaussian
noise to every point in this tuple. We prove that this is private if indeed there are k obvious clus-
ters in the input. We evaluate these two algorithms empirically, and show that, while algorithm
PrivatekAverages is “better in theory”, algorithm PrivatekNoisyCenters is much more practical for
some interesting regimes of parameters.

We now give a simplified overview of the ideas behind our algorithms. For concreteness, we
focus here on PrivatekAverages. Recall that in the k-tuple clustering problem, we are only required
to produce a good output assuming the data is “nice” in the sense that the input tuples can be
clustered into k “far clusters” such that every cluster contains exactly one point from every tuple.
However, with differential privacy we are “forced” to produce good outputs even when this niceness
assumption does not hold. This happens because if the input data is “almost nice” (in the sense
that modifying a small number of tuples makes it nice) then differential privacy states that the
outcome of the computation should be close to what it is when the input data is nice.

So, the definition of differential privacy forces us to cope with “almost nice” datasets. Therefore,
the niceness test that we start with has to be a bit clever and “soft” and succeed with some
probability also for data which is “almost nice”. Then, in order to achieve good performances, we
have to utilize the assumption that the data is “almost nice” when we compute the private centers.
To compute these centers, Algorithm PrivatekAverages determines (non-privately) a clustering of
the input tuples, and then averages (with noise) each of the clusters. The conceptual challenge here
is to show that even though the clustering of the data is done non-privately, it is stable enough
such that the outcome of this algorithm still preserves privacy.

1.2 Applications

The significance of algorithms PrivatekAverages and PrivatekNoisyCenters is that many clustering
related tasks can be privately solved by a reduction to the k-tuple clustering problem. In this
work we explore two important use-cases: (1) Privately approximating the k-means under stability
assumption, and (2) Privately learning the parameters of a mixture of well-separated Gaussians.

k-Means Clustering
In k-means clustering, we are given a database P of n input points in Rd, and the goal is to

identify a set C of k centers in Rd that minimizes the sum of squared distances from each input point
to its nearest center. This problem is NP-hard to solve exactly, and even NP-hard to approximate
to within a multiplicative factor smaller than 1.0013 [LSW17]. The current (non-private) state-of-
the-art algorithm achieves a multiplicative error of 6.357 [ANFSW19].

2



One avenue that has been very fruitful in obtaining more accurate algorithms (non-privately)
is to look beyond worst-case analysis [ORSS12; ABS10; ABS12; BBG09; BL12; KK10]. In more
details, instead of constructing algorithms which are guaranteed to produce an approximate clus-
tering for any instance, works in this vain give stronger accuracy guarantees by focusing only on
instances that adhere to certain “nice” properties (sometimes called stability assumptions or sep-
aration conditions). The above mentioned works showed that such “nice” inputs can be clustered
much better than what is possible in the worst-case (i.e., without assumptions on the data).

Given the success of non-private stability-based clustering, it is not surprising that such stability
assumptions were also utilized in the privacy literature, specifically by Nissim, Raskhodnikova, and
Smith [NRS07], Wang, Wang, and Singh [WWS15], Huang and Liu [HL18b], and Shechner, Sheffet,
and Stemmer [SSS20]. While several interesting concepts arise from these four works, none of their
algorithms have been implemented, their algorithms are relatively complex, and their practicability
on finite datasets is not clear.

We show that the problem of stability-based clustering (with privacy) can be reduced to the
k-tuple clustering problem. Instantiating this reduction with our algorithms for the k-tuple clus-
tering problem, we obtain a simple and practical algorithm for clustering “nice” k-means instances
privately.

Learning Mixtures of Gaussians. Consider the task of privately learning the parameters of
an unknown mixtures of Gaussians given i.i.d. samples from it. By now, there are various private
algorithms that learn the parameters of a single Gaussian [KV18; KLSU19; CWZ19; BS19; KSU20;
BDKU20]. Recently, [KSSU19] presented a private algorithm for learning mixtures of well-separated
(and bounded) Gaussians. We remark, however, that besides the result of [BDKU20], which is a
practical algorithm for learning a single Gaussian, all the other results are primarily theoretical.

By a reduction to the k-tuples clustering problem, we present a simple algorithm that privately
learns the parameters of a separated (and bounded) mixture of k Gaussians. From a practical
perspective, compared with the construction of the main algorithm of [KSSU19], our algorithm is
simple and implementable. From a theoretical perspective, our algorithm offers reduced sample
complexity, weaker separation assumption, and modularity. See Section 6.4 for the full comparison.

1.3 Other Related Work

The work of Nissim, Raskhodnikova, and Smith [NRS07] presented the sample-and-aggregate
method to convert a non-private algorithm into a private algorithm, and applied it to easy clus-
tering problems. However, their results are far from being tight, and they did not explore certain
considerations (e.g., how to minimize the impact of a large domain in learning mixture of Gaus-
sians).

Another work by Bun et al. [BKSW21] provides a general method to convert from a cover of
a class of distributions to a private learning algorithm for the same class. The work gets a near-
optimal sample complexity, but the algorithms have exponential running time in both k and d and
their learning guarantees are incomparable to ours (they perform proper learning, while we provide
clustering and parameter estimation).

In the work of [KSSU19], they presented an alternative algorithm for learning mixtures of
Gaussians, which optimizes the sample-and-aggregate approach of [NRS07], and is somewhat similar
to our approach. That is, their algorithm executes a non-private algorithm several times, each time
for obtaining a new “k-tuple” of means estimations, and then aggregates the findings by privately
determine a new k-tuple of means estimation. But their approach has two drawbacks. First,
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in order to privately do that, their algorithm ignores the special k-tuples structure, and apply a
more wasteful and complicated “minimal enclosing ball” algorithm from [NS17; NSV16]. Second,
in contrast to them, for creating a k-tuple, our algorithm only applies a non-private algorithm
for separating the samples in the mixture (i.e., for determine which samples belong to the same
Gaussian), and not for estimating their parameters. This yields that we need less samples per
invocation of the non-private algorithm for creating a single k-tuple, which results with an improved
sample complexity (each k-tuple in our case is just the averages of each set of samples, which
might not necessarily be very close to the true means, but is close enough for our setting where the
Gaussians are well-separated). Finally, given a private separation of the sample, we just apply some
private algorithm for estimating the parameters of each (single) Gaussian (e.g., [KV18; KLSU19;
CWZ19; BS19; KSU20; BDKU20]). For more details about our construction, see Section 6.

Furthermore, there are many differentially-private algorithms that are related to learning mix-
ture of Gaussians (notably PCA) [BDMN05b; KT13; CSS13; DTTZ14], and differentially-private
algorithms for clustering [NRS07; GLM+10; NSV16; NS17; BDL+17; KS18; HL18b; GKM20]. We
remark that for the learning Gaussians mixtures problem, applying these algorithms naively would
introduce a polynomial dependence on the range of the data, which we seek to avoid.

2 Preliminaries

2.1 Notation

In this work, a k-tuple X = {x1, . . . ,xk} is an unordered set of k vectors xi ∈ Rd. For x ∈ Rd, we
denote by ‖x‖ the `2 norm of x. For c ∈ Rd and r > 0, we denote B(c, r) := {x ∈ Rd : ‖x− c‖ ≤
r}. For a multiset P ∈ (Rd)∗ we denote by Avg(P) := 1

|P| ·
∑

x∈P x the average of all points

in P. Throughout this work, a database D is a multiset. For two multisets D = {x1, . . . , xn}
and D′ = {x′1, . . . , x′m}, we let D ∪ D′ be the multiset {x1, . . . , xn, x

′
1, . . . , x

′
m}. For a multiset

D = {x1, . . . , xn} and a set S, we let M∩ S be the multiset {xi}i∈I where I = {i ∈ [n] : xi ∈ S}.
say that X is a k-tuple, if X is a multiset of size k (i.e., an unordered tuple). All logarithms
considered here are natural logarithms (i.e., in base e).

2.2 Indistinguishability and Differential Privacy

Definition 2.1 (Neighboring databases). Let D = {x1, . . . , xn} and D′ = {x′1, . . . , x′n} be two
databases over a domain X . We say that D and D′ are neighboring if there is exactly one index
i ∈ [n] with xi 6= x′i.

Definition 2.2 ((ε, δ)-indistinguishable). Two random variable X,X ′ over a domain X are called
(ε, δ)-indistinguishable, iff for any event T ⊆ X , it holds that Pr[X ∈ T ] ≤ eε · Pr[X ′ ∈ T ] + δ. If
δ = 0, we say that X and X ′ are ε-indistinguishable.

Definition 2.3 ((ε, δ)-differential privacy [DMNS06]). An algorithm A is called (ε, δ)-differentially
private, if for any two neighboring databases D,D′ it holds that A(D) and A(D′) are (ε, δ)-indistinguishable.
If δ = 0 (i.e., pure privacy), we say that A is ε-differentially private.

Lemma 2.4 ([BS16]). Two random variable X,X ′ over a domain X are (ε, δ)-indistinguishable,
iff there exist events E,E′ ⊆ X with Pr[X ∈ E],Pr[X ′ ∈ E′] ≥ 1− δ such that X|E and X ′|E′ are
ε-indistinguishable.
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2.2.1 Basic Facts

The following fact is a corollary of Lemma 2.4.

Fact 2.5. Let X,X ′ be two random variables over a domain X , and let E,E′ ⊆ X be two events.
If X|E and X ′|E′ are (ε, δ1)-indistinguishable and Pr[X ∈ E],Pr[X ′ ∈ E′] ≥ 1− δ2, then X and X ′

are (ε, δ1 + δ2)-indistinguishable.

Proof. Since X|E and X ′|E′ are (ε, δ1)-indistinguishable, we deduce by Lemma 2.4 that there exists
events F ⊆ E and F ′ ⊆ E′ with Pr[X ∈ F | E],Pr[X ′ ∈ F ′ | E′] ≥ 1− δ1 such that X|F and X ′|F ′
are (ε, 0)-indistinguishable. In addition, note that

Pr[X ∈ F ] = Pr[X ∈ E] · Pr[X ∈ F | E] ≥ (1− δ2)(1− δ1) ≥ 1− (δ1 + δ2).

Similarly, it holds that Pr[X ′ ∈ F ′] ≥ 1− (δ1 +δ2). Therefore, by applying the opposite direction of
Lemma 2.4 on the events F and F ′, we deduce that X and X ′ are (ε, δ1 +δ2)-indistinguishable. �

In addition, we use the following facts.

Fact 2.6. Let X,X ′ be two ε-indistinguishable random variables over a domain X , and let E,E′ ⊆
X be two events with Pr[X ∈ E],Pr[X ′ ∈ E′] ≥ 1 − δ for δ ≤ 1/2. Then X|E and X ′|E′ are
(ε+ 2δ)-indistinguishable.

Proof. Compute

Pr[X = x | E] ≤ Pr[X = x]

Pr[E]
≤ eε · Pr[X ′ = x]

1− δ
≤ eε+2δPr

[
X ′ = x

]
,

where the last inequality holds since 1− δ ≥ e−2δ for δ ≤ 1/2. �

Fact 2.7. Let X,X ′ be two random variables over a domain X . Assume there exist events E,E′ ⊆
X such that the following holds:

• Pr[X ∈ E] ∈ e±ε · Pr[X ′ ∈ E′], and

• X|E and X ′|E′ are (ε∗, δ)-indistinguishable, and

• X|¬E and X ′|¬E′ are (ε∗, δ)-indistinguishable.

Then X,X ′ are (ε+ ε∗, δeε)-indistinguishable.

Proof. Fix an event T ⊆ X and compute

Pr[X ∈ T ] = Pr[X ∈ T | E] · Pr[X ∈ E] + Pr[X ∈ T | ¬E] · Pr[X /∈ E]

≤
(
eε
∗ · Pr

[
X ′ ∈ T | E′

]
+ δ
)
· eε · Pr

[
X ′ ∈ E′

]
+
(
eε
∗ · Pr

[
X ′ ∈ T | ¬E′

]
+ δ
)
· eε · Pr

[
X ′ /∈ E′

]
= eε+ε

∗ · Pr
[
X ′ ∈ T

]
+ δeε.

�
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2.2.2 Group Privacy and Post-Processing

Fact 2.8 (Group Privacy). If A is (ε, δ)-differentially private, then for all pairs of databases S and
S ′ that differ by k points it holds that A(S) and A(S ′) are (kε, kekεδ)-indistinguishable.

Fact 2.9 (Post-processing). If A is (ε, δ)-differentially private, then for every (randomized) function
F it holds that F ◦ A is (ε, δ)-differentially private.

2.2.3 Composition

Theorem 2.10 (Basic composition, adaptive case [DRV10]). If A1 and A2 satisfy (ε1, δ1) and
(ε2, δ2) differential privacy (respectively), then any algorithm that adaptively uses A1 and A2 (and
does not access the database otherwise) ensures (ε1 + ε2, δ1 + δ2)-differential privacy.

Theorem 2.11 (Advanced composition [DRV10]). Let 0 < ε0, δ
′ ≤ 1, and let δ0 ∈ [0, 1]. An

algorithm that adaptively uses k algorithms that preserve (ε0, δ0)-differential privacy (and does not
access the database otherwise) ensures (ε, δ)-differential privacy, where ε =

√
2k ln(1/δ′) · ε0 + 2kε2

0

and δ = kδ0 + δ′.

2.2.4 The Laplace Mechanism

Definition 2.12 (Laplace distribution). For σ ≥ 0, let Lap(σ) be the Laplace distribution over R
with probability density function p(z) = 1

2σ exp
(
− |z|σ

)
.

Fact 2.13. Let ε > 0. If X ∼ Lap(1/ε) then for all t > 0 : Pr[|X| > t/ε] ≤ e−t.

Definition 2.14 (Sensitivity). We say that a function f : Un → R has sensitivity λ if for all
neigboring databases S,S ′ it holds that |f(S)− f(S ′)| ≤ λ.

Theorem 2.15 (The Laplace Mechanism [DMNS06]). Let ε > 0, and assume f : Un → R has
sensitivity λ. Then the mechanism that on input S ∈ Un outputs f(S)+Lap(λ/ε) is ε-differentially
private.

2.2.5 The Gaussian Mechanism

Definition 2.16 (Gaussian distribution). For µ ∈ R and σ ≥ 0, let N (µ, σ2) be the Gaussian

distribution over R with probability density function p(z) = 1√
2π

exp
(
− (z−µ)2

2σ2

)
.

Fact 2.17. Let X = (X1, . . . , Xd), where the Xi’s are i.i.d. random variables, distributed according

to N (0, σ2). Then for all β > 0 : Pr
[
‖X‖ ≤

(√
d+

√
2 log(1/β)

)
· σ
]
≥ 1− β.

Definition 2.18 (`2-sensitivity). We say that a function f : Un → Rd has `2-sensitivity λ if for all
neigboring databases S,S ′ it holds that ‖f(S)− f(S ′)‖ ≤ λ.

Theorem 2.19 (The Gaussian Mechanism [DKM+06]). Let ε, δ ∈ (0, 1), and assume f : Un → Rd
has `2-sensitivity λ. Let σ ≥ λ

ε

√
2 log(1.25/δ). Then the mechanism that on input S ∈ Un outputs

f(S) +
(
N (0, σ2)

)d
is (ε, δ)-differentially private.
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Observation 2.20. For the case that S ∈ (Rd)n and f(S) = Avg(S), if we are promised that each
coordinate of the points is bounded by a segment of length Λ, then the sensitivity is bounded by λ =
Λ/n, and therefore, by taking σ = O( Λ

εn

√
log(1/δ)) we get by Fact 2.17 that with probability 1− β,

the resulting point z of the mechanism satisfies ‖z−Avg(S)‖ ≤ Λ
√

log(1.25/δ)

εn

(√
d+

√
2 log(1/β)

)
.

Remark 2.21. Theorem 2.19 guarantees differential-privacy whenever two neighboring databases
have equal size. However, it can be easily extended to a more general case in which the privacy
guarantee also holds in cases of addition and deletion of a point, with essentially the same noise
magnitude (e.g., see Appendix A in [NSV16]).

The following proposition states the following: Assume that X ∼ µ + (N (0, σ2))d for some

µ ∈ Rd, and let y ∈ Rd such that ‖y − µ‖ is “large enough” (i.e., larger than Ω
(
σ
√

log(1/β)
)

).

Then with probability 1 − β (over X) it holds that ‖X− µ‖ < ‖X− y‖. Note that such an
argument is trivial when ‖y − µ‖ is at least Ω(σ

√
d log(1/β)), but using a standard projection

argument, we can avoid the dependency in d. The proof appears at Appendix B.3 as a special case
of Proposition B.6.

Proposition 2.22. Let X ∼ µ+ (N (0, σ2))d and let y ∈ Rd with ‖y − µ‖ > 2

√
2 log

(
1
β

)
·σ. Then

with probability 1− β (over the choice of X), it holds that ‖X− µ‖ < ‖X− y‖.

2.2.6 Estimating the Average of Points

As mentioned in Observation 2.20, the Gaussian mechanism (Theorem 2.19) allows for privately

estimating the average of points in B(0,Λ) ⊆ Rd within `2 error of ≈ Λ
√
d

εn . In some cases, we could
relax the dependency on Λ. For example, using the following proposition.

Proposition 2.23 (Estimating the Average of Bounded Points in Rd). Let ε ∈ (0, 1), d,Λ > 0
and let rmin ∈ [0,Λ]. There exists an efficient (ε, δ)-differentially private algorithm that takes an
n-size database S of points inside the ball B(0,Λ) in Rd and satisfy the following utility guarantee:
Let r > 0 be the minimal radius of a d-dimensional ball that contains all points in S. Then with
probability 1− β, the algorithm outputs â ∈ Rd such that

‖â−Avg(S)‖ ≤ O

(
max{r, rmin} ·

d
√

log(1/δ)

εn

(√
log(d/δ) log(d/β) + log

(
Λd

rminβ

)))
.

The algorithm runs in time Õ(dn) (ignoring logarithmic factors).

Proposition 2.23 can be seen as a simplified variant of [NSV16]’s private average algorithm.
The main difference is that [NSV16] first uses the Johnson Lindenstrauss (JL) transform [JL84]
to randomly embed the input points in Rd′ for d′ ≈ log n, and then estimates the average of the
points in each axis of Rd′ . As a result, they manage to save a factor of

√
d upon Proposition 2.23

(at the cost of paying a factor of log n instead). However, for simplifying the construction and the
implementation, we chose to omit the JL transform step, and we directly estimate the average along
each axis of Rd. For completeness, we present the full details of Proposition 2.23 in Appendix A.1.3.
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2.2.7 Sub-Sampling

Lemma 2.24 ([BKN10; KLN+11]). Let A be an (ε∗, δ∗)-differentially private algorithm operating
on databases of size m. Fix ε ≤ 1, and denote n = m

ε (3 + exp(ε∗)). Construct an algorithm B
that on an input database D = (zi)

n
i=1, uniformly at random selects a subset I ⊆ [n] of size m, and

executes A on the multiset DI = (zi)i∈I . Then B is (ε, δ)-differentially private, where δ = n
4m · δ

∗.

The following lemma states that switching between sampling with replacement and without
replacement has only a small effect on privacy.

Lemma 2.25 ([BNSV15]). Fix ε ≤ 1 and let A be an (ε, δ)-differentially private algorithm operating
on databases of size m. For n ≥ 2m, construct an algorithm A′ that on input a database D of size
n, subsamples (with replacement) m rows from D, and runs A on the result. Then A′ is (ε′, δ′)-
differentially private for ε′ = 6εm/n and δ′ = exp(6εm/n) · 4m

n · δ.

2.3 Concentration Bounds

Fact 2.26 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables, each Xi is
strictly bounded by the interval [ai, bi], and let X̄ = 1

n

∑n
i=1Xi. Then for every t ≥ 0:

Pr
[∣∣X̄ − E

[
X̄
]∣∣ ≥ t] ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
Fact 2.27 ([CO13, Theorem 5.3]). Let X ∼ Bin(n, p), then for all t ≥ 0:

1. Pr[X ≥ E[X] + t] ≤ exp
(
− t2

2(np+t/3)

)
.

2. Pr[X ≤ E[X]− t] ≤ exp
(
− t2

2np

)
.

3 k-Tuples Clustering

We first introduce a new property of a collection of (unordered) k-tuples {x1, . . . ,xk} ∈ (Rd)k,
which we call partitioned by ∆-far balls.

Definition 3.1 (∆-far balls). A set of k balls B = {Bi = B(ci, ri)}ki=1 over Rd is called ∆-far
balls, if for every i ∈ [k] it holds that ‖ci − cj‖ ≥ ∆ ·max{ri, rj} (i.e., the balls are relatively far
from each other).

Definition 3.2 (partitioned by ∆-far balls). A tuple X ∈ (Rd)k is partitioned by a given set of
k ∆-far balls B = {B1, . . . , Bk}, if for every i ∈ [k] it holds that |X ∩Bi| = 1. A multiset of
k-tuples T ∈ ((Rd)k)∗ is partitioned by B, if all X ∈ T are partitioned by B. We say that T is
partitioned by ∆-far balls if such a set B of k ∆-far balls exists.

In some cases we want to use a notion of almost partitioned property of a database of k-tuples
T . This is defined below using the additional parameter `.

Definition 3.3 (`-nearly partitioned by ∆-far balls). A multiset T ∈ ((Rd)k)∗ is `-nearly par-
titioned by a given set of ∆-far balls B = {B1, . . . , Bk}, if there are at most ` tuples in T that
are not partitioned by B. We say that T is `-nearly partitioned by ∆-far balls if such a set of
∆-far balls B = {B1, . . . , Bk} exists.
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For a database of k-tuples T ∈ ((Rd)k)n, we let Points(T ) be the collection of all the points in
all the k-tuples in T .

Definition 3.4 (The points in a collection of k-tuples). For T = {{x1,j}kj=1, . . . , {xn,j}kj=1} ∈
((Rd)k)n, we define Points(T ) = {xi,j}i∈[n],j∈[k] ∈ (Rd)kn.

The following proposition states that if T is partitioned by ∆-far balls for ∆ > 2, then each
choice of ∆-far balls that partitions T induces the same partition.

Proposition 3.5. Let T ∈ ((Rd)k)∗ be a multiset that is partitioned by a set of ∆-far balls B =
{B1, . . . , Bk} for ∆ > 2. Then for every k-tuple X = {x1, . . . ,xk} ∈ T and for every i ∈ [k], there
exists a ball in B (call it Bi), such that Points(T )∩Bi = {x ∈ Points(T ) : i = argminj∈[k]‖x− xj‖}.

Proof. Let X = {x1, . . . ,xk} ∈ T , and for every i ∈ [k] let Bi = B(ci, ri) ∈ B be the ball that
contains xi. We prove the proposition by showing that for every i and every x ∈ Points(T ) ∩ Bi,
it holds that i = argminj∈[k]‖x− xj‖.

In the following, fix x ∈ Points(T )∩Bi. On the one hand, since x ∈ Bi, it holds that ‖x− xi‖ ≤
ri. On the other hand, for any j 6= i it holds that

‖x− xj‖ ≥ ‖xi − xj‖ − ‖x− xi‖ > 2ri − ri ≥ ri,

where the strict inequality holds since Bi, Bj are ∆-far balls for ∆ > 2. Namely, we deduce that
‖x− xi‖ < ‖x− xj‖, as required. �

We next define Partition(T ) of a database T ∈ ((Rd)k)∗ which is partitioned by ∆-far balls for
∆ > 2.

Definition 3.6 (Partition(T )). Given a multiset T ∈ ((Rd)k)∗ which is partitioned by ∆-far balls
for ∆ > 2, we define the partition of T , which we denote by Partition(T ) = {P1, . . . ,Pk}, by
fixing an (arbitrary) k-tuple X = {x1, . . . ,xk} ∈ T and setting Pi = {x ∈ Points(T ) : i =
argminj∈[k]‖x− xj‖}.

Note that by Proposition 3.5, the partition is unique (i.e., is independent of the choice of the
k-tuple X).

We now define the k-tuple clustering problem.

Definition 3.7 (k-tuple clustering). The input to the problem is a database T ∈ ((Rd)k)n and a
parameter ∆ > 2. The goal is to output a k-tuple Y = {y1, . . . ,yk} ∈ (Rd)k such that the following
holds: If T is partitioned by ∆-far balls, then for every i ∈ [k], there exists a cluster in Partition(T )
(call it Pi) such that Pi = {x ∈ Points(T ) : i = argminj∈[k]‖x− yj‖}.

Namely, in the k-tuple clustering problem, the goal is to output a k-tuple Y that partitions T
correctly. We remark that for applications, we are also interested in the quality of the solution.
Namely, how small is the distance between yi and Pi, compared to the other clusters in Partition(T ).
We also remark that without privacy, the problem is completely trivial, since any k-tuple X ∈ T
is a good solution by definition.

We next prove that if T is partitioned by ∆-far balls for ∆ > 6, and B partitions at least one
tuple in T , then by partitioning the points in Points(T ) using a single Lloyd step w.r.t. the centers
of the balls in B, we obtain exactly Partition(T ).
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Proposition 3.8. Let B = {Bi = B(ci, ri)}ki=1 and B′ = {B′i = B(c′i, r
′
i)}ki=1 be two sets of ∆-far

balls for ∆ > 6 s.t. for every i ∈ [k] it holds that Bi ∩ B′i 6= ∅. Then for every i ∈ [k] and every
x ∈ Bi ∩B′i, it holds that i = argminj∈[k]‖x− cj‖.

Proof. Fix i ∈ [k] and x ∈ Bi∩B′i. If x ∈ Bi, the proof trivially follows. Therefore, in the following
we assume that x /∈ Bi, and therefore, x ∈ B′i.

Note that on the one hand, it holds that

‖x− ci‖ ≤
∥∥x− c′i

∥∥+
∥∥c′i − ci

∥∥ ≤ r′i + (ri + r′i) = 2r′i + ri (1)

On the other hand, fix j 6= i, and note that

‖x− cj‖ ≥ ‖ci − cj‖ − ‖x− ci‖ (2)

> 6 max{ri, rj} − (2r′i + ri)

≥ 5 max{ri, rj} − 2r′i,

where the second inequality holds by Equation (1) along with the fact that B are ∆-far balls for
∆ > 6. Therefore, if max{ri, rj} ≥ r′i, we deduce by Equations (1) and (2) that ‖x− ci‖ < ‖x− cj‖.
Otherwise (i.e., max{ri, rj} < r′i), note that

‖x− cj‖ ≥
∥∥c′i − c′j

∥∥− ∥∥x− c′i
∥∥− ∥∥c′j − cj

∥∥ (3)

> 6 max{r′i, r′j} − r′i − (r′i + ri)

> 3r′i.

Hence, we deduce by Equations (1) and (3) that ‖x− ci‖ < ‖x− cj‖ also in this case, which
concludes the proof of the proposition. �

Proposition 3.9. Let T ∈ ((Rd)k)n be a multiset that is partitioned by ∆-far balls for ∆ > 6, let
B = {B1, . . . , Bk} be a set of far balls that partitions at least one k-tuple of T , and let c1, . . . , ck be
the centers of B1, . . . , Bk, respectively. In addition, for every i ∈ [k] let Qi = {x ∈ Points(T ) : i =
argminj∈[k]‖x− cj‖}. Then {Q1, . . . ,Qk} = Partition(T ).

Proof. Let X = {x1, . . . ,xk} ∈ T be the assumed k-tuple that is partitioned by B, let B∗ =
{B∗1 , . . . , B∗k} be a set of ∆-far balls that partitions (all of) T , and assume w.l.o.g. that xi ∈ Bi∩B∗i
for every i ∈ [k]. Proposition 3.8 yields that for every i ∈ [k] and x ∈ B∗i it holds that x ∈ Qi,
yielding that B∗i ∩ Points(T ) ⊆ Qi. Since both sets {B∗i }ki=1 and {Qi}ki=1 consist of disjoints sets
that cover all the points in Points(T ), we conclude that {Q1, . . . ,Qk} = Partition(T ). �

4 Our Algorithms

In this section we present two (ε, δ)-differentially private algorithms for the k-tuple clustering
problem: PrivatekAverages and PrivatekNoisyCenters. Algorithm PrivatekAverages attempts to
solve the problem by determining the clusters in Partition(T ) and then privately estimating the
average of each cluster using the algorithm from Proposition 2.23. Algorithm PrivatekNoisyCenters,
on the other hand, does not operate by averaging clusters. Instead, it first selects one of the input
tuples X ∈ T (in a special way), and then adds a (relatively small) Gaussian noise to this tuple.2

2We remind that all the tuples in this work are unordered, and indeed the privacy analysis of our algorithms relies
on it (i.e., the domain of outputs is all the unordered k-tuples, and (ε, δ)-indistinguishability holds for each subset of
this domain).
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Both algorithms share the same first step, which is to call Algorithm PrivateTestPartition
(Figure 2) that privately decides whether T is `-nearly partitioned by ∆-far balls or not (for
small `), and if so, determines (non-privately) a set of ∆-far balls B = {B1, . . . , Bk} that `-nearly
partitions T . In Section 4.1 we describe Algorithm PrivateTestCloseTuples, which is the main
component of PrivateTestPartition. In Section 4.2 we describe PrivateTestPartition and state its
properties. Then, in Section 4.3 we describe PrivatekAverages and prove its guarantees, and in
Section 4.4 we describe PrivatekNoisyCenters and prove its guarantees.

4.1 Algorithm PrivateTestCloseTuples

In this section we describe Algorithm PrivateTestCloseTuples, which given two multisets of k-tuples
T1 and T2, privately checks whether the tuples in T1 are close to the tuples in T2. The algorithm is
described in Figure 1.

Algorithm PrivateTestCloseTuples

Input: Multisets T1 ∈ ((Rd)k)m and T2 ∈ ((Rd)k)n, a privacy parameter ε1 ∈ (0, 1] for T1,
a privacy parameters ε2 ∈ (0, 1] for T2, a confidence parameter β ∈ (0, 1], and a separation
parameter ∆ > 6.

1. For each X = {x1, . . . ,xk} ∈ T1:

(a) Let BX = {BX
i = B(xi, r

X
i )}ki=1, where rXi = 1

∆ ·minj 6=i‖xi − xj‖.
(b) Let `X = |{Y ∈ T2 : Y is not partitioned by BX}|.

(c) Let ˆ̀
X = `X + Lap

(
m
ε2

)
.

(d) Set passX =

{
1 ˆ̀

X ≤ m
ε2
· log

(
m
β

)
0 otherwise

.

2. Let s =
∑

X∈T1 passX and compute ŝ← s+ Lap
(

1
ε1

)
.

3. If ŝ < m− 1
ε1

log
(

1
β

)
, set Status = ”Failure”. Otherwise, set Status = ”Success”.

4. If Status = ”Success” and passX = 1 for at least one X ∈ T1, let X∗ be the first tuple
in T1 with passX∗ = 1 and set B = BX∗ . Otherwise, set B to be a set of k empty balls.

5. Output (Status,B).

Figure 1: Algorithm PrivateTestCloseTuples for privately checking if ∆-far balls around each
k-tuples in T1 partitions the tuples in T2.
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4.1.1 Properties of PrivateTestCloseTuples

The properties of PrivateTestCloseTuples are summarized by the following claims.

Claim 4.1 (Correctness). Assume that T = T1 ∪T2 is partitioned by (2∆ + 2)-far balls. Then with
probability 1 − β, when executing PrivateTestCloseTuples on input T1, T2, ε1, ε2, β,∆, it outputs
(“Success”,B), where B is a set of ∆-far balls that partitions T .

Proof. We first prove that for every X ∈ T1, the set of balls BX = {BX
i = B(xi, r

X
i )}ki=1 from

Step 1a is a set of ∆-far balls that partitions T2. Fix X = {x1, . . . ,xk} ∈ T1, let B = {Bi =
B(ci, ri)}ki=1 be a set of (2∆ + 2)-far balls that partitions T (such a set exists by assumption),
and assume w.l.o.g. that ∀i ∈ [k] : xi ∈ Bi. In addition, recall that rXi = 1

∆ · minj 6=i‖xi − xj‖
(Step 1a), and therefore, by definition it holds that BX is a set of ∆-far balls. It is left to prove
that it partitions T . Note that for every i 6= j it holds that

‖xi − xj‖ ≥ ‖ci − cj‖ − ‖xi − ci‖ − ‖xj − cj‖
> (2∆ + 2) ·max{ri, rj} − ri − rj
≥ 2∆ ·max{ri, rj}

Therefore, for every i ∈ [k], rXi = 1
∆ · minj 6=i‖xi − xj‖ > 2 · ri. Since xi ∈ Bi, we conclude that

Bi ⊆ BX
i , which yields that BX partitions T .

Therefore, for every X = {x1, . . . ,xk} ∈ T1 it holds that `X , the value from Step 1b, is 0. Hence,
by Fact 2.13 and the union bound, with probability 1− β

2 it holds that ∀X ∈ T1 : passX = 1, which
yields that s = m (where m = |T1|). When s = m, we obtain by Fact 2.13 that with probability
1− β

2 it holds that ŝ ≥ s− 1
ε1

log(1/β) = m− 1
ε1

log(1/β), i.e., Status = “Success”. This concludes
the proof of the claim. �

Claim 4.2 (Status is ε1-DP w.r.t. T1). Let T1, T ′1 ∈ ((Rd)k)m be two neighboring databases,
let T2 ∈ ((Rd)k)n, and consider two independent executions PrivateTestCloseTuples(T1, T2) and
PrivateTestCloseTuples(T ′1 , T2) (with the same parameters ε1, ε2, β,∆). Let Status and Status′

be the status outcomes of the two executions (respectively). Then Status and Status′ are ε1-
indistinguishable.

Proof. Note that each k-tuple X ∈ T1 can affect only the bit passX . Therefore, by the properties
of the Laplace mechanism (Theorem 2.15) and post-processing (Fact 2.9), it holds that Status and
Status′ are ε1-indistinguishable. �

Claim 4.3 (Status is ε2-DP w.r.t. T2). Let T2, T ′2 ∈ ((Rd)k)n be two neighboring databases,
let T1 ∈ ((Rd)k)m, and consider two independent executions PrivateTestCloseTuples(T1, T2) and
PrivateTestCloseTuples(T1, T ′2 ) (with the same parameters ε1, ε2, β). Let Status and Status′ be the
status outcomes of the two executions (respectively). Then Status and Status′ are ε2-indistinguishable.

Proof. For each X ∈ T1, let `X ,passX and `′X ,pass′X be the values computed in the loop 1
in the two executions (respectively). Since |`X − `′X | ≤ 1, we obtain by the properties of the
Laplace mechanism, along with post-processing, that passX and pass′X are ε2

m -indistinguishable.
Hence, by basic composition (Theorem 2.10) we deduce that {passX}X∈T1 and {pass′X}X∈T1 are ε2-
indistinguishable, and we conclude by post-processing that Status and Status′ are ε2-indistinguishable.

�
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The following claim states that when PrivateTestCloseTuples(T1, T2) outputs (“Success”,B),
then with high probability, T2 is almost partitioned by B.

Claim 4.4 (On success, B almost partitions T2). Let δ > 0, let T1 ∈ ((Rd)k)m and T1 ∈ ((Rd)k)n,
and assume that m > 1

ε1
· (2 log(1/δ) + log(1/β)). Consider a random execution of

PrivateTestCloseTuples(T1, T2, ε1, ε2, β), and let (Status,B) be the outcome of the execution. Let S
be the event that Status = ”Success”, and let E ⊆ S be the event that T2 is `-nearly partitioned by

B, where ` = m
ε2
· log

(
m
βδ

)
. Then the following holds: If Pr[S] ≥ δ, then Pr[E | S] ≥ 1− δ.

Proof. Let {passX}X∈T1 be the values from Figure 2 in the execution PrivateTestCloseTuples(T1, T2, ε1, ε2, β),
and let W be the event that there exists X ∈ T1 with passX = 1. Note that

Pr[¬W | S] ≤ Pr[S | ¬W ]

Pr[S]
≤

Pr
[
Lap(1/ε1) > 2

ε1
· log

(
1
δ

)]
δ

≤ δ2

2δ
≤ δ

2
,

where the second inequality holds since Pr[S] ≥ δ and since m− 1
ε1

log
(

1
β

)
> 2

ε1
· log

(
1
δ

)
, and the

third one holds by Fact 2.13. Therefore, in the following we prove the claim by showing that

Pr[E |W ∧ S] ≥ 1− δ

2
(4)

Let X∗ be the tuple from Step 4 (it exists when W ∧ S occurs), and recall that B = BX∗ and that
`X∗ is the minimal value such that T2 is `X∗-nearly partitioned by B. Since passX∗ = 1, it holds

that ˆ̀
X∗ = `X∗ + Lap(m/ε2) ≤ m

ε2
· log

(
m
β

)
. Equation (4) now follows by the following calculation.

Pr[E |W ∧ S] = Pr

[
`X∗ >

m

ε2
· log

(
m

βδ

)
| ˆ̀
X∗ ≤

m

ε2
· log

(
m

β

)]
≤ Pr

[
Lap(m/ε2) < −m

ε2
· log

(
1

δ

)]
≤ δ

2
,

where the last inequality holds by Fact 2.13. �

4.2 Algorithm PrivateTestPartition

In this section we describe PrivateTestPartition and state its properties. The algorithm is de-
scribed in Figure 2. In the following, we define m and ε1 (functions of n, ε, δ, β) that are used by
PrivateTestPartition.

Definition 4.5. Let m = m(n, ε, δ, β) be the smallest integer that satisfies m > 1
ε1
·(2 log(1/δ) + log(1/β)),

where ε1 = log( εn2m − 3).

The dependence between m and ε1 for Algorithm PrivateTestPartition is due to the choice of
T1 as an m-size random sample of T . A smaller m allows for a larger value of ε1 for the same
overall privacy, by a sub-sampling argument (e.g., Lemma 2.24). We note that for n � 1/ε and
β, δ ≥ 1

poly(n) , we have ε1 = Θ(log n), which yields that m = O(1). For smaller values of δ, we

obtain that m = O
(

log(1/δ)
logn

)
.
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Algorithm PrivateTestPartition

Input: A multiset T ∈ ((Rd)k)n, privacy parameters ε, δ ∈ (0, 1], confidence parameter
β ∈ (0, 1], and separation parameter ∆ > 6.

1. Let m and ε1 be the values from Definition 4.5 w.r.t. n, ε, δ, β, and let ε2 = ε/2.

2. Let T1 be a uniform sample of m k-tuples from T (without replacement), and let T2 = T .

3. Output (Status,B) = PrivateTestCloseTuples(T1, T2, ε1, ε2, β,∆).

Figure 2: Algorithm PrivateTestPartition for privately checking if ∆-far balls around each k-tuples
in T1 partitions the tuples in T2.

4.2.1 Properties of PrivateTestPartition

The following claim is an immediate corollary of Claim 4.1

Claim 4.6 (Correctness). Assume that T is partitioned by (2∆+2)-far balls. Then with probability
1−β, when executing PrivateTestCloseTuples on input T , ε, δ, β,∆, it outputs (“Success”,B), where
B is a set of ∆-far balls that partitions T .

The following claim is a corollary of Claims 4.2 and 4.3.

Claim 4.7 (Status is private). Let T and T ′ be two neighboring databases, and consider two
independent executions PrivateTestPartition(T ) and PrivateTestPartition(T ′) (with the same pa-
rameters ε, δ, β). Let Status and Status′ be the status outcomes of the two executions (respectively).
Then Status and Status′ are ε-indistinguishable.

Proof. As a first step, assume that we have two (different) copies of T , call them T̃1 and T̃2, where
T1 is chosen from the copy T̃1, and T2 is chosen from the copy T̃2, and let (T̃ ′1 , T̃ ′2 ) be a neighboring
database of (T̃1, T̃2). If T̃2 and T̃ ′2 are neighboring (and T̃1 = T̃ ′1 ), we obtain by Claim 4.3 that
Status and Status′ are ε/2-indistinguishable. Therefore, assume that T̃1 and T̃ ′1 are neighboring
(and T̃2 = T̃ ′2 ). By Claim 4.2, Status and Status′ are ε1-indistinguishable if the resulting samples
T1 and T ′1 in the two executions are neighboring. Since T1 is just an m-size sample from T̃1, and
since ε1 = log( εn2m −3), we obtain by subsampling argument (Lemma 2.24) that Status and Status′

are ε/2-indistinguishable also in this case.
Finally, going back to our case where T̃1 = T̃2 = T , we deduce by the above analysis along with

group privacy (of 2) that Status and Status′ are ε-indistinguishable. �

The following claim is an immediate corollary of Claim 4.4. It states that when the tests succeed,
then w.h.p., T is `-nearly partitioned by B, for the value of ` defined below.

Definition 4.8. Let ` = `(n, ε, δ, β) = 2m
ε · log

(
m
βδ

)
, where m = m(n, ε, δ, β) is the value from

Definition 4.5.

We note that ` = O
(

log2(1/δ)
ε logn

)
. When β, δ ≥ 1/poly(n), we have that ` = O

(
1
ε log n

)
.
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Claim 4.9 (On success, B almost partitions T ). Let T ∈ ((Rd)k)n and δ > 0. Consider a random
execution of PrivateTestPartition(T , ε, δ, β,∆), and let (Status,B) be the outcome of the execution.
Let S be the event that Status = ”Success”, and let E ⊆ S be the event that T is `-nearly partitioned
by B, where ` = `(n, ε, δ, β) is the value from Definition 4.8. Then the following holds: If Pr[S] ≥ δ,
then Pr[E | S] ≥ 1− δ.

Proof. Immediately holds by Claim 4.4 since ` = m
ε2
· log

(
m
βδ

)
, and since it holds that m > 1

ε1
·

(2 log(1/δ) + log(1/β)) (by definition), as required by Claim 4.4. �

Recall that Algorithm PrivateTestPartition has two outputs: A bit Status and a set of balls B.
As we stated in Claim 4.7, the bit Status preserves privacy. The set of balls B, however, does not.
Still, in the following sections we use Algorithm PrivateTestPartition as a subroutine in our two
main algorithms PrivatekAverages and PrivatekNoisyCenters. To argue about the privacy proper-
ties of these algorithms, we rely on the following key property of algorithm PrivateTestPartition.

Claim 4.10. Let A∗ be an algorithm that gets as input a multiset T ∈ ((Rd)k)n and a set of balls
B = {B1, . . . , Bk}, and let ` = `(n, ε/2, δ/4, β/2) be the value from Definition 4.8. Assume that
A∗ has the property that for any neighboring multisets T , T ′ and any sets of ∆-far balls B,B′ that
`-nearly partitions T and T ′ (respectively), it holds that A∗(T ,B) and A∗(T ′,B′) are (ε∗, δ/4)-
indistinguishable. Let A be the algorithm that on input T , does the following steps: (1) Compute
(Status,B) = PrivateTestPartition(T , ε/2, δ/4, β/2,∆), and (2) If Status = “Failure”, output ⊥
and abort, and otherwise output A∗(T ,B). Then A is (ε/2 + ε∗, δ)-differentially private.

Proof. Let T and T ′ be two neighboring multisets of size n. In the following we consider two
independent executions: A(T ) and A(T ′). In A(T ), let O be the outcome, let S,E be the events
from Claim 4.9 w.r.t. the execution of PrivateTestPartition in step (1), and let (Status,B) be
the resulting output of PrivateTestPartition. Similarly, let O′, S′, E′, Status′,B′ be the events and
random variables w.r.t. the execution A(T ′). Let q = Pr[S] and q′ = Pr[S′]. By Claim 4.7 and
by group privacy (Fact 2.8), Status and Status′ are ε

2 -indistinguishable. Therefore, q ∈ e±ε/2 · q′.
Recall that Ã outputs ⊥ and aborts whenever Status = ”Failure”, and therefore, Pr[O =⊥] = 1−q
and Pr[O′ =⊥] = 1 − q′. If q < δ

2 then q′ < eε/2 · δ2 ≤ δ (recall that ε ≤ 1), and therefore,
Pr[O =⊥],Pr[O′ =⊥] ≥ 1 − δ. This means that O and O′ are (0, δ)-indistinguishable in the case
that q < δ

2 (by Lemma 2.4). Similarly, it holds that O and O′ are (0, δ)-indistinguishable when

q′ < δ
2 . Hence, in the rest of the analysis we assume that q, q′ ≥ δ

2 .
By Fact 2.7, since O|¬S ≡ O′|¬S′ (both outcomes equal to ⊥ when Status = Status′ =

”Failure”) and since Pr[S] ∈ e±ε/2 · Pr[S′], it is enough to prove that O|S and O′|S′ are (ε∗, δ2)-

indistinguishable. Furthermore, since Pr[E | S],Pr[E′ | S′] ≥ 1 − δ
4 (by Claim 4.9), we deduce by

Fact 2.5 that it is enough to prove that O|E and O′|E′ are (ε∗, δ4)-indistinguishable, meaning that
we only need to prove indistinguishability in the case that T and T ′ are `-nearly partitioned by
B and B′, respectively. The proof of the claim now follows since A∗(T ,B)|E and A∗(T ′,B′)|E′ are
(ε∗, δ/4)-indistinguishable by the assumption on the algorithm A∗. �

Remark 4.11. Note that PrivateTestPartition runs in time O(mdk2n) = Õ(dk2n) since for each
iteration X ∈ T1 in PrivateTestCloseTuples, Step 1a takes O(dk2) time, and Step 1b takes O(dk2n)
times.
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4.3 Algorithm PrivatekAverages

In this section we describe and state the properties of Algorithm PrivatekAverages which is our
first algorithm for k-tuple clustering. The algorithm is described in Figure 3.

Algorithm PrivatekAverages

Input: A multiset T ∈
(
B(0,Λ)k

)n ⊆ ((Rd)k)n, privacy parameters ε, δ ∈ (0, 1], a confidence
parameter β ∈ (0, 1], and a lower bound on the radii rmin ∈ [0,Λ].

1. Compute (Status,B = {B1, . . . , Bk}) = PrivateTestPartition(T , ε/2, δ/4, β/2,∆) for
∆ = 7.

2. If Status = ”Failure”, output ⊥ and abort.

3. Let c1, . . . , ck be the centers of B1, . . . , Bk (respectively), and let
Qi = {x ∈ Points(T ) : i = argminj∈[k]‖x− cj‖}.

4. Let ` = `(n, ε/2, δ/4, β/2) be the value from Definition 4.8.

5. For i = 1 to k:

(a) Compute a noisy average âi of Qi by executing the algorithm from Proposition 2.23
with parameters Λ, rmin, β̂ = β

2k , ε̂ = ε
4k(`+1) , δ̂ = δ

8k exp(ε/2)(`+1) .

6. Output Â = {â1, . . . , âk}.

Figure 3: Algorithm PrivatekAverages for privately finding the k centers.

4.3.1 Properties of PrivatekAverages

The properties of PrivatekAverages are given in the following theorems.

Theorem 4.12 (Utility of PrivatekAverages). Let d, k,Λ > 0, rmin ∈ [0,Λ], ε, δ, β ∈ (0, 1], and
let T ∈

(
B(0,Λ)k

)n ⊆ ((Rd)k)n. Assume that T is partitioned by ∆-far balls for ∆ = 16, let
{P1, . . . ,Pk} = Partition(T ) (according to Definition 3.6), let ri the radius of the ball that contains
Pi. Then there exists a universal constant λ > 0 such that w.p. ≥ 1−β, algorithm PrivatekAverages
on inputs T , rmin, ε, δ, k, outputs k points Â = {â1, . . . , âk} such that for any i ∈ [k], there exists a
cluster (call it Pi) with

‖âi −Avg(Pi)‖ ≤ max{ri, rmin} ·
λdk`

√
log
(
k`
δ

)
εn

(√
log

(
dk`

δ

)
log

(
dk`

β

)
+ log

(
Λdk

rminβ

))

where ` = `(n, ε2 ,
δ
4 ,

β
2 ) is the value from Definition 4.8.
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We note that when min{ri} ≥ rmin, β = O(1) and δ ≥ 1
poly(n) , it holds that ` = O

(
1
ε log n

)
, and

therefore, ‖âi −Avg(Pi)‖ ≤ Õ

(
dk log1.5 n

(√
logn+log

(
Λ

rmin

))
ε2n

)
·ri. For smaller values of δ, it holds that

` = O
(

log2(1/δ)
ε logn

)
, and we obtain that ‖âi −Avg(Pi)‖ ≤ Õ

(
dk·log2.5(1/δ)

(√
log(1/δ)+log

(
Λ

rmin

))
ε2n logn

)
· ri.

Proof. Consider a random execution of PrivatekAverages(T , ε, δ, β), and let β̃ = β
2 be the value from

Step 1. Since T is partitioned by (2 · 7 + 2)-far balls, Claim 4.6 yield that with probability 1−β/2,
the set B = {B1, . . . , Bk} (computed in Step 1) partitions T . In the following we assume that this
event occurs. Let {Q1, . . . ,Qk} be the clusters that were computed in Step 3 of PrivatekAverages.
By Proposition 3.9, it holds that {P1, . . . ,Pk} = {Q1, . . . ,Qk}. Now let ri be the radius of the ball
that contains Pi. The proof now follows by the utility guarantee of Proposition 2.23 for each i ∈ [k]
with the parameters defined in Step 5a of the algorithm. �

Theorem 4.13 (Privacy of PrivatekAverages). Let d, k,Λ > 0, rmin ∈ [0,Λ], ε, δ, β ∈ (0, 1]. Then
for any integer n ≥ 2 ·`(n, ε/2, δ/4, β/2)+2 (where ` is the function from Definition 4.8), algorithm
PrivatekAverages(·, ε, δ, β, rmin) is (ε, δ)-differentially private for databases T ∈ (B(0,Λ)k)n ⊆
((Rd)k)n.

Proof. Let T and T ′ be two neighboring multisets of size n. In the following we consider two inde-
pendent executions: PrivatekAverages(T ) and PrivatekAverages(T ′) (both with the same parame-
ters rmin, ε, δ, β). In PrivatekAverages(T ), letO be the output, and let B = {B1, . . . , Bk},Q1, . . . ,Qk
be the values from Figure 3. Similarly, we let O′,B′ = {B′1, . . . , B′k},Q′1, . . . ,Q′k be the these values
w.r.t. the execution PrivatekAverages(T ′). By Claim 4.10, if we treat Step 3 to 6 as algorithm A∗
of the claim, it is enough to prove that O = Â and O′ = Â′ are (ε/2, δ/4)-indistinguishable only
in the case that T and T ′ are `-nearly partitioned by B and B′, respectively. In addition, note
that since T and T ′ are neighboring, and since n ≥ 2` + 2, there exists at least one k-tuple that
is partitioned by both B and B′, yielding that for each ball Bi ∈ B, there exists a balls in B′ (call
it B′i), such that Bi ∩ B′i 6= ∅. Since B and B′ are sets of ∆-far balls for ∆ = 7, Proposition 3.8

yields that for every x ∈ Bi (or B′i), it holds that i = argminj∈[k]‖x− cj‖ = argminj∈[k]

∥∥∥x− c′j

∥∥∥.

Therefore, in the two executions, {Q1, . . . ,Qk} and {Q′1, . . . ,Q′k} agree on all the points of all the
common (n − 1) k-tuples of T and T ′ that are partitioned by B or B′. Since there are at least
k · (n − 1 − `) such points, we deduce that there are at most k(` + 1) points that the partitions
{Q1, . . . ,Qk} and {Q′1, . . . ,Q′k} disagree on.

In the following, let si be the number of points that the multisets Qi and Q′i differ by. Note
that each point that the partitions disagree on contributes at most 1 to at most two of the si’s.
Hence,

∑k
i=1 si ≤ 2k(`+ 1).

By the privacy guarantee of Proposition 2.23 (see Remark A.8) along with group privacy
(Fact 2.8), for each i ∈ [k], the resulting noisy averages âi of the execution PrivatekAverages(P),
and the resulting â′i of the execution PrivatekAverages(P ′), which computed in Step 5a, are
( εsi

4k(`+1) ,
δsi

8k(`+1))-indistinguishable. Thus, by basic composition (Theorem 2.10) we deduce that

{â1, . . . , âk} and {â′1 . . . , â′k} are (
ε
∑k
i=1 si

4k(`+1) ,
δ
∑k
i=1 si

8k(`+1) ) = ( ε2 ,
δ
4)-indistinguishable, as required.

�
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Remark 4.14 (Run time of PrivatekAverages). Step 1 of PrivatekAverages takes Õ(dk2n) time
(see Remark 4.11). By Proposition 2.23, the k executions of Step 5a takes time

∑k
i=1 Õ(|Ti|) =

Õ(dkn) (ignoring logarithmic factors). Overall, the running time of PrivatekAverages is Õ(dk2n).

4.3.2 Reducing the dependency in the dimension d

When the dimension d is large, algorithm PrivatekAverages estimates the average of each cluster Pi
with radius ri up to an additive error of Õ

(
d
n · ri

)
(ignoring poly(k, 1/ε) and polylog(n, δ, β,Λ, 1/rmin)

factors). This means that if we want an additive error which is much smaller than ri, we must take
n� d, and in some settings, such a dependency in the dimension might be expensive. Yet, we can
easily reduce the d into

√
d by replacing in Step 5a the average algorithm of Proposition 2.23 by

the average algorithm of [NSV16] that uses the JL transform for saving a factor of
√
d (see the last

paragraph in Section 2.2.6 for more details).

4.4 Algorithm PrivatekNoisyCenters

In this section we describe Algorithm PrivatekNoisyCenters which is our second algorithm for
k-tuple clustering. The algorithm is described in Figure 4.

Algorithm PrivatekNoisyCenters

Input: A multiset T ∈ ((Rd)k)n, privacy parameters ε ∈ (0, 1], δ ∈ (0, 1/2], confidence
parameter β ∈ (0, 1], and a separation parameter ∆� 6.

1. Compute (Status,B = {B1, . . . , Bk}) = PrivateTestPartition(T , ε/2, δ/4, β/2,∆).

2. If Status = ”Failure”, output ⊥ and abort.

3. Let c1, . . . , ck be the centers of B1, . . . , Bk (respectively).

4. For i = 1 to k:

(a) Let λi = 2
∆(1+γi) minj 6=i‖ci − cj‖ where γi = 4

∆−2 ·
(
Lap(4k/ε) + 4k

ε log(4k/δ) + 1
)
.

(b) Let ĉi = ci + (N (0, σ2
i ))

d, where σi = 4kλi
ε

√
2 log(10k/δ).

5. Output Ĉ = {ĉ1, . . . , ĉk}.

Figure 4: Algorithm PrivatekNoisyCenters for privately finding the k centers.

4.4.1 Properties of PrivatekNoisyCenters

The properties of PrivatekNoisyCenters are given in the following theorems.

Theorem 4.15 (Utility of PrivatekNoisyCenters). Let d, k > 0, ε, β, δ ∈ (0, 1] with δ < β, let

T ∈ ((Rd)k)n, and assume that T is partitioned by (2∆+2)-far balls, for ∆ = Ω

(
k log(k/δ)

√
log(k/β)

ε

)
.
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Then when executing PrivatekNoisyCenters(T , ε, δ, β,∆), with probability 1 − β, the output Ĉ =
{ĉ1, . . . , ĉk} satisfy for every i and j 6= i that ‖ĉi − ci‖ < ‖ĉi − cj‖.

We remark that the k factor in the ∆ in Theorem 4.15, comes from applying basic composition
(Theorem 2.10) over the k noisy centers Ĉ. This however can be reduced to Õ(

√
k) factor by

applying advanced composition (Theorem 2.11).

Proof. By the union bound on all the choices of γi, w.p. 1− δ/8 ≥ 1−β/8, for each i ∈ [k] it holds

that minj 6=i‖ci − cj‖ ≥ Ω
(√

log(k/β)
)
·σi. Therefore, for every i 6= j we can apply Proposition 2.22

with µ = ci and y = cj to obtain that with proper choices of the constants in ∆, with probability

1− β
2k2 it holds that ‖ĉi − ci‖ < ‖ĉi − cj‖. By the union bound over all i 6= j we deduce that with

probability 1− β/2 this holds for every i 6= j, as required. �

Theorem 4.16 (Privacy of PrivatekNoisyCenters). Let d, k > 0, ε, β ∈ (0, 1], δ ∈ (0, 1/2], ∆ > 6.
Then for any integer n ≥ 2 · `(n, ε/2, δ/4, β/2) + 2 (where ` is the function from Definition 4.8),
PrivatekNoisyCenters(·, ε, δ, β,∆) is (ε+ δ/4, δ)-differentially private for databases T ∈ ((Rd)k)n.

Proof. Let T and T ′ be two neighboring multisets of size n. In the following we consider two
independent executions: PrivatekNoisyCenters(T ) and PrivatekNoisyCenters(T ′) (both with the
same parameters rmin, ε, δ, β). In PrivatekNoisyCenters(T ), let O be the output, and let B = {Bi =
B(ci, ri)}ki=1 be the ∆-far balls from Figure 3. Similarly, we let O′,B′ = {B′i = B(c′i, r

′
i)}ki=1 be the

these values w.r.t. the execution PrivatekNoisyCenters(T ′). By Claim 4.10, it is enough to prove
that the resulting outputs O = C̃ and O′ = C̃ ′ of Steps 3 to 5 are (ε/2 + δ/4, δ/4)-indistinguishable
only in the case that T and T ′ are `-nearly partitioned by B and B′, respectively. Since 2` ≤ n− 2
and since T and T ′ are neighboring, there must exists a k-tuple X = {x1, . . . ,xk} ∈ T that is
partitioned by both B and B′. In the rest of the analysis we assume (w.l.o.g.) that xi ∈ Bi ∩B′i for
every i ∈ [k].

In the following, we prove that for every i ∈ [k] it holds that minj 6=i‖ci − cj‖ is close to

minj 6=i

∥∥∥c′i − c′j

∥∥∥. For every i 6= j it holds that

‖ci − cj‖ ≤
∥∥ci − c′i

∥∥+
∥∥cj − c′j

∥∥+
∥∥c′i − c′j

∥∥
≤ ‖ci − xi‖+

∥∥c′i − xi
∥∥+ ‖cj − xj‖+

∥∥c′j − xj
∥∥+

∥∥c′i − c′j
∥∥

≤ ri + r′i + rj + r′j +
∥∥c′i − c′j

∥∥
≤ 2

∆
‖ci − cj‖+

2

∆

∥∥c′i − c′j
∥∥+

∥∥c′i − c′j
∥∥.

Therefore,

‖ci − cj‖ ≤
∆ + 2

∆− 2

∥∥c′i − c′j
∥∥ =

(
1 +

4

∆− 2

)∥∥c′i − c′j
∥∥.

Now let i ∈ [k], and let s = argminj 6=i‖ci − cj‖ and t = argminj 6=i

∥∥∥c′i − c′j

∥∥∥. We deduce that

min
j 6=i
‖ci − cj‖ = ‖ci − cs‖ ≤ ‖ci − ct‖ ≤

(
1 +

4

∆− 2

)∥∥c′i − c′t
∥∥ =

(
1 +

4

∆− 2

)
·min
j 6=i

∥∥c′i − c′j
∥∥
(5)

19



Similarly, it holds that minj 6=i

∥∥∥c′i − c′j

∥∥∥ ≤ (1 + 4
∆−2

)
·minj 6=i‖ci − cj‖. Therefore, by the properties

of the laplace mechanism, we deduce that for each i, the values of λi and λ′i are ε
4k -indistinguishable,

and by basic composition we deduce that {λi}ki=1 and {λ′i}ki=1 are all together ε/4-indistinguishable.
In the following, let L be the event that ∀i ∈ [k] : γi ≥ 4

∆−2 , and L′ be the event that

∀i ∈ [k] : γ′i ≥ 4
∆−2 . By Fact 2.13 and the union bound, it holds that Pr[L],Pr[L′] ≤ δ/8. Therefore,

by Fact 2.5, it is enough to prove that C̃|L and C̃ ′|L′ are (ε/2 + δ/4, δ/8)-indistinguishable.
First, by Fact 2.6, we deduce that {λi}ki=1|L and {λ′i}ki=1|L′ are (ε/4 + δ/4)-indistinguishable.

We now continue with the analysis assuming that λi = λ′i for all i ∈ [k]. Note that for every i it
holds that ∥∥ci − c′i

∥∥ ≤ ‖ci − xi‖+
∥∥c′i − xi

∥∥
≤ ri + r′i

≤ 1

∆
·
(

min
j 6=i
‖ci − cj‖+ min

j 6=i

∥∥c′i − c′j
∥∥)

≤ λi,

where the last inequality holds by Equation (5) (assuming that L occurs). Therefore, by the
properties of the Gaussian Mechanism (Theorem 2.19), we deduce that for each i, ĉi and ĉ′i are
( ε

4k ,
δ

8k )-indistinguishable, and by basic composition (Theorem 2.10) we deduce that Ĉ and Ĉ ′ are

( ε4 ,
δ
8)-indistinguishable (assuming that λi = λ′i for all i ∈ [k]). Finally, recall that {λi}ki=1|L and

{λ′i}ki=1|L′ are (ε/4 + δ/4)-indistinguishable, and therefore, we conclude by adaptive composition
(Theorem 2.10) that Ĉ and Ĉ ′ are (ε/2 + δ/4, δ/8)-indistinguishable. �

Remark 4.17 (Run time of PrivatekNoisyCenters). Step 1 of PrivatekNoisyCenters takes Õ(dk2n)
time (see Remark 4.11). The foor-loop in Step 4 only takes O(dkn) time. Overall, the running
time of PrivatekNoisyCenters is Õ(dk2n).

5 k-Means Clustering

In this section we present our first application of k-tuples clustering, which is an (ε, δ)-differentially
private k-means approximation algorithm PrivatekMeans with utility guarantee that holds when
the input is stable in the sense that we will define. We first start with preliminaries about k-means
clustering.

5.1 Preliminaries

For a multiset P ∈ (Rd)∗ and a k-tuple of centers C = {c1, . . . , ck} ∈ (Rd)k, we denote COSTP(C) :=∑
x∈P mini∈[k]‖x− ci‖2 and denote OPTk(P) := minC∈(Rd)k COSTP(C).

The following proposition states that given a multiset P ∈ (Rd)n and a ω-approximation algo-
rithm A for k-means, then when sampling m i.i.d. points from P and executing A on these points,
then with probability 1 − β we obtain k centers with cost ≈ ωOPTk(P) (up to a small additive
error that depends on m and β). The proof appears at Appendix B.1.

Proposition 5.1. Let P be a multiset of n points in B(0,Λ) ⊆ Rd and let A be an ω-approximation
algorithm for k-means. Consider the following random execution: (1) Construct a multiset S of s
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i.i.d. samples from P, (2) Compute C̃ = A(S, k). Then for every β > 0, with probability 1 − β it
holds that

COSTP(C̃) ≤ ω ·OPTk(P) + ξ(s, β),

where ξ(s, β) = 4
(
M(s, β) +

√
M(s, β) · ωOPTk(P)

)
for M(s, β) := 25Λ2kd log

(
2nd
β

)
· ns .

The following proposition states that given a multiset of points P and given two k-tuples of
centers C = {c1, . . . , ck} and C ′ = {c′1, . . . , c′k} such that each c′i is relatively close to a unique
center ci in C, then by clustering the points according to C ′ and performing a single Lloyd step
we get new centers whose k-means cost is almost bounded by COSTP(C). The proof appears at
Appendix B.2.

Proposition 5.2. Let k ∈ N and γ ∈ [0, 1/8]. Let P ∈ (Rd)∗, let C = {c1, . . . , ck} and C ′ =
{c′1, . . . , c′k} be two k-tuples of centers in Rd such that for every i ∈ [k] it holds that ‖c′i − ci‖ ≤ γ·Di,
where Di = minj 6=i‖ci − cj‖. In addition, for every i ∈ [k] let Pi be the multiset of all points in P
that c′i is closest to them in C ′. Then

k∑
i=1

OPT1(Pi) ≤ (1 + 32γ)COSTP(C).

5.2 Private k-Means Under Stability Assumption

In this section we describe our private algorithm PrivatekMeans for approximation the k-means
when the input is stable in the sense that we will define next. The idea is the following: Fix a
database P ∈ (Rd)n, parameters s, t ∈ N and a (non-private) k-means approximation algorithm
A. Now execute A on s i.i.d. samples from P, and repeat this process t times. Consider the event
(over this process) that all the t sets of k centers are almost located at the same positions. More
formally, consider a random execution of GenCenters(P, k, s, t;A) (Figure 5). For a k-tuple of
centers C = {c1, . . . , ck} ∈ (Rd)k and a small stability parameter γ > 0 (say, γ = 0.01), let EγC be
the event that is defined below.

Definition 5.3 (Event EγC over a random sampling of GenCenters). Let EγC be the event that for

every j ∈ [t] and i ∈ [k], there exists a center in C̃j (call it c̃ji ) such that
∥∥∥c̃ji − ci

∥∥∥ ≤ γ ·Di, where

Di = minj 6=i‖ci − cj‖.

Namely, event EγC implies that the output C̃ ∈ ((Rd)k)t of GenCenters is partitioned by ∆-far

balls for ∆ = 1/γ, where Partition(C̃) (according to Definition 3.6) is exactly {{c̃j1}tj=1, . . . , {c̃
j
k}
t
j=1}

(i.e., for each i ∈ [k], the centers {c̃ji}tj=1 are very close to each other, compared to the distance from
the other centers). Then in this section, we show how to construct an (ε, δ)-differentially private
algorithm PrivatekMeans that invokes GenCenters with suitable choices for T and m, such that
it achieves the following utility guarantee: For any k-centers C and a small enough γ, when the
event EγC occurs over GenCenters(P, k, s, t), then with probability 1− β, algorithm PrivatekMeans

outputs Ĉ = {ĉ1, . . . , ĉk} with COSTP(Ĉ) ≤ (1+O(γ))COSTP(C) (plus some small additive error).
Algorithm PrivatekMeans is described in Figure 6 and its properties are proven in Section 5.3. In
Section 5.4 we show that a variant of the separation assumption in [ORSS12] implies that event
EγC∗ holds with high probability, where C∗ are the optimal k means for P.

In the following we define the parameter t used in Step 1 of Algorithm PrivatekMeans.
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Procedure GenCenters

Input: A multiset P of points in B(0,Λ) ⊆ Rd, parameters k, s, t ∈ N, and a (non-private)
k-means algorithm A.

1. For each j ∈ [t]:

(a) Let Sj be a database containing s i.i.d. samples from P (with replacement).

(b) Compute the k-tuple of centers C̃j = A(Sj , k).

2. Output T = {C̃1, . . . , C̃t}.

Figure 5: A procedure for generating t k-tuples of centers in Rd.

Algorithm PrivatekMeans

Input: A multiset P of n points in B(0,Λ) ⊆ Rd, parameter k ∈ N, privacy parameters
ε, δ ∈ (0, 1], confidence parameter β ∈ (0, 1], and a stability parameter γ > 0.
Additional input: A (non-private) k-means algorithm A.

1. Let t be value from Definition 5.4 , and let s =
⌊
n
2t

⌋
.

2. Generate a t-size multiset of k-tuples T = GenCenters(P, k,m, t;A).

3. Execute PrivatekAverages (Figure 3) over T with input parameters

Λ, ñ = t, r̃min = γ
n , ε̃ = ε

6 , δ̃ = δ
4eε , β̃ = β

2 . Let {â1, . . . , âk} be the outcome of the
execution.

4. For each i ∈ [k] :

• Let Pi be the points in P that âi is the closest point to them among {â1, . . . , âk}.
• Use the Gaussian Mechanism (2.19) with parameters d,Λ, ε̂ = ε

12 , δ̂ = δ
8eε , β̂ = β

2k
to compute a noisy average ĉi of Pi.

5. Output {ĉ1, . . . , ĉk}.

Figure 6: A private k-means approximation algorithm PrivatekMeans under stability assumption.
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Definition 5.4. Let t = t(n, d, k, β, γ, ε, δ) be the smallest integer that satisfies

t ≥
6λdk`

√
log
(

12k`
δ

)
ε

(√
log

(
12dk`

δ

)
log

(
2dk`

β

)
+ log

(
12Λdkn

δγ

))

where ` = `(ñ = t, d, k, ε12 ,
δ

16eε ,
β
4 ) is the value from Definition 4.8, and λ is the constant from

Theorem 4.12.

We note that when β = O(1) and δ ≥ 1
poly(n) , it holds that ` = O

(
log2 n
ε log t

)
≤ O

(
1
ε log2 n

)
. This

yields that t = Õ

(
dk log2.5(n)·log

(
Λn
γ

)
ε2

)
in this case. This means that for large enough n, we obtain

that t = polylog(n).

5.3 Properties of PrivatekMeans

The following theorem captures the privacy guarantee of PrivatekMeans.

Theorem 5.5 (Privacy of Algorithm PrivatekMeans). For every d, k > 0, every β, ε, δ, γ ∈ (0, 1]
and every algorithm A, Algorithm PrivatekMeans(·, k, α, β, γ;A) is (ε, δ)-differentially private for
databases P over B(0,Λ) ⊂ Rd.

Proof. The proof builds on the fact that switching between sampling with replacement and without
replacement has only a small effect on the privacy, as stated in Lemma 2.25.

Consider a different variant G̃enCenters of the procedure GenCenters, in which the sampling
of the ≈ n/2 points in all the iterations of Step 1a (s = bn/(2t)c points in T iterations) is done

without replacement, and consider a variant P̃rivatekMeans of PrivatekMeans in which it executes
G̃enCenters in Step 2 rather than GenCenters. Let P = {x1, . . . ,xn} and P ′ = {x′1, . . . ,x′n}
be two neighboring databases of points. In the following we consider two independent executions
P̃rivatekMeans(P) and P̃rivatekMeans(P ′) (both with the same parameters k, ε, δ, β,A). For j ∈ [t]

let Jj ⊆ [n] be the s chosen indices of the points Sj in Step 1a of G̃enCenters (i.e., Sj = {xi}i∈Jj ),
and let J ′j be the same indices in the execution P̃rivatekMeans(P ′). Since Jj and J ′j only depend
on n and not on the content of P and P ′, it is enough to prove that the output of both executions
is (ε, δ)-indistinguishable conditioned on the event that Jj = J ′j for every j ∈ [t]. In the following,
we assume that this event occurs.

Since P and P ′ are neighboring, there exists at most one index j ∈ [t] such that Sj of the execu-

tion P̃rivatekMeans(P) is different than the corresponding set in P̃rivatekMeans(P ′), and therefore,

the outputs Ĉ of G̃enCenters are different by at most one k-tuple. Therefore, by Theorem 4.13, we
deduce that the outcome of Step 3 is (ε̃, δ̃) = ( ε6 ,

δ
4eε )-differentially private.

In the following, we prove that for any fixing of k averages ã1, . . . , ãk, Step 4 is ( ε6 ,
δ

4eε )-

differentially private. Given that, we deduce that P̃rivatekMeans is ( ε3 ,
δ

2eε )-differentially private
by (adaptive) composition of Steps 3 and 4 (Theorem 2.10). Hence, we conclude that the original
algorithm PrivatekMeans, that chooses the points with replacement, is (ε, δ)-differentially private
by applying Lemma 2.25 with m = n/2, ε3 ,

δ
2eε .

It is left to prove the privacy guarantee of Step 4. For that, fix k averages Â = {ã1, . . . , ãk},
let P1, . . . ,Pk be the k multisets in Step 4 w.r.t P and Â, and let P ′1, . . . ,P ′k be the same multisets
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w.r.t P ′ and Â. Since P and P ′ are neighboring, there exist at most two indices i ∈ [k] such
that Pi 6= P ′i, and for each one of them, Pi and P ′i are neighboring. Therefore, by the privacy
guarantee of the Gaussian mechanism along with basic composition (Theorem 2.10), Step 4 is
(2 · ε12 , 2 ·

δ
8eε )-differentially private, as required.

�

The following theorem, which captures the utility guarantee of PrivatekMeans, states that when
event EγC (Definition 5.3) occurs by GenBalancedSamples in Step 2, then with probability at least

1−β, the output Ĉ = {ĉ1, . . . , ĉk} has COSTP(Ĉ) ≤ (1+O(γ))COSTP(C)+O
(

Λ2dk log(1/δ) log(k/β)
ε2

)
.

Theorem 5.6 (Utility of Algorithm PrivatekMeans). Let d, k > 0, let β, ε, δ ∈ (0, 1], let P
be a multiset of n points in B(0,Λ) ⊆ Rd and let A be an algorithm. In addition, let C =
{c1, . . . , ck} ∈ (Rd)k with mini 6=j‖ci − cj‖ ≥ 1/n and let γ ∈ (0, 1

32 ]. Consider a random execution
of PrivatekMeans(P, k, ε, δ, β, γ;A) conditioned that the event EγC occurs by GenBalancedSamples
in Step 2 of the execution. Then with probability 1− β (over the above conditioned execution), the
output Ĉ = {ĉ1, . . . , ĉk} of PrivatekMeans satisfies that

COSTP({ĉ1, . . . , ĉk}) ≤ (1 + 64γ)COSTP(C) +O

(
Λ2k log(1/δ) · (d+ log(k/β))

ε2

)
.

Proof. Consider a random execution of PrivatekMeans(P, k, ε, δ, β, γ;A) conditioned on the event
EγC . For j ∈ [t], let C̃j = {c̃j1, . . . , c̃

j
k} be the value from Step 1b of the j’th iteration of

GenCenters, where we denote by c̃ji the center that is close to ci, i.e.,
∥∥∥ĉji − ci

∥∥∥ ≤ γ · Di,

where Di = minj 6=i‖ci − cj‖ (such center exists by event EγC). In addition, for i ∈ [k], let

ai = Avg({ĉji}tj=1) and note that

∀i ∈ [k] : ‖ai − ci‖ =

∥∥∥∥∥∥1

t

t∑
j=1

ĉji − ci

∥∥∥∥∥∥ (6)

≤ 1

t

t∑
j=1

∥∥∥ĉji − ci

∥∥∥
≤ γ ·Di.

Now, let C̃ be the output of GenCenters in Step 2 of Algorithm PrivatekMeans, and note that C̃ is
evenly-partitioned by the set of balls {B(ci, ri = 2γDi)}ki=1 which are also ∆-far balls for ∆ = 16

since γ < 1
32 , and Partition(C̃) = {{ĉj1}tj=1, . . . , {ĉ

j
k}
t
j=1}. Therefore, when executing Algorithm

PrivatekAverages in Step 3, we obtain by Theorem 4.12 a set of k points {â1, . . . , âk} such that
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with probability 1− δ̃ ≥ 1− β
2 it holds that

∀i ∈ [k] : ‖ai − âi‖ (7)

≤ max{ri, r̃min} ·
λdk`

√
log
(
k`
δ̃

)
ε̃ñ

(√
log

(
dk`

δ̃

)
log

(
dk`

β̃

)
+ log

(
Λdk

r̃minδ̃

))

= γDi ·
6λdk`

√
log
(

12k`
δ

)
εt

(√
log

(
12dk`

δ

)
log

(
2dk`

β

)
+ log

(
12Λdkn

δγ

))
≤ γDi,

where ` = `(ñ, d, k, ε̃/2, δ̃/4, β̃/2) is the value from Definition 4.8, and λ is the constant from
Theorem 4.12. In the second inequality we used the fact that ri ≤ γDi and that r̃min = γ

n ≤ γDi,
and the last inequality holds by the definition of t (Definition 5.4). Therefore, we deduce by
Equations (6) and (7) that with probability 1− β

2 it holds that

∀i ∈ [k] : ‖âi − ci‖ ≤ 2γ ·Di. (8)

Let P1, . . . ,Pk be the clusters from Step 4 of the algorithm. If Equation (8) occurs, then by
Proposition 5.2 we get that

k∑
i=1

∑
x∈Pi

‖x−Avg(Pi)‖2 ≤ (1 + 64γ)COSTP(C). (9)

Since the algorithm computes a noisy estimation ĉi of each Avg(Pi), we get by the properties
of the Gaussian mechanism (see Observation 2.20) and the union bound that with probability
1− kβ̂ = 1− β

2 it holds that

∀i ∈ [k] : ‖ĉi −Avg(Pi)‖ ≤ O

(
Λ
√

log(1/δ)

ε|Pi|

(√
d+

√
log(k/β)

))
(10)

Finally, since Equation (9) occurs with probability 1− β
2 , and Equation (10) occurs with prob-

ability 1− β
2 , we conculde that with probability 1− β both of them occurs, which implies that

COSTP({ĉ1, . . . , ĉk})

≤
k∑
i=1

∑
x∈Pi

‖x− ĉi‖2

=
k∑
i=1

∑
x∈Pi

(
‖x−Avg(Pi)‖2 + ‖ĉi −Avg(Pi)‖2 + 2‖x−Avg(Pi)‖ · ‖ĉi −Avg(Pi)‖

)
≤ (1 + 64γ)COSTP(C) +O

(
Λ2k log(1/δ)

ε2
(d+ log(k/β))

)
+ 2Λ ·O

(
Λ
√

log(1/δ)

ε

(√
d+

√
log(k/β)

))

= (1 + 64γ)COSTP(C) +O

(
Λ2k log(1/δ)

ε2
(d+ log(k/β))

)
,

where in the last term of the second inequality we used the fact that ‖x−Avg(Pi)‖ ≤ Λ for all
i ∈ [k] and x ∈ Pi. �
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Remark 5.7 (Run time of PrivatekMeans). The algorithm calls the non-private algorithm A t-
times (where t ≤ polylog(n)), each time over a collection of points of size s = O(n/t). Then, the
most expensive step is executing PrivatekAverages, which takes Õ(dk2n) time.

5.4 Private k-Means under Separation Assumption

In this section we show that our stability assumption holds with high probability when the multiset
P is separated according to Ostrovsky et al. [ORSS12]. Formally, a multiset of points P is φ-
separated for k-means if OPTk(P) ≤ φ2OPTk−1(P). In Definition 5.8 we strength this definition
of [ORSS12] to include also an additive separating term ξ.

Definition 5.8 ((φ, ξ)-separated). A multiset P ∈ (Rd)∗ is (φ, ξ)-separated for k-means if
OPTk(P) + ξ ≤ φ2 ·OPTk−1(P). Note that P is φ-separated iff it is (φ, 0)-separated.

We use the following theorem from [ORSS12] which states that when P is φ-separated for k-
means for sufficiently small φ, then any set of k centers that well approximate the k means cost,
must have the property that each of its centers is relatively close to an optimal center.

Theorem 5.9 ([ORSS12]). 3 Let ν and φ be such that ν+φ2

1−φ2 < 1
16 . Suppose that P ∈ (Rd)∗

is φ-separated for k-means. Let C∗ = {c∗1, . . . , c∗k} be a set of optimal centers for P, and let
C = {c1, . . . , ck} be centers such that COSTP(C) ≤ ν · OPTk−1(P). Then for each ci there is a

distinct optimal center, call it c∗i , such that ‖ci − c∗i ‖ ≤ 2 · ν+φ
1−φ ·Di, where Di = minj 6=i

∥∥∥c∗i − c∗j

∥∥∥.

The following lemma states that for suitable choices of φ and λ, if P is (φ, λ)-separated for
k-means, then with high probability, the event EγC∗ over a random execution of PrivatekMeans
(Definition 5.3) occurs, where C∗ is the optimal k-means for P

Lemma 5.10 (Bounding the stability probability). Let ε, δ, β, φ ∈ (0, 1), γ ∈ [0, 1
16 ], , d, k, n ∈ N, let

t = t(n, d, k, β, γ, ε, δ) be the value from Definition 5.4, let A be a (non-private) ω-approximation
algorithm for k-means, let P ∈ (B(0,Λ))n and let C∗ = {c∗1, . . . , c∗k} ∈ (Rd)k be the optimal k-means
for P. If the following holds:

• P is (φ, ξ)-separated for k-means, where

ξ = ξ

(⌊ n
2t

⌋
,
β

t

)
= Õ

(
Λ2tkd log(nt/β) + Λ

√
tkd log(n/β) · ωOPTk(P)

)
is the function from Proposition 5.1, and

• (1+ω)φ2

1−φ2 < 1
16 , and

• γ ≥ 2 · ωφ
2+φ

1−φ ,

then when executing PrivatekMeans on inputs P, k, ε, δ, β, γ,A, the event EγC∗ (Definition 5.3)
occurs with probability at least 1− β.

3The statement of this theorem was taken from [SSS20].
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Proof. For j ∈ [t], let Sj and C̃j be the k-tuple in the execution of PrivatekMeans in steps 1a and 1b
of GenCenters (respectively). Note that by Proposition 5.1 and the union bound, with probability
at least 1− β it holds that

∀j ∈ [t] : COSTP(C̃j) ≤ ω ·OPTk(P) + λ ≤ ωφ2OPTk−1(P), (11)

where the last inequality holds by the assumption that P is (φ, λ)-separated for k-means and that
ω ≥ 1. In the following, assume that (11) occurs. Since P is (in particular) φ-separated, and since
the conditions of Theorem 5.9 hold with ν = ωφ2, we obtain from Theorem 5.9 that for every i ∈ [k]

and j ∈ [t], there exists c̃ji ∈ C̃j such that
∥∥∥c∗i − c̃ji

∥∥∥ ≤ γDi, meaning that event EγC∗ occurs, as

required. �

As a corollary of Theorem 5.6 and Lemma 5.10, we obtain our main application of algorithm
PrivatekMeans.

Corollary 5.11. Let ε, δ, β ∈ (0, 1) and let φ,P,A, ω, γ as in Lemma 5.10. Then when execut-
ing PrivatekMeans on inputs P, k, ε, δ, β,A, with probability 1 − 2β, the resulting centers Ĉ =
{ĉ1, . . . , ĉk} satisfy

COSTP(Ĉ) ≤ (1 + 64γ)OPTk(P) +O

(
Λ2k log(1/δ)

ε2
(d+ log(k/β))

)
Proof. The proof almost immediately holds by Theorem 5.6 and Lemma 5.10 when applying them
to the optimal k-means of P, which we denote by C∗ = {c∗1, . . . , c∗k}. The only missing requirement

is to show that D∗ := mini 6=j

∥∥∥c∗i − c∗j

∥∥∥ ≥ 1/n, as required by Theorem 5.6. For proving this, note

that on the one hand it holds that OPTk−1(P) ≤ D∗n+OPTk(P), and on the other hand, since we
assume that P is (φ, λ)-separated for φ ≤ 1 and λ ≥ 1 then it holds that OPTk(P)+1 ≤ OPTk−1(P).
From the two inequalities we conclude that D∗ ≥ 1/n and the corollary follows. �

6 Mixture of Gaussians

In this section we present our second application of k-tuple clustering, which is an (ε, δ)-differentially
private algorithm PrivatekGaussians for learning a mixture of well separated and bounded k Gaus-
sians. We first start with relevant preliminaries for this section.

6.1 Preliminaries

The total variation distance between two distributions P and Q over a universe U is defined
by dTV(P,Q) = supS⊆U |P (S)−Q(S)|. Given a matrix A = (ai,j)i,j∈[d] ∈ Rd×d, we let ‖A‖ =
sup‖x‖=1‖Ax‖ be its `2 norm.

6.1.1 Gaussians

Let N (0, 1) be the standard Gaussian distribution over R with probability density function p(z) =
1√
2π
e−

z2

2 . In Rd, let N (0, Id×d) be the standard multivariate Gaussian distribution. That is, if

Z ∼ N (0, Id×d) then Z = (Z1, . . . , Zd) where Z1, . . . , Zd are i.i.d. according to N(0, 1). Other
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Gaussian distributions over Rd arise by applying (invertible) linear maps on N (0, Id×d). That
is, the distribution X ∼ N (µ,Σ = AAT ) for µ ∈ Rd and (invertible) A ∈ Rd×d is defined by
X = AZ + µ, where Z ∼ N(0, Id×d), and it holds that E[X] = µ and Cov(X) = (Cov(Xi, Xj))i,j
(the covariance matrix) equals to Σ. The contours of equal density are ellipsoids around µ: {x ∈
Rd : (x − µ)TΣ−1(x − µ) = r2}. We let G(d) be the family of all d-dimensional Gaussian — that
is, the set of all distribution N (µ,Σ) where µ ∈ Rd and Σ is a d × d positive semidefinite (PSD)
matrix.

Definition 6.1 (Bounded Gaussian). For R, σmax, σmin > 0, a Gaussian G = N (µ,Σ) ∈ G(d) is
(R, σmax, σmin)-bounded if ‖µ‖ ≤ R and σ2

min ≤ ‖Σ‖2 ≤ σ2
max.

We next define the properties of a general algorithm that privately learns a the parameters of
a (single) bounded Gaussian.

Definition 6.2 (Private Algorithm for Learning a Bounded Gaussian). Let A be an algorithm that
gets as input a database P ∈ (Rd)∗ and parameters d, ε, δ, α, β,R, σmax, σmin, and outputs (µ̂, Σ̂).
Let s = s(d, ε, δ, α, β,R, σmax, σmin) be a function. We say that A is a private algorithm for
learning a bounded Gaussian with sample complexity υ if given the above parameters, A is
an (ε, δ)-differentially private algorithm that satisfy the following utility guarantee: If N (µ,Σ) is a
(R, σmax, σmin)-bounded Gaussian, and P consists of at least υ i.i.d. samples from N (µ,Σ), then
with probability at least 1− β it holds that dTV(N (µ,Σ),N (µ̂, Σ̂)) ≤ α.

The best known examples for such algorithms are the constructions of [KLSU19] and [BDKU20],

which have sample complexity υ = Õ

 d2

α2 + d2

εα +
d3/2

√
log
(
σmax
σmin

)
+
√
d logR

ε

 · log(1/β)

. We re-

mark that without privacy, the required sample complexity is Θ
(
d2 log(1/β)

α2

)
, which means that

privacy comes almost for free unless 1
ε ,

σmax
σmin

or R are quite large.

6.1.2 Gaussian Mixtures

The class of Gaussian k-mixtures in Rd is

G(d, k) := {
k∑
i=1

wiGi : G1, . . . ,Gk ∈ G(d), w1, . . . , wk > 0,

k∑
i=1

wi = 1}

A Gaussian mixture can be specified by a set of k tuples: {(µ1,Σ1, w1), . . . , (µk,Σk, wk)}, where
each tuple represents the mean, covariance matrix, and mixing weight of one of its components.

Definition 6.3 (Bounded Mixture of Gaussians). For R, σmax, σmin, wmin > 0, a Gaussian mixture
D = {(µ1,Σ1, w1), . . . , (µk,Σk, wk)} ∈ G(d, k) is (R, σmax, σmin, wmin)-bounded if for all i ∈ [k], the
Gaussian N (µi,Σi) is (R, σmax, σmin)-bounded and wi ≥ wmin.

Definition 6.4 (Separated Mixture of Gaussians). Let D = {(µ1,Σ1, w1), . . . , (µk,Σk, wk)} be a
mixture of k Gauusians over Rd, for i ∈ [k] let σ2

i = ‖Σi‖2, and let h > 0. We say that D is
h-separated if

∀1 ≤ i < j ≤ k : ‖µi − µj‖ ≥ h ·max{σi, σj}.
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We next define a labeling algorithm for a mixture D.

Definition 6.5 (Labeling Algorithm for a Mixture of Gaussians). Let n, k ∈ N, β ∈ (0, 1) and
let D = {(µ1,Σ1, w1), . . . , (µk,Σk, wk)} be a mixture of k Gaussians. We say that an Algorithm A
is an (n, β)-labeling algorithm for the mixture D if with probability 1 − β, when sampling a
database P of n i.i.d. samples from D, Algorithm A on inputs P, d, k, β, outputs a labeling function
L : P → [k] such that for all x,x′ ∈ P: L(x) = L(x′) ⇐⇒ x and x′ were drawn from the same
Gaussian.

There are various examples of non-private algorithms that learns the parameters of mixtures of
Gaussian under different separations assumptions, and most of them can be easily converted into
a labeling algorithm. For instance, [DS00; SK01] showed how to learn mixtures with separation
that is only proportional to d1/4. Moreover, there is a wide line of works that show how to handle
mixtures with separation that is independent of d: Separation that is proportional to

√
k [AM05],

k1/4 [VW04], kε [HL18a; KSS18; DKS18], or even
√

log k [RV17]. In Section 6.2 we show that our
algorithm can transform each such non-private algorithm into a private one, as long as we are given
n points from a mixture that is at least Ω̃(log n)−separated.

6.1.3 Concentration Bounds

Fact 6.6 (One-dimensional Gaussian). Let X ∼ N (0, σ2). Then for any β > 0 it holds that

Pr
[
X ≥ σ

√
2 log(1/β)

]
≤ β.

Fact 6.7 (follows by the Hanson-Wright inequality [HW71]). If X ∼ N (µ,Σ) then with probability
at least 1− β it holds that

‖X− µ‖ ≤
(√

d+
√

2 log(1/β)
)
·
√
‖Σ‖.

The following fact is an immediate corollary of Fact 6.7.

Fact 6.8. Let X1, . . . , Xm be i.i.d. random variables distributed according to a d-dimensional
Gaussian N (µ,Σ), and let σ2 = ‖Σ‖. Then with 1− β it holds that

‖Avg(X1, . . . , Xm)− µ‖ ≤
√
d+

√
2 log(1/β)√
m

· σ,

Proof. Follows by Fact 6.7 since Avg(X1, . . . , Xm) is distributed according to N (µ, 1
m · Σ). �

6.2 Algorithm PrivatekGaussians

In this section we describe our algorithm PrivatekGaussians that privately learns a mixture of
separated and bounded k Gaussians D = {(µ1,Σ1, w1), . . . , (µk,Σk, wk)}. The formal description
of the algorithm appear at Figure 8.

In the following we define the parameter t used in Step 2 of Algorithm PrivatekGaussians.
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Algorithm CollectEmpiricalMeans

Input: A database P ′ = {x1, . . . ,xn} and parameters k, s, t ∈ N, where n ≥ st.
Additional inputs: a (non-private) labeling algorithm A for a mixture of Gaussians.

1. For each j ∈ [t]:

(a) Let Sj = {x(j−1)s+1, . . . ,xjs}.

(b) Execute A on inputs P̃ = Sj , k̃ = k, and let Lj : Sj → [k] be the resulting labeling
function.

(c) For each i ∈ [k] :

• Compute µ̄j,i = Avg({x ∈ Sj : Lj(x) = i}).
(d) Set Mj = {µ̄j,1, . . . , µ̄j,k} ∈ (Rd)k.

2. Output T = {M1, . . . ,Mt} ∈ ((Rd)k)t.

Figure 7: A procedure for generating T balanced k-tuples from a mixture of k Gaussians.

Definition 6.9. Let t = t(n, d, k, β, γ, ε, δ, R, σmax, σmin) be the smallest integer that satisfies

t ≥
λdk`

√
log
(
k`
δ

)
ε

(√
log

(
dk`

δ

)
log

(
4dk`

β

)
+ log

(
dk(16R+ γhσmax)

γδhσmin

))

where h = 2

√
2 log

(
8n
β

)
, ` = `(t, d, k, ε/2, δ/4, β/8) is the value from Definition 4.8, and λ is the

constant from Theorem 4.12.

Assuming that β, γ = O(1), we obtain that ` = log2(1/δ)
ε log t ≤ O(1

ε log2(1/δ)), which yields that

t = Õ

(
dk log2.5(1/δ)

(√
log(1/δ)+log

(
Rσmax
σmin

))
ε2

)
.

6.2.1 Properties of PrivatekGaussians

The following theorem summarizes the privacy guarantee of PrivatekGaussians.

Theorem 6.10 (Privacy of Algorithm PrivatekGaussians). Let A′ be a private algorithm for learn-
ing a (single) bounded Gaussian according to Definition 6.2. Then for every d, k,R, σmax, σmin, wmin >
0, every α, β, ε, δ, γ ∈ (0, 1) and every algorithm A, Algorithm
PrivatekGaussians(·, k, α, β, ε, δ, R, σmax, σmin;A,A′) is (ε, δ)-differentially private for databases P ∈(
Rd
)∗

.

Proof. Assume for simplicity (and without loss of generality) that the input algorithm A is deter-

ministic, let P, P̃ ∈
(
Rd
)2n

be two neigboring databases, and consider two independent executions
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Algorithm PrivatekGaussians

Input: A database P = {x1, . . . ,x2n} ∈
(
Rd
)2n

, parameter k ∈ N, an accuracy parameter
α > 0, a confidence parameter β > 0, privacy parameters ε, δ ∈ (0, 1), separating parameter
γ > 0, and bounding parameters R, σmax, σmin > 0.
Additional inputs: A (non-private) labeling algorithm A (according to Definition 6.5),
and a private algorithm A′ for learning the parameters of a (single) Gaussian (according to
Definition 6.2).

1. Let P ′ = {x1, . . . ,xn} and P ′′ = {xn+1, . . . ,x2n}.

2. Let t = t(n, d, k, β, γ, ε, δ, R, σmax, σmin) be the value from Definition 6.9.

3. Let s =
⌊
n
t

⌋
.

4. Compute T = CollectEmpiricalMeans(P ′, k, s, t, β8 ;A).

5. Let h = 2

√
2 log

(
8n
β

)
and let Λ = R+ γh

16 · σmax.

6. If T 6⊆ (B(0,Λ)k)t, fail and abort.

7. Execute PrivatekAverages (Figure 3) on the database T with input parameters

Λ̃ = Λ, ñ = t, r̃min = γh
16 · σmin, ε̃ = ε, δ̃ = δ, β̃ = β

4 .
Let {â1, . . . , âk} be the outcome of the execution.

8. For each i ∈ [k] :

(a) Let P ′′i be the points in P ′′ that âi is the closest point to them among {â1, . . . , âk}.

(b) Execute A′ on input P ′′i with bounding parameters R, σmax, σmin, privacy parame-
ters ε̂ = ε

4 , δ̂ = δ
2 , accuracy parameter α̂ = α

2 and confidence parameter β̂ = β
8k .

Let (µ̂i, Σ̂i) be the outcome of this execution.

(c) Let n̂i ← |P ′′i |+ Lap(4/ε).

9. For each i ∈ [k] : Set ŵi = n̂i∑
j n̂j

.

10. Output D̂ = {(µ̂1, Σ̂1, ŵ1), . . . , (µ̂k, Σ̂k, ŵk)}.

Figure 8: Algorithm PrivatekGaussians for privately learning a mixture of k Gaussians.

PrivatekGaussians(P) and PrivatekGaussians(P̃) (both with the same other input parameters),
let P ′, P ′′, T be the multisets from the execution PrivatekGaussians(P), and let P̃ ′, P̃ ′′, T̃ be
the corresponding multisets in the execution PrivatekGaussians(P̃). If P ′ 6= P̃ ′ (and therefore,
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neighboring), then T and T ′ differ by at most 1 k-tuple. Therefore, by the privacy guarantee of
PrivatekAverages (Theorem 4.13) along with group privacy (Fact 2.8) we obtain that the result-
ing outcome {â1, . . . , âk} in Step 7 of both executions is (ε, δ)-indistinguishable. Since P ′ 6= P̃ ′
implies that P ′′ = P̃ ′′, we conclude by post-processing (Fact 2.9) that the final outcome D̂ is also
(ε, δ)-indistinguishable.

In the rest of the analysis we focus on the case that P ′ = P̃ ′ and P ′′ 6= P̃ ′′ (i.e., neighboring).
In this case, the values of {â1, . . . , âk} in Step 7 is identical in both executions. Let P ′′1 , . . . ,P ′′k
be the multisets from Step 8a in the execution PrivatekGaussians(P), and let P̃ ′′1 , . . . , P̃ ′′k be these
multisets in the execution PrivatekGaussians(P̃). Since P ′′ and P̃ ′′ are neighboring, there exists
at most two values i, j ∈ [k] such that P ′′i 6= P̃ ′′i and P ′′j 6= P̃ ′′j , and in both cases the multisets are
neighboring (in the other indices the multisets are equal). By the properties of the private algorithm
A′ and basic composition (Theorem 2.10), the values of ((µ̂1, Σ̂1), . . . , (µ̂k, Σ̂k)) in Step 8b of both
executions is (2 · ε4 , 2 ·

δ
2)-indistinguishable. Moreover, by the properties of the Laplace Mechanism

along with basic composition, the values of (n̂1, . . . , n̂k) is (2 · ε4 , 0)-indistinguishable. By applying
again basic composition we deduce that all these values together are (ε, δ)-indistinguishable, and
therefore we conclude by post-processing (Fact 2.9) that the resulting D̂ in both execution is (ε, δ)-
indistinguishable. �

The following theorem summarizes the utility guarantee of PrivatekGaussians.

Theorem 6.11 (Utility of Algorithm PrivatekGaussians). Let n, d, k,R, σmax, σmin, wmin, γ > 0, let
α, β, ε, δ ∈ (0, 1), let t = t(n, d, k, β, γ, ε, δ, R, σmax, σmin) be the value from Definition 6.9, and let
D = {(µ1,Σ1, w1), . . . , (µk,Σk, wk)} be an (R, σmax, σmin, wmin)-bounded (1 +γ)h-separated mixture

of k Gaussians in Rd, for h ≥ 2

√
2 log

(
8n
β

)
. In addition, let A be a (non-private)

(⌊
n
t

⌋
, β8t

)
-

labeling algorithm for D (Definition 6.5), and let A′ be a private algorithm for learning a (single)
bounded Gaussian with sample complexity υ (Definition 6.2). Assume that

n ≥ max

{900t
(
d+ 2 log

(
16kt
β

))
min{450, γ2h2} · wmin

+ t,
2υ

wmin
,

4k2

εα
· log

(
8k

β

)}
where υ = υ

(
d, ε2 ,

δ
2 ,

α
2 ,

β
8k , R, σmax, σmin

)
. Then with probability 1−β, when sampling a database P

of 2n i.i.d. samples from D, Algorithm PrivatekGaussians on inputs P, k, α, β, ε, δ, γ,R, σmax, σmin,A,A′
outputs D̂ such that dTV(D, D̂) ≤ α.

The proof of the theorem appears at Appendix B.3. Very roughly, the first term in the maximum
is the number of samples that are needed for guaranteeing that with probability at least 1 − 3β

4 ,
the partition {P ′′1 , . . . ,P ′′k} in Step 8a of Algorithm PrivatekGaussians is exactly according to the
labels of the points (i.e., two points belong to the same set ⇐⇒ they were sample from the same
Gaussian), and that for each i it holds that |Pi| ≥ n

2wi
. The second and third terms in the maximum

are the number of samples that are needed for guaranteeing that with probability 1 − β
4 , for each

i ∈ [k], the resulting (µ̂i, Σ̂i) in Step 8b satisfy dTV(N (µ̂i, Σ̂i),N (µi,Σi)) ≤ α
2 and the resulting

ŵi in Step 9 satisfy |ŵi − wi| ≤ α
k , which yields that dTV(D̂,D) ≤ α (see Fact B.7). We remark

that regardless of the non-private algorithm A that we are using and its assumption on D, we only

require that D is more than 2

√
2 log

(
8n
β

)
-separated, which follows by the projection argument in

Proposition B.6.
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6.3 Remarks

It is tempting to think that our approach, which relies on the algorithm PrivatekAverages for
aggregating the non-private findings by a reduction to k-tuple clustering, requires that the distance
between the means should be proportional to

√
d, because this is the distance of the samples from

their means. However, recall that PrivatekGaussians do not set the k-tuple to be some arbitrary
k samples from different Gaussians. Rather, it sets it to the averages of the samples in each set
(See Step 1c in Figure 7), which decreases the distance from the actual means. In particular, when
there are O(d) samples in each such set, the dependency in d is eliminated and the reduction to the
k-tuple clustering follows (even when the distance between the means is much smaller than

√
d, as

we consider).
Furthermore, note that our algorithm PrivatekGaussians in Step 8a relies on the fact that the

output {â1, . . . , âk} of PrivatekAverages separates correctly fresh samples from the mixture. This
might seem strange since even if {â1, . . . , âk} is very close to the actual means {µ1, . . . , µk}, the
distance of each sample from its mean is proportional to

√
d, while the assumed separation between

the means is independent of d. This yields that when d is large, then the samples are much far
from their means compared to the distance between the means. Namely, if x is sampled from the
i’th Gaussian and ‖µi − µj‖ is independent of d (for large d), then ‖x− µi‖ � ‖µi − µj‖. Yet, in
our analysis we use a projection argument (see Proposition B.6) which yields that w.h.p. it holds
that ‖x− µi‖ < ‖x− µj‖, even though ‖x− µi‖ � ‖µi − µj‖.

6.4 Comparison to the Main Algorithm of [KSSU19]

The main private algorithm of [KSSU19] mimics the approach of the (non-private) algorithm of
[AM05], which is to use PCA to project the data into a low-dimensional space, and then clustering
the data points in that low-dimensional space. This projection enable both algorithms to learn
mixtures that have the following separation

∀i, j : ‖µi − µj‖ ≥ C
(√

k log(nk/β) +
1
√
wi

+
1
√
wj

)
·max{σi, σj}, (12)

for some constant C > 0 (albeit that the constant of [KSSU19] is much larger, say C = 100 instead
of C = 4 as in [AM05]). But while [AM05] use a simple Kruskal-based clustering method, [KSSU19]
developed alternative (and much more complicated) clustering methods that are more amenable
to privacy. Finally, after the clustering phase, [KSSU19] use a variant of the private algorithm of
[KLSU19] to learn the parameters of each Gaussian. Overall, the algorithm of [KSSU19] learns
an (R, σmax, σmin, wmin)-bounded mixture of Gaussian that is separated as in Equation (12), with
sample complexity

n ≥

(
d2

α2wmin
+

d2

εαwmin
+

poly(k)d3/2

wminε

)
· polylog

(
dkRσmax

αβεδσmin

)
In the following, we compare between [KSSU19]’s algorithm and ours (Algorithm PrivatekGaussians)

in two different aspects: separation assumption and sample complexity.

6.4.1 Separation Assumption

The utility guarantee of PrivatekGaussians (Theorem 6.11) only requires a separation of slightly
more than h = 2

√
2 log(8n/β). Therefore, our algorithm can transform any non-private algorithm
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(in a modular way) that learns mixtures with separation X into a private algorithm that learns
with separation max{X,h}. In particular, we can use [AM05] as our non-private labeling algorithm
A to learn mixtures with separation as in Equation (12) (with the small constant C = 4), and we
can also use any other non-private algorithm (like [VW04; HL18a; KSS18; DKS18; RV17]) and
inherent their separation assumption. In contrast, the approach of the main algorithm of [KSSU19]
may only be extended to methods that use statistical properties of the data (like PCA), and not to
other algorithmic machineries such as the sum-of-squares that are used for reducing the separation
assumption.

6.4.2 Sample Complexity

The main algorithm of [KSSU19] learns an (R, σmax, σmin, wmin)-bounded mixture of Gaussians that

is separated as in Equation (12), with sample complexity (roughly) Õ
(

υ
wmin

+ k9d3/2

wminε

)
(ignoring log-

arithmic factors), where υ = υ(d, ε, δ, α, β,R, σmax, σmin) = Õ
(
d2

α2 + d2

εα

)
is the sample complexity

of [KLSU19] for learning the parameters of a single Gaussian.

By Theorem 6.11, the sample complexity of our algorithm is Õ
(
t · υ̂ + t·d

wmin
+ υ

wmin
+ 4k2

εα

)
(ig-

noring logarithmic factors), where υ̂ is the sample complexity needed by the non-private algorithm
A for labeling correctly the samples with confidence ≤ β

8t (e.g., if we use the algorithm of [AM05],

then υ̂ = Õ
(

dk
wmin

)
, and for simplifying the comparison, we assume that this is indeed the algorithm

that we use). Since t = Õ
(
dk
ε2

)
, we obtain a sample complexity of (roughly) Õ

(
k2d2

ε2wmin
+ υ

wmin
+ 4k2

εα

)
,

which might me larger than the one of [KSSU19] if d or 1/ε are very large (compared to k). Yet,
we can easily improve the dependency in both d and ε.

Using sub-sampling, we can execute Steps 2 to 7 of PrivatekGaussians on an εn-size random
subset of P ′ (for the small desired ε), but now we only need a constant ε for these steps. This
immediately reduces the 1/ε2 in our sample complexity into 1/ε.

In addition, as mentioned in Section 4.3.2, using the average algorithm of [NSV16] in PrivatekAverages
(instead of the average algorithm from Proposition 2.23), we can reduce a factor of

√
d.

For summary, using sub-sampling and the algorithm of [NSV16], we obtain an improved sample

complexity of Õ
(
k2d3/2

εwmin
+ υ

wmin
+ 4k2

εα

)
, which strictly improves the sample complexity of [KSSU19].

7 Empirical Results

We implemented in Python our two main algorithms for k-tuple clustering: PrivatekAverages and
PrivatekNoisyCenters. We compared the two algorithms in terms of the sample complexity that is
needed to privately separate the samples from a given mixture of Gaussians. Namely, how many
k-tuples we need to sample such that, when executing PrivatekAverages or PrivatekNoisyCenters,
the resulting k-tuple Y = {y1, . . . ,yk} satisfies the following requirement: For every i ∈ [k], there
exists a point in Y (call it yi), such that for every sample x that was drawn from the i’th Gaussian,
it holds that i = argminj∈[k]‖x− yj‖. We perform three tests, where in each test we considered a

uniform mixture of k standard spherical Gaussians around the means {R · ei,−R · ei}k/2i=1, where ei
is the i’th standard basis vector. In all the tests, we generated each k-tuple by running algorithm
k-means++ [AV07] over enough samples.
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Figure 9: The case d = 1 and k = 2, for varies R.

Figure 10: The case d = 4 and R = 512 · k, for varies k.

In Test1 (Figure 9) we examined the sample complexity in the case d = 1, k = 2, for R ∈
{25, 26, . . . , 29}. In Test2 (Figure 10) we examined the case d = 4, R = 512 · k, for k ∈ {2, 4, 6, 8}.
In Test3 (Figure 11) we examined the case k = 2, R = 256

√
d, for d ∈ {4, 8, 12, 16}. In all the

experiments we used privacy parameters ε = 1 and δ = e−28, and used β = 0.05. In all the tests
of PrivatekNoisyCenters, we chose ∆ = 10

ε · k log(k/δ)
√

log(k/β), the number of k-tuples that we
generated was exactly 3781 (the minimal value that is required for privacy), but the number of
samples per k-tuple varied from test to test. In the tests of PrivatekAverages, we chose Λ = 210 ·k

√
d

and rmin = 0.1, we generated each k-tuple using ≈ 15 ·k samples, but the number of k-tuples varied
from test to test.4 All the experiments were tested in a MacBook Pro Laptop with 4-core Intel i7
CPU with 2.8GHz, and with 16GB RAM.

The graphs show the main bottleneck of Algorithm PrivatekAverages in practice. It requires
only Oε,δ(kd) tuples (or Oε,δ(k

√
d) for large values of d) in order to succeed, but the hidden constant

is ≈ 500, 000 for our choice of ε and δ, and this does not improve even when the assumed separation
R is very large. The cause of this large constant is the group privacy of size O(k`) that we do in

Step 5a, where recall that ` = O
(

log2(1/δ)
ε logn

)
(Definition 4.8). While in theory this ` is relatively small,

with our choice of parameters we get ` ≈ 1000. This means that we need to execute the private
average algorithm with ε̂ ≈ ε

4000k . Internally, this ε̂ is shared between other private algorithms, and
in particular, with an Interior Point algorithm that is one of the internal components of the average
algorithm from Proposition 2.23. This algorithm is implemented using the exponential mechanism
[MT07], which simply outputs a random noise when the number of points is too small.

4By using Ω̃(kd) samples for creating each k-tuple, in Test3 (Figure 11) we could avoid the dependency of R
in

√
d (see Section 6.3 for more details). However, since we only used O(k) samples for each k-tuple when testing

PrivatekAverages, then we could not avoid this dependency.
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We remark that prior work on differentially-private clustering, including in ”easy” settings, is
primarily theoretical. In particular, we are not aware of implemented methods that we could use as
a baseline.5 As a sanity check, we did consider the following naive baseline: For every sample point,
add a Gaussian noise to make it private. Now, the resulting noisy samples are just samples from
a new Gaussian mixture. Then, run an off-the-shelf non-private method to learn the parameters
of this mixture. We tested this naive method on the simple case d = 1 and k = 2, where we
generated samples from a mixture of standard Gaussians that are separated by R = 512. By the
Gaussian mechanism, the noise magnitude that we need to add to each point for guaranteeing (ε, δ)-
differential privacy, is σ ≈ Λ

ε

√
log(1/δ) � 1 for some Λ > R, meaning that the resulting mixture

consists of very close Gaussians. We applied GaussianMixture from the package sklearn.mixture to
learn this mixture, but it failed even when we used 100M samples, as this method is not intended
for learning such close Gaussians.We remark that there are other non-private methods that are
designed to learn any mixture of Gaussians (even very weakly separated ones) using enough samples
(e.g., [SOAJ14]). The sample complexity and running time of these methods, however, are much
worse than ours even asymptotically (e.g., the running time of [SOAJ14] is exponential in k), and
moreover, we are not aware of any implementation we could use.6

8 Conclusion

We developed an approach to bridge the gap between the theory and practice of differentially
private clustering methods. For future, we hope to further optimize the ”constants” in the k-
tuple clustering algorithms, making the approach practical for instances with lower separation.
Tangentially, the inherent limitations of private versus non-private clustering suggest exploring
different rigorous notions of privacy in the context of clustering.
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A Additional Preliminaries

A.1 Additional Facts About Differential Privacy

A.1.1 The Exponential Mechanism

We next describe the Exponential Mechanism of McSherry and Talwar [MT07]. Let X be a domain
and H a set of solutions. Given a database S ∈ X ∗, the Exponential Mechanism privately chooses
a “good” solution h out of the possible set of solutions H. This “goodness” is quantified using a
quality function that matches solutions to scores.
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Definition A.1. (Quality function) A quality function is a function q : X ∗ ×H 7→ R that maps a
database S ∈ X ∗ and a solution h ∈ H to a real number, identified as the score of the solution h
w.r.t the database S.

Given a quality function q and a database S, the goal is to chooses a solution h approximately
maximizing q(S, h). The Exponential Mechanism chooses a solution probabilistically, where the
probability mass that is assigned to each solution h increases exponentially with its quality q(S, h):

Definition A.2. (The Exponential Mechanism) Given input parameter ε, finite solution set H,
database S ∈ Xm, and a sensitivity 1 quality function q, choose randomly h ∈ H with probability
proportional to exp(ε · q(S, h)/2).

Proposition A.3. (Properties of the Exponential Mechanism) (i) The Exponential Mechanism is
ε-differentially private. (ii) Let ê := maxf∈H{q(S, f)} and ∆ > 0. The Exponential Mechanism
outputs a solution h such that q(S, h) ≤ ê−∆ with probability at most |H| · exp(−ε∆/2).

A.1.2 Private Interior Point and Bounding Segment in R

Proposition A.4 (Finding an Interior Point in R). Let ε ∈ (0, 1), Λ > 0 and g ∈ [0,Λ]. There
exists an efficient ε-differentially private algorithm that takes an n-size database S of numbers in the
segment [−Λ,Λ] and outputs a number z ∈ [−Λ,Λ] that with probability 1−2(Λ/g+1) · exp(−εn/4)

it holds that z ∈ [min(S) − g,max(S) + g]. The algorithm runs in time Õ(n) (ignoring log
(
n∆
g

)
factors).

Proof. Define the grid G = {−Λ,−Λ + g, . . . ,−Λ +
⌈

2Λ
g

⌉
· g}, and for every x ∈ G let left(x) =

−Λ +
⌊
x+Λ
g

⌋
· g (i.e., the closest grid point to x from the left side) and right(x) = −Λ +

⌈
x+Λ
g

⌉
· g

(i.e., the closest grid point to x from the right side). Now, apply the exponential mechanism (A.2)
with the quality function

∀y ∈ G : q(S, y) = min{|{x ∈ S : left(x) ≤ y}|, |{x ∈ S : right(x) ≥ y}|}

For the utility analysis, let m be the median of S, and note that q(S, left(m)), q(S, right(m)) ≥ n/2.
Therefore, by Proposition A.3, with probability ≥ 1−|G|·exp(−εn/4) ≥ 1−2(Λ/g+1)·exp(−εn/4),
the mechanism outputs a point z with q(S, z) > 0, which yields in particular that z ∈ [min(S) −
g,max(S) + g].

For the running time analysis, we implement the sampling as follows: For x ∈ S we let Ax =
{left(x) − g, left(x), right(x), right(x) + g}, and let A = ∪x∈SAx. Note that for every consecutive
grid points y, y′ = y + g ∈ G with q(S, y) 6= q(S, y′), it holds that y, y′ ∈ A: If q(S, y) > q(S, y′),
there must exist x ∈ S such that x ∈ (y − g, y], yielding that y ∈ [x, x+ g) =⇒ y = right(x), y′ =
right(x) + g. Otherwise (i.e., q(S, y) < q(S, y′)), there must exist x ∈ S such that x ∈ [y′, y′ + g),
yielding that y′ ∈ (x− g, x] =⇒ y′ = left(x), y = left(x)− g.

Then, we sort A in time Õ(n), and let a1 ≤ . . . ≤ am be the sorted elements in A (recall that
m = |A| ≤ 4n). For each i ∈ [m+ 1], we compute w(S, ai) = q(S, ai) · |G ∩ (ai−1, ai]| (i.e., w(S, ai)
is the the original quality of ai times the number of grid points in (ai−1, ai], where a0 = −Λ − g
and am+1 = Λ + g), and choose a value ai with probability ∝ w(S, ai). Note that the computation
of each w(S, ai) can be done in time Õ(1) using simple binary searches over the (sorted) multisets
Sleft = ∪x∈S{left(x)} and Sright = ∪x∈S{right(x)} (a “multiset” union, that includes duplications).
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Finally, given the chosen ai from the mechanism, it is left to sample a uniform point in G ∩
(ai−1, ai] (since we know, by the property of A, that all the point there have the same value of
q(S, ·)). This can be easily implemented in time O(log|G|) = Õ(1). �

Proposition A.5 (Finding a Bounding Segment of Points in R). Let β, ε ∈ (0, 1), Λ > 0 and
g ∈ [0,Λ]. There exists an efficient ε-differentially private algorithm that takes an n-size database
S of numbers in the segment [−Λ,Λ] and outputs a segment [x, y] such that with probability at least
1− β the following holds:

• |S ∩ [x, y]| ≥ n− 8
ε log

(
4Λ
gβ

)
− 2 (i.e., the segment contain most of the points in S), and

• y − x ≤ max(S)−min(S) + 4g.

The algorithm runs in time Õ(n) (ignoring log
(
n∆
εβg

)
factors).

Proof. In the following assume that n ≥ 8
ε log

(
4Λ
gβ

)
+ 2 (otherwise the proof trivially holds for

any segment [x, x]). Let S0 be the smallest 4
ε log

(
4Λ
gβ

)
+ 1 points in S, and let S1 be the largest

4
ε log

(
4Λ
gβ

)
+ 1 points in S. For each b ∈ {0, 1} apply Proposition A.4 (interior point) on Sb for

finding a number zb ∈ [−Λ,Λ] that belongs to [min(Sb)− g,max(Sb) + g] with probability at least
1 − 2(Λ/g + 1) · exp(−ε|Sb|/4) ≥ 1 − β/2. Therefore, by setting x = z0 − g and y = z1 + g
we get that with probability 1 − β it holds that: (1) [max(S0),min(S1)] ⊆ [x, y] and that (2)
[x, y] ⊆ [min(S0)− 2g,max(S1) + 2g] = [min(S)− 2g,max(S) + 2g]. By (1) we get that all points

in S expect (at most) (|S0| − 1) + (|S1| − 1) ≤ 8
ε log

(
4Λ
gβ

)
are inside [x, y], and by (2) we get that

y − x ≥ max(S)−min(S) + 4g, as required.
For the running time analysis, note that by sorting S we can determine S0 and S1 in time Õ(n),

and the cost of executing the algorithm from Proposition A.4 on each Sb is Õ
(

1
ε

)
= Õ(n). �

A.1.3 Estimating the Average of Points

Proposition A.6 (Estimating the Average of Bounded Points in R). Let β, ε, δ ∈ (0, 1), Λ > 0
and rmin ∈ [0,Λ]. There exists an efficient (ε, δ)-differentially private algorithm that takes an n-
size database S of numbers in the segment [−Λ,Λ] and satisfy the following utility guarantee: If

n ≥ 16
ε log

(
4Λ

rminβ

)
+ 4, then with probability 1− β, the algorithm outputs a number â ∈ R such that

|â−Avg(S)| ≤ O
(

max{r, rmin}
εn

(√
log(1/δ) log(1/β) + log

(
Λ

rminβ

)))
,

where r = max(S)−min(S). The algorithm runs in time Õ(n) (ignoring log
(

n∆
rminεβ

)
factors).

Proof. The algorithm does the following: (1) Privately find a bounding segment [x, y] using Propo-
sition A.5 with parameters β/2, ε/2, g = rmin,Λ, let r̂ = y − x and let S ′ = S ∩ [x, y] (2) Use
the (1-dimensional) Gaussian mechanism (Theorem 2.19) with λ = r̂

|S′| and parameters β/2, ε/2, δ

for computing a noisy average â of S ′ (see Observation 2.20). By the properties of the Gaussian
mechanism (see Remark 2.21) along with basic composition it holds that the above algorithm is
(ε, δ)-differentially private. For the utility analysis, note that with probability 1 − β, the segment
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[x, y] satisfies the conditions of Proposition A.5 and the noise added to the average in the second

step is at most O
(

r̂
ε|S′|

√
log(1/δ) log(1/β)

)
. In the rest of the analysis we assume that this event

occurs. Now, by definition of r, it holds that∣∣Avg(S)−Avg(S ′)
∣∣ ≤ r|S \ S ′|

n
≤ 8r

εn
log

(
2Λ

rminβ

)
+

2r

n

Moreover, it holds that∣∣â−Avg(S ′)
∣∣ ≤ O( r̂

ε|S ′|
√

log(1/δ) log(1/β)

)
≤ O

(
max{r, rmin}

εn

√
log(1/δ) log(1/β)

)
,

where the second inequality holds since r̂ ≤ r+ 4rmin and |S ′| ≥ n/2 by the assumption on n. The
proof now follow by the above two inequalities.

For the running time analysis, step (1) takes Õ(n) time (Proposition A.5). Step (2) that executes
the Gaussian Mechanism, takes Õ(n) time for computing the average, and Õ(1) for sampling a
number from a single one-dimensional. �

Proposition A.7 (Estimating the Average of Bounded Points in Rd (Restatement of Proposi-
tion 2.23)). Let ε ∈ (0, 1), d,Λ > 0 and let rmin ∈ [0,Λ]. There exists an efficient (ε, δ)-differentially
private algorithm that takes an n-size database S of points inside the ball B(0,Λ) in Rd and satisfy
the following utility guarantee: Let r > 0 be the minimal radius of a d-dimensional ball that contains
all points in S. Then with probability 1− β, the algorithm outputs â ∈ Rd such that

‖â−Avg(S)‖ ≤ O

(
max{r, rmin} ·

d
√

log(1/δ)

εn

(√
log(d/δ) log(d/β) + log

(
Λd

rminβ

)))
.

The algorithm runs in time Õ(dn) (ignoring logarithmic factors).

Proof. The algorithm does the following: For each i ∈ [d], let Si = {xi : (x1, . . . , xd) ∈ S} and
compute an estimation âi of Avg(Si) (in time Õ(n)) by applying Proposition A.6 with parame-
ters rmin,Λ, ε̃ = ε

2
√

2d log(2/δ)
, δ̃ = δ

d , β̃ = β
d . Finally, output â = (â1, . . . , âd). It is clear by

advanced composition (Theorem 2.11) that the algorithm is (ε, δ)-differentially private. For the
utility guarantee, note that with probability at least 1− β, for every i ∈ [d] it holds that

|âi −Avg(Si)| ≤ O
(
r

ε̃n

(√
log(1/δ̃) log(1/β̃) + log

(
Λ

rminβ̃

)))
= O

(
r
√
d log(1/δ)

εn

(√
log(d/δ) log(d/β) + log

(
Λd

rminβ

)))
,

and hence

‖â−Avg(S)‖ =

√√√√ d∑
i=1

(âi −Avg(Si))2

≤ O

(
rd
√

log(1/δ)

εn

(√
log(d/δ) log(d/β) + log

(
Λd

rminβ

)))
�
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Remark A.8. The above two algorithms guarantee differential-privacy whenever two neighboring
databases have equal size. However, they can be easily extended to a more general case in which the
privacy guarantee also holds in cases of addition and deletion of a point, by extending the Gaussian
mechanism used in Proposition A.6 (see Remark 2.21) with essentially the same noise magnitude.

B Missing Proofs

B.1 Proving Proposition 5.1

In this section we prove Proposition 5.1, restated below

Proposition B.1 (Restatement of Proposition 5.1). Let P be a multiset of n points in B(0,Λ) ⊆ Rd
and let A be an ω-approximation algorithm for k-means. Consider the following random execution:
(1) Construct a multiset S of s i.i.d. samples from P, (2) Compute C̃ = A(S, k). Then for every
β > 0, with probability 1− β it holds that

COSTP(C̃) ≤ ω ·OPTk(P) + ξ(s, β),

where ξ(s, β) = 4
(
M(s, β) +

√
M(s, β) · ωOPTk(P)

)
for M(s, β) := 25Λ2kd log

(
2nd
β

)
· ns .

In the following, fix values of s and β, let ξ = ξ(s, β) and M = M(s, β). The following event
and claims are with respect to the random process in Proposition 5.1.

Claim B.2 (Event E [SSS20]). Let E be the event that for every C ∈ B(0,Λ)k, we have that∣∣∣n
s
· COSTS(C)− COSTP(C)

∣∣∣ ≤√M · COSTP(C) := ∆(C)

Then it holds that Pr[E] ≥ 1− β.

We next prove some useful facts that holds when event E occurs.

Claim B.3. Conditioned on event E, it holds that

COSTP(C̃) ≤ ω ·OPTk(P) + ∆(C∗P) + ∆(C̃),

letting C̃ be the set from Proposition 5.1, and letting C∗P be the optimal k-means of P.

Proof. Let C∗S be the optimal k-means of S. By the assumption on the algorithm A, the set C̃
satisfies COSTS(C̃) ≤ ω ·OPTk(S). The proof follows by the following calculation

COSTP(C̃) ≤ n

s
· COSTS(C̃) + ∆(C̃)

≤ ω · n
s
· COSTS(C∗S) + ∆(C̃)

≤ ω · n
s
· COSTS(C∗P) + ∆(C̃)

≤ ω · n
s
·
(m
n
· COSTP(C∗P) +

s

n
·∆(C∗P)

)
+ ∆(C̃)

= ω ·OPTk(P) + ∆(C∗P) + ∆(C̃),

where the third inequality holds by event E, �
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We now prove a corollary of Claim B.3.

Corollary B.4. Conditioned on event E, it holds that

∆(C̃) ≤ 2
(
M +

√
MωOPTk(P)

)
Proof. Let x = ∆(C̃) =

√
M · COSTP(C̃). By Claim B.3, it holds that

x2

M
− x ≤ ω ·OPTk(P) +

√
M ·OPTk(P).

Since x ≥ 0, we conclude that

x ≤ 1

2
·
(
M +

√
M2 + 4MωOPTk(P) + 4M1.5

√
OPTk(P)

)
≤M +

√
MωOPTk(P) +M0.75 ·OPTk(P)1/4 (13)

≤ 2
(
M +

√
MωOPTk(P)

)
,

where the second inequality holds by the fact that
√
a+ b ≤

√
a +
√
b for a, b ≥ 0, and the last

inequality holds since the third term in (13) is either smaller than the first term, or smaller than
the second one (recall that M ≥ 1). �

The proof of Proposition 5.1 now immediately follows by Claim B.3 and Corollary B.4.

B.2 Proving Proposition 5.2

Proposition B.5 (Restatement of Proposition 5.2). Let k ∈ N and γ ∈ [0, 1/8]. Let P ∈ (Rd)∗, let
C = {c1, . . . , ck} and C ′ = {c′1, . . . , c′k} be two k-tuples of centers in Rd such that for every i ∈ [k]
it holds that ‖c′i − ci‖ ≤ γ ·Di, where Di = minj 6=i‖ci − cj‖. In addition, for every i ∈ [k] let Pi be
the multiset of all points in P that c′i is closest to them in C ′. Then

k∑
i=1

OPT1(Pi) ≤ (1 + 32γ)COSTP(C).

Proof. In the following, for x ∈ P let ix = argmini{‖x− ci‖} (i.e., the index of the closest center

to x in C), and let jx = argminj{
∥∥∥x− c′j

∥∥∥} (i.e., the index of the closest center to x in C ′). It

holds that

k∑
i=1

OPT1(Pi) ≤
k∑
i=1

∑
x∈Pi

‖x− ci‖2

=
∑
x∈P
‖x− cjx‖

2

=
∑
x∈P
‖x− cix‖

2 +
∑
x∈P

(
‖x− cjx‖

2 − ‖x− cix‖
2
)

= COSTP(C) +
∑
x∈P

(
‖x− cjx‖

2 − ‖x− cix‖
2
)
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In the following, fix x ∈ P. We now bound

‖x− cjx‖
2 − ‖x− cix‖

2 = (‖x− cjx‖ − ‖x− cix‖)(‖x− cjx‖+ ‖x− cix‖)

First, since
∥∥∥x− c′jx

∥∥∥ ≤ ∥∥x− c′ix
∥∥ it holds that

‖x− cjx‖ ≤
∥∥x− c′jx

∥∥+
∥∥c′jx − cjx

∥∥ ≤ ∥∥x− c′ix
∥∥+ γ‖cix − cjx‖ (14)

Second,

‖x− cix‖ ≥
∥∥x− c′ix

∥∥− ∥∥c′ix − cix
∥∥ ≥ ∥∥x− c′ix

∥∥− γ‖cix − cjx‖

Therefore

‖x− cjx‖ − ‖x− cix‖ ≤ 2γ‖cix − cjx‖

Now, ‖x− cix‖ ≤ ‖x− cjx‖ and therefore

‖x− cjx‖+ ‖x− cix‖ ≤ 2‖x− cjx‖
≤ 2
∥∥x− c′ix

∥∥+ 2γ‖cix − cjx‖
≤ 2
(
‖x− cix‖+

∥∥c′ix − cix
∥∥)+ 2γ‖cix − cjx‖

≤ 2‖x− cix‖+ 4γ‖cix − cjx‖,

where the second inequality holds by Equation (14).
We now like to bound ‖cix − cjx‖ as a function of ‖x− cix‖. We first bound ‖cix − cjx‖ as a

function of
∥∥x− c′ix

∥∥.

2
∥∥x− c′ix

∥∥ ≥ ∥∥x− c′ix
∥∥+

∥∥x− c′jx
∥∥

≥
∥∥c′ix − c′jx

∥∥
≥ ‖cix − cjx‖ −

∥∥cix − c′ix
∥∥− ∥∥cjx − c′jx

∥∥
≥ (1− 2γ)‖cix − cjx‖, (15)

In addition ∥∥x− c′ix
∥∥ ≤ ‖x− cix‖+

∥∥cix − c′ix
∥∥ ≤ ‖x− cix‖+ γ‖cix − cjx‖

Therefore,
2‖x− cix‖ ≥ (1− 4γ)‖cix − cjx‖

We have that

‖x− cjx‖
2 − ‖x− cix‖

2 = (‖x− cjx‖ − ‖x− cix‖)(‖x− cjx‖+ ‖x− cix‖)
≤ (2γ‖cix − cjx‖)(2‖x− cix‖+ 4γ‖cix − cjx‖)

≤
(

4γ

1− 4γ
‖x− cix‖

)(
(2 +

8γ

1− 4γ
)‖x− cix‖

)
≤ 32γ‖x− cix‖

2,

where the least inequality holds since γ ≤ 1/8. Now we can get the bound on the summation:∑
x∈P

(
‖x− cjx‖

2 − ‖x− cix‖
2
)
≤
∑
x∈P

32γ‖x− cix‖
2 ≤ 32γCOSTP(C)

�
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B.3 Proving Theorem 6.11

In this section we prove the utility guarantee of PrivatekGaussians. We first by proving the following
proposition that states the following: Assume that X ∼ N (µ,Σ) with ‖Σ‖ = σ2, and let y, z ∈ Rd

such that (1) ‖y − µ‖ is “large enough” (larger than Ω
(
σ
√

log(1/β)
)

) , and (2) ‖z− µ‖ is “small

enough”. Then with probability 1− β (over X) it holds that ‖X− z‖ < ‖X− y‖. Note that such
an argument is trivial when ‖y − µ‖ is at least Ω(σ

√
d log(1/β)), but using a standard projection

argument, we can avoid the dependency in d.

Proposition B.6. Let X ∼ N (0,Σ) where ‖Σ‖ = σ2, let y ∈ Rd with ‖y‖ ≥ 2(1+γ)

√
2 log

(
1
β

)
·σ

for some γ > 0, and let z ∈ Rd with ‖z‖ ≤ γ
3(1+γ)‖y‖. Then with probability 1− β (over the choice

of X), it holds that ‖X− z‖ < ‖X− y‖.

Proof. Let W = z + 〈X−z,y−z〉
‖y−z‖2 (y − z) be the projection of X onto the line between y and z.

In the following we bound the probability that 〈X−z,y−z〉‖y−z‖2 < 1
2 , which implies that ‖W − z‖ <

‖W − y‖, and therefore, ‖X− z‖ < ‖X− y‖. Note that 〈X,y − z〉 is distributed according to
the (one dimensional) Gaussian N (0, (y − z)TΣ(y − z)) and it holds that (y − z)TΣ(y − z) ≤
σ2‖y − z‖. Therefore, by Fact 6.6 we obtain that with probability 1− β it holds that 〈X,y− z〉 <
σ‖y − z‖

√
2 log(1/β), and in the following we continue with the analysis assuming that this occurs.

The proposition now follows by the following calculation.

〈X− z,y − z〉
‖y − z‖2

=
〈X,y − z〉 − 〈z,y − z〉

‖y − z‖2

<
σ‖y − z‖

√
2 log(1/β) + ‖z‖‖y − z‖
‖y − z‖2

≤
σ
√

2 log(1/β)(
1− γ

3(1+γ)

)
‖y‖

+

γ
3(1+γ)

1− γ
3(1+γ)

≤ 1

2(1 + γ)
(

1− γ
3(1+γ)

) +

γ
3(1+γ)

1− γ
3(1+γ)

=
1 + 2γ

3

2(1 + γ) 3+2γ
3(1+γ)

=
1

2
,

where in the second inequality holds since ‖y − z‖ ≥ ‖y‖ − ‖z‖ ≥
(

1− γ
3(1+γ)

)
‖y‖, and the third

inequality holds by the assumption on ‖y‖. �

In addition, we use the following fact.

Fact B.7. Let D =
∑k

i=1wiDi be a mixture of the k distributions D1, . . . ,Dk, and let D′ =∑k
i=1w

′
iD′i be a mixture of the k distributions D′1, . . . ,D′k. Assume that for every i ∈ [k] it holds

that dTV(Di,D′i) ≤ α
2 and |wi − w′i| ≤ α

k . Then dTV(D,D) ≤ α.
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We now ready to prove Theorem 6.11, stated for convenient below.

Theorem B.8 (Restatement of Theorem 6.11). Let n, d, k,R, σmax, σmin, wmin, γ > 0, let α, β, ε, δ ∈
(0, 1), let t = t(n, d, k, β, γ, ε, δ, R, σmax, σmin) be the value from Definition 6.9, and let D =
{(µ1,Σ1, w1), . . . , (µk,Σk, wk)} be an (R, σmax, σmin, wmin)-bounded (1 + γ)h-separated mixture of

k Gaussians in Rd, for h ≥ 2

√
2 log

(
8n
β

)
. In addition, let A be a (non-private)

(⌊
n
t

⌋
, β8t

)
-labeling

algorithm for D (Definition 6.5), and let A′ be a private algorithm for learning a (single) bounded
Gaussian with sample complexity υ (Definition 6.2). Assume that

n ≥ max

{900t
(
d+ 2 log

(
16kt
β

))
min{450, γ2h2} · wmin

+ t,
2υ

wmin
,

4k2

εα
· log

(
8k

β

)}
where υ = υ

(
d, ε2 ,

δ
2 ,

α
2 ,

β
8k , R, σmax, σmin

)
. Then with probability 1−β, when sampling a database P

of 2n i.i.d. samples from D, Algorithm PrivatekGaussians on inputs P, k, α, β, ε, δ, γ,R, σmax, σmin,A,A′
outputs D̂ such that dTV(D, D̂) ≤ α.

Proof. Let E1 =
∧
j∈[t],i∈[k]E

t,i
1 where Ej,i1 is the event that the a-size set Sj in Step 1a of

CollectEmpiricalMeans contains at least wis
2 samples from the i’th Gaussian. Note that for ev-

ery j ∈ [t] and i ∈ [k], it holds that

Pr
[
Ej,i1

]
= Pr

[
Bin(s, wi) ≥

swi
2

]
≥ 1− Pr

[
Bin(s, wmin) <

swmin

2

]
≥ 1− e−

wmins

4

where the last inequality holds by Fact 2.27. Therefore, we obtain that Pr
[
Ej,i1

]
≥ 1− β

8kt whenever

s ≥ 4
wmin

log
(

8kt
β

)
. In particular, since s =

⌊
n
t

⌋
, the above holds whenever n ≥ 4t

wmin
log
(

8kt
β

)
+ t.

Therefore, by the assumption on n and the union bound, we obtain that

Pr[E1] ≥ 1− β

8
(16)

In the following, assume that event E1 occurs. For j ∈ [t] and i ∈ [k] let Ŝij be all the

points in Sj that have been drawn from the i’th Gaussian N (µi,Σi), and let µ̂j,i = Avg
(
Ŝij
)

. Let

E2 =
∧
j∈[t],i∈[k]E

j,i
2 , where Ej,i2 is the event that ‖µ̂j,i − µi‖ ≤ γh

16 · σi. Since µ̂j,i is the average
of at least wis

2 samples from the Gaussian N (µi,Σi), we obtain by Fact 6.8 that with probability

1− β
8kt it holds that

‖µ̂j,i − µi‖ ≤

√
2d+ 2

√
log
(

8kt
β

)
√
wis

· σi ≤
γh

16
· σi, (17)
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where the last inequality holds whenever s ≥
900
(
d+2 log

(
8kt
β

))
wiγ2h2 . Since s =

⌊
n
t

⌋
, we obtain that

Equation (17) holds whenever

n ≥
900t

(
d+ 2 log

(
8kt
β

))
γ2h2wmin

+ t

which holds by the assumption on n. Therefore, event Ej,i2 occurs with probability at least 1− β
8kt ,

and we conclude by the union bound that

Pr[E2 | E1] ≥ 1− β

8
(18)

Let E3 =
∧t
j=1E

j
3, where Ej3 is the event that the resulting labeling function Lj in Step 1b of

the j’th iteration in CollectEmpiricalMeans satisfies:

∀x,x′ ∈ Sj : x,x′ were drawn from the same Gaussian ⇐⇒ Lj(x) = Lj(x
′).

Since A is a (s =
⌊
n
t

⌋
, β8t)-labeling algorithm for D, it holds that Pr

[
Ej3

]
≥ 1− β

8t for every j ∈ [t],

and we deduce by the union bound that

Pr[E3] ≥ 1− β

8
(19)

In the rest of the analysis we assume that event E1 ∧ E2 ∧ E3 occurs. This means that for
every j ∈ [t] there exists a permutation πj over [k] such that for each i ∈ [k], the set of all
points in Sj that have been drawn from the i’th Gaussian (which we denoted by Sij) equals to
{x ∈ Sj : Lj(x) = πj(i)}, and assume without loss of generality that for all j ∈ [t], πj is the identity
(i.e., πj(i) = i). Therefore, for all j ∈ [t] and i ∈ [k] it holds that µ̂j,i = µ̄j,i, where µ̄j,i is the
empirical mean from Step 1c. Namely, we obtained that

∀j ∈ [t], i ∈ [k] : ‖µ̄j,i − µi‖ ≤
γh

16
· σi, (20)

and in particular, it holds that

∀j ∈ [t], i ∈ [k] : ‖µ̄j,i‖ ≤ ‖µj,i‖+
γh

16
· σi ≤ Λ (21)

Therefore, we deduce that T from Step 7 of P̃rivatekGaussians is contained in (B(0,Λ)k)∗, and
is partitioned by the ∆-far balls B = {Bi(µi, ri = γh

16 · σi)}
k
i=1 (Definition 3.2) for ∆ = 16, where

Partition(T ) is exactly {P1 = {µ̄j,1}tj=1, . . . ,Pk = {µ̄j,k}tj=1} (note that the balls are indeed ∆-far
by the separation assumption that ‖µi − µj‖ ≥ (1 + γ)hmax{σi, σj}). Therefore, by the utility

guarantee of PrivatekAverages (Theorem 4.12) we obtain that with probability 1− β
8 :
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∀i ∈ [k] : ‖âi −Avg(Pi)‖

≤ max{ri, r̃min} ·
λdk`

√
log
(
k`
δ̃

)
ε̃ñ

(√
log

(
dk`

δ̃

)
log

(
dk`

β̃

)
+ log

(
Λdk

r̃minδ̃

))

≤ γh

16
· σi ·

λdk`
√

log
(
k`
δ

)
εt

(√
log

(
dk`

δ

)
log

(
4dk`

β

)
+ log

(
dk(16R+ γhσmax)

γδhσmin

))

≤ γh

16
· σi, (22)

where last inequality holds by the assumption on t (Definition 6.9). In the following, we denote by
E4 the event that Equation (22) occurs, where recall that we proved that

Pr[E4 | E1 ∧ E2 ∧ E3] ≥ 1− β

8
(23)

In the following, we also assume that event E4 occurs. Recall that by Equation (20), for each
j ∈ [t] and i ∈ [k] it holds that

‖Avg(Pi)− µi‖ ≤
1

t
‖µ̄j,i − µi‖ ≤

γh

16
· σi, (24)

and we deduce by Equations (22) and (24) that for all i ∈ [k] it holds that

‖âi − µi‖ ≤
2γh

16
· σi. (25)

Therefore, for all i 6= j it holds that

‖âj − µi‖ ≥ ‖µi − µj‖ − ‖âj − µj‖ (26)

≥
(

(1 + γ)− 2γ

16

)
· h ·max{σi, σj}

=

(
1 +

13γ

16

)
· h ·max{σi, σj}

where the last inequality holds by the separation assumption along with Equation (24). Hence, we
obtain that for each i 6= j it holds that

‖âi − µi‖ ≤
2γh
16

16+13γ
16 · h

· ‖âj − µi‖ ≤
γ′

3(1 + γ′)
‖âj − µi‖ (27)

where γ′ = 13γ
16 (the last inequality holds for every γ > 0). Since h ≥ 2

√
2 log

(
1
β′

)
for β′ = β

8n , then

by Proposition B.6 along with Equations (26) and (27), for every i 6= j, when sampling a point x
from the i’th Gaussian N (µi, σi), then with probability 1 − β

8n it holds that ‖x− âi‖ < ‖x− âj‖.
Therefore, let E5 be the event that for all i ∈ [k] and all x ∈ P ′′ that have been sampled from the
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i’th Gaussian N (µi,Σi), it holds that âi is the closest point to each of them among {â1, . . . , âk}.
Then by the union bound it holds that

Pr[E5 | E1 ∧ E2 ∧ E3 ∧ E4] ≥ 1− β

8
(28)

In the following we also assume that event E5 occurs. Let E6 =
∧
i∈[k]E

i
6 where Ei6 is the

event that P ′′ contains at least win
2 samples from the i’th Gaussian (namely, |P ′′i | ≥

win
4 ). Similar

calculation to bounding Pr[E1], it holds that

Pr[E6 | E1 ∧ . . . ∧ E5] ≥ 1− β

8
(29)

provided that n ≥ 4
wmin

log
(

8k
β

)
, which holds by the assumption on n.

In the following we assume that event E6 occurs, and let E7 = ∧ki=1E
i
7, where Ei7 is the

event that the output (µ̂i, Σ̂i) of the private algorithm A′ in Step 8b of the i’th iteration satisfies
dTV(N (µi,Σi),N (µ̂i, Σ̂i)) ≤ α

2 . By the assumption on algorithm A′, we obtain that Pr
[
Ei7
]
≥ 1− β

8k
whenever |P ′′i | ≥ s, which holds when n ≥ 2s

wi
. Therefore, since n ≥ 2s

wmin
by assumption, we obtain

by the union bound that

Pr[E7 | E1 ∧ . . . ∧ E6] ≥ 1− β

8
. (30)

In the following, for i ∈ [k] let Li be the value of the Laplace noise in Step 8c of the i’th

iteration, let Ei8 be the event that |Li| ≤ 2
ε log

(
16k
β

)
, and let E8 = ∧ki=1E

i
8. By Fact 2.13, for any

fixing of i ∈ [k] it holds that Pr
[
Ei8
]
≥ 1− β

8k , and therefore, by the union bound it holds that

Pr[E8] ≥ 1− β

8
. (31)

In the following we also assume that E8 occurs. It is left to show that when event E1 ∧ . . . ∧ E8

occurs, for every i ∈ [k] it holds that

∀i ∈ [k] : |ŵi − wi| ≤
α

k
. (32)

Indeed, given Equation (32) and event E7, we deduce by Fact B.7 that dTV(D, D̂) ≤ α, which holds
with probability at least Pr[E1 ∧ . . . ∧ E8] ≥ 1− β (holds by Equation (16) to Equation (31)).

We now prove that Equation (32) holds when E1∧ . . .∧E8 occurs. Fix i ∈ [k], let L =
∑k

j=1 Lj ,
and compute

|ŵi − wi| =
∣∣∣∣ n̂in̂ − ni

n

∣∣∣∣ =

∣∣∣∣ni + Li
n+ L

− ni
n

∣∣∣∣
=

∣∣∣∣nLi − niLn(n+ L)

∣∣∣∣ =

∣∣∣∣(n− ni)Li − ni
∑

j 6=i Lj

n(n+ L)

∣∣∣∣
≤

2k
ε log

(
8k
β

)
n− 2k

ε log
(

8k
β

)
≤ α

k
,
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where the first inequality holds by event E8, and the last one holds whenever n ≥ 4k2

εα · log
(

8k
β

)
,

which holds by the assumption on n.
�
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