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Abstract

Clustering is a fundamental problem in data anal-
ysis. In differentially private clustering, the goal
is to identify k cluster centers without disclosing
information on individual data points. Despite sig-
nificant research progress, the problem had so far
resisted practical solutions. In this work we aim
at providing simple implementable differentially
private clustering algorithms that provide utility
when the data is ”easy,” e.g., when there exists a
significant separation between the clusters.

We propose a framework that allows us to apply
non-private clustering algorithms to the easy in-
stances and privately combine the results. We are
able to get improved sample complexity bounds
in some cases of Gaussian mixtures and k-means.
We complement our theoretical analysis with an
empirical evaluation on synthetic data.

1. Introduction
Differential privacy (Dwork et al., 2006b) is a mathemat-
ical definition of privacy, that aims to enable statistical
analyses of databases while providing strong guarantees
that individual-level information does not leak. Privacy is
achieved in differentially private algorithms through ran-
domization and the introduction of “noise” to obscure the
effect of each individual, and thus differentially private algo-
rithms can be less accurate than their non-private analogues.
In most cases, this loss in accuracy is studied theoretically,
using asymptotic tools. As a result, there is currently a
significant gap between what is known to be possible theo-
retically and what can be done in practice with differential
privacy. In this work we take an important step towards
bridging this gap in the context of clustering related tasks.

The construction of differentially private clustering algo-
rithms has attracted a lot of attention over the last decade,
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and many different algorithms have been suggested.1 How-
ever, to the best of our knowledge, none of these algorithms
have been implemented: They are not particularly simple
and suffer from large hidden constants that translate to a
significant loss in utility, compared to non-private imple-
mentations.

Question 1.1. How hard is it to cluster privately with a
practical implementation?

We take an important step in this direction using the fol-
lowing approach. Instead of directly tackling “standard”
clustering tasks, such as k-means clustering, we begin by
identifying a very simple clustering problem that still seems
to capture many of the challenges of practical implemen-
tations (we remark that this problem is completely trivial
without privacy requirements). We then design effective
(private) algorithms for this simple problem. Finally, we
reduce “standard” clustering tasks to this simple problem,
thereby obtaining private algorithms for other tasks.

In more detail, we introduce the following problem, called
the k-tuple clustering problem.

Definition 1.2 (informal, revised in Definition 3.6). An in-
stance of the k-tuple clustering problem is a collection of
k-tuples. Assuming that the input tuples can be partitioned
into k “obvious clusters”, each consisting of one point of
each tuple, then the goal is to report k “cluster-centers”
that correctly partition the input tuples into clusters. If this
assumption on the input structure does not hold, then the
outcome is not restricted.

Remark 1.3.
1. By “obvious clusters” we mean clusters which are far

away from each other.

2. The input tuples are unordered. This means, e.g., that
the “correct” clustering might place the first point of
one tuple with the fifth point of another tuple.

3. Of course, we want to solve this problem while guar-
anteeing differential privacy. Intuitively, this means

1(Blum et al., 2005; Nissim et al., 2007; Feldman et al., 2009;
McSherry, 2009; Gupta et al., 2010; Mohan et al., 2012; Wang
et al., 2015; Nock et al., 2016; Su et al., 2016; Nissim et al., 2016;
Feldman et al., 2017; Balcan et al., 2017; Nissim & Stemmer,
2018; Huang & Liu, 2018; Kaplan & Stemmer, 2018; Stemmer,
2020; Shechner et al., 2020; Ghazi et al., 2020; Nguyen, 2020)
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that the outcome of our algorithm should not be signif-
icantly effected when arbitrarily modifying one of the
input tuples.

Observe that without the privacy requirement this task is
trivial: We can just take one arbitrary input tuple (x1, ..., xk)
and report it. With the privacy requirement, this task turns
out to be non-trivial. It’s not that this problem cannot be
solved with differential privacy. It can. It’s not even that
the problem requires large amounts of data asymptotically.
It does not. However, it turns out that designing an im-
plementation with a practical privacy-utility tradeoff, that
is effective on finite datasets (of reasonable size), is quite
challenging.

1.1. Our algorithms for the k-tuple problem

We present two (differentially private) algorithms for the k-
tuple clustering problem, which we call PrivatekAverages
and PrivatekNoisyCenters. Both algorithms first privately
test if indeed the input is partitioned into k obvious clus-
ters and quit otherwise. They differ by the way they
compute the centers in case this test passes. Algorithm
PrivatekAverages privately averages each identified clus-
ter. Algorithm PrivatekNoisyCenters, on the other hand,
does not operate by averaging clusters. Instead, it selects
one of the input k-tuples, and then adds a (relatively small)
Gaussian noise to every point in this tuple. We prove that
this is private if indeed there are k obvious clusters in the
input. We evaluate these two algorithms empirically, and
show that, while algorithm PrivatekAverages is “better in
theory”, algorithm PrivatekNoisyCenters is much more
practical for some interesting regimes of parameters.

We now give a simplified overview of the ideas behind
our algorithms. For concreteness, we focus here on
PrivatekAverages. Recall that in the k-tuple clustering
problem, we are only required to produce a good output
assuming the data is “nice” in the sense that the input tuples
can be clustered into k “far clusters” such that every clus-
ter contains exactly one point from every tuple. However,
with differential privacy we are “forced” to produce good
outputs even when this niceness assumption does not hold.
This happens because if the input data is “almost nice” (in
the sense that modifying a small number of tuples makes
it nice) then differential privacy states that the outcome of
the computation should be close to what it is when the input
data is nice.

So, the definition of differential privacy forces us to cope
with “almost nice” datasets. Therefore, the niceness test that
we start with has to be a bit clever and “soft” and succeed
with some probability also for data which is “almost nice”.
Then, in order to achieve good performances, we have to
utilize the assumption that the data is “almost nice” when

we compute the private centers. To compute these centers,
Algorithm PrivatekAverages determines (non-privately) a
clustering of the input tuples, and then averages (with noise)
each of the clusters. The conceptual challenge here is to
show that even though the clustering of the data is done
non-privately, it is stable enough such that the outcome of
this algorithm still preserves privacy.

1.2. Applications

The significance of algorithms PrivatekAverages and
PrivatekNoisyCenters is that many clustering related tasks
can be privately solved by a reduction to the k-tuple clus-
tering problem. In this work we explore two important
use-cases: (1) Privately approximating the k-means under
stability assumption, and (2) Privately learning the parame-
ters of a mixture of well-separated Gaussians.

k-Means Clustering

In k-means clustering, we are given a database P of n input
points in Rd, and the goal is to identify a set C of k centers
in Rd that minimizes the sum of squared distances from
each input point to its nearest center. This problem is NP-
hard to solve exactly, and even NP-hard to approximate to
within a multiplicative factor smaller than 1.0013 (Lee et al.,
2017). The current (non-private) state-of-the-art algorithm
achieves a multiplicative error of 6.357 (Ahmadian et al.,
2019).

One avenue that has been very fruitful in obtaining more
accurate algorithms (non-privately) is to look beyond worst-
case analysis (Ostrovsky et al., 2012; Awasthi et al., 2010;
2012; Balcan et al., 2009; Bilu & Linial, 2012; Kumar &
Kannan, 2010). In more details, instead of constructing
algorithms which are guaranteed to produce an approxi-
mate clustering for any instance, works in this vain give
stronger accuracy guarantees by focusing only on instances
that adhere to certain “nice” properties (sometimes called
stability assumptions or separation conditions). The above
mentioned works showed that such “nice” inputs can be clus-
tered much better than what is possible in the worst-case
(i.e., without assumptions on the data).

Given the success of non-private stability-based clustering,
it is not surprising that such stability assumptions were
also utilized in the privacy literature, specifically by Nissim
et al. (2007); Wang et al. (2015); Huang & Liu (2018);
Shechner et al. (2020). While several interesting concepts
arise from these four works, none of their algorithms have
been implemented, their algorithms are relatively complex,
and their practicability on finite datasets is not clear.

We show that the problem of stability-based clustering (with
privacy) can be reduced to the k-tuple clustering problem.
Instantiating this reduction with our algorithms for the k-
tuple clustering problem, we obtain a simple and practical
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algorithm for clustering “nice” k-means instances privately.

Learning Mixtures of Gaussians. Consider the task of
privately learning the parameters of an unknown mixtures
of Gaussians given i.i.d. samples from it. By now, there
are various private algorithms that learn the parameters of
a single Gaussian (Karwa & Vadhan, 2018; Kamath et al.,
2019a; Cai et al., 2019; Bun & Steinke, 2019; Kamath et al.,
2020; Biswas et al., 2020). Recently, (Kamath et al., 2019b)
presented a private algorithm for learning mixtures of well-
separated (and bounded) Gaussians. We remark, however,
that besides the result of (Biswas et al., 2020), which is a
practical algorithm for learning a single Gaussian, all the
other results are primarily theoretical.

By a reduction to the k-tuples clustering problem, we
present a simple algorithm that privately learns the param-
eters of a separated (and bounded) mixture of k Gaussians.
From a practical perspective, compared with the construc-
tion of (Kamath et al., 2019b), our algorithm is simple and
implementable. From a theoretical perspective, our algo-
rithm offers reduced sample complexity, weaker separation
assumption, and modularity.

Our results for stability-based clustering and for learning
mixtures of Gaussians, as well as an extended discussion on
related works, are given in the supplementary material.

2. Preliminaries
2.1. Notation

In this work, a k-tuple X = {x1, . . . ,xk} is an unordered
set of k vectors xi ∈ Rd. For x ∈ Rd, we denote by ‖x‖ the
`2 norm of x. For c ∈ Rd and r > 0, we denote B(c, r) :=
{x ∈ Rd : ‖x− c‖ ≤ r}. For a multiset P ∈ (Rd)∗ we
denote by Avg(P) := 1

|P| ·
∑

x∈P x the average of all points
in P . Throughout this work, a database D is a multiset. For
two multisets D = {x1, . . . , xn} and D′ = {x′1, . . . , x′m},
we letD∪D′ be the multiset {x1, . . . , xn, x

′
1, . . . , x

′
m}. For

a multiset D = {x1, . . . , xn} and a set S, we letM∩ S
be the multiset {xi}i∈I where I = {i ∈ [n] : xi ∈ S}. All
logarithms considered here are natural logarithms (i.e., in
base e).

2.2. Indistinguishability and Differential Privacy

Definition 2.1 (Neighboring databases). Let D =
{x1, . . . , xn} and D′ = {x′1, . . . , x′n} be two databases
over a domain X . We say that D and D′ are neighboring if
there is exactly one index i ∈ [n] with xi 6= x′i.

Definition 2.2 ((ε, δ)-indistinguishable). Two random
variable X,X ′ over a domain X are called (ε, δ)-
indistinguishable, iff for any event T ⊆ X , it holds that
Pr[X ∈ T ] ≤ eε ·Pr[X ′ ∈ T ] + δ. If δ = 0, we say that X
and X ′ are ε-indistinguishable.

Definition 2.3 ((ε, δ)-differential privacy (Dwork et al.,
2006b)). An algorithm A is called (ε, δ)-differentially pri-
vate, if for any two neighboring databases D,D′ it holds
that A(D) and A(D′) are (ε, δ)-indistinguishable. If δ = 0
(i.e., pure privacy), we say that A is ε-differentially private.

Lemma 2.4 ((Bun & Steinke, 2016)). Two ran-
dom variable X,X ′ over a domain X are (ε, δ)-
indistinguishable, iff there exist events E,E′ ⊆ X with
Pr[X ∈ E],Pr[X ′ ∈ E′] ≥ 1−δ such thatX|E andX ′|E′
are ε-indistinguishable.

2.2.1. THE LAPLACE MECHANISM

Definition 2.5 (Sensitivity). We say that a function
f : Un → R has sensitivity λ, if for all neighboring
databases S,S ′ it holds that |f(S)− f(S ′)| ≤ λ.

Theorem 2.6 (The Laplace Mechanism (Dwork et al.,
2006b)). Let ε > 0, and assume f : Un → R has sensi-
tivity λ. Then the mechanism that on input S ∈ Un outputs
f(S) + Lap(λ/ε) is ε-differentially private.

2.2.2. THE GAUSSIAN MECHANISM

Definition 2.7 (`2-sensitivity). We say that a function
f : Un → Rd has `2-sensitivity λ if for all neigboring
databases S,S ′ it holds that ‖f(S)− f(S ′)‖ ≤ λ.

Theorem 2.8 (The Gaussian Mechanism (Dwork et al.,
2006a)). Let ε, δ ∈ (0, 1), and assume f : Un → Rd has
`2-sensitivity λ. Let σ ≥ λ

ε

√
2 log(1.25/δ). Then the mech-

anism that on input S ∈ Un outputs f(S) +
(
N (0, σ2)

)d
is (ε, δ)-differentially private.

2.2.3. ESTIMATING THE AVERAGE OF POINTS

The Gaussian mechanism (Theorem 2.8) allows for privately
estimating the average of points in B(0,Λ) ⊆ Rd within `2
error of ≈ Λ

√
d

εn . In some cases, we could relax the depen-
dency on Λ. For example, using the following proposition.
Proposition 2.9 (Estimating the Average of Bounded Points
in Rd). Let ε ∈ (0, 1), d,Λ > 0 and let rmin ∈ [0,Λ]. There
exists an efficient (ε, δ)-differentially private algorithm that
takes an n-size database S of points inside the ball B(0,Λ)
in Rd and satisfy the following utility guarantee: Let r > 0
be the minimal radius of a d-dimensional ball that contains
all points in S. Then with probability 1− β, the algorithm
outputs â ∈ Rd such that

‖â−Avg(S)‖ ≤ Õ

max{r, rmin}
d log

(
d
δ

)
log
(

Λ
rminβ

)
εn

,
where the Õ hides a

√
log(d/β) factor. The algorithm runs

in time Õ(dn) (ignoring logarithmic factors).

Proposition 2.9 can be seen as a simplified variant of (Nissim
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et al., 2016)’s private average algorithm. The main differ-
ence is that (Nissim et al., 2016) first uses the Johnson Lin-
denstrauss (JL) transform (Johnson & Lindenstrauss, 1984)
to randomly embed the input points in Rd′ for d′ ≈ log n,
and then estimates the average of the points in each axis of
Rd′ . As a result, they manage to save a factor of

√
d upon

Proposition 2.9 (at the cost of paying a factor of log(n) in-
stead). However, for simplifying the construction and the
implementation, we chose to omit the JL transform step, and
we directly estimate the average along each axis of Rd. For
completeness, we present the full details of Proposition 2.9
in the supplementary material.

2.2.4. SUB-SAMPLING

Lemma 2.10 ((Beimel et al., 2010; Kasiviswanathan et al.,
2011)). LetA be an (ε∗, δ∗)-differentially private algorithm
operating on databases of size m. Fix ε ≤ 1, and denote
n = m

ε (3 + exp(ε∗)). Construct an algorithm B that on an
input database D = (zi)

n
i=1, uniformly at random selects

a subset I ⊆ [n] of size m, and executes A on the multiset
DI = (zi)i∈I . Then B is (ε, δ)-differentially private, where
δ = n

4m · δ
∗.

3. k-Tuples Clustering
We first introduce a new property of a collection of (un-
ordered) k-tuples {x1, . . . ,xk} ∈ (Rd)k, which we call
partitioned by ∆-far balls.

Definition 3.1 (∆-far balls). A set of k balls B = {Bi =
B(ci, ri)}ki=1 over Rd is called ∆-far balls, if for every
i ∈ [k] it holds that ‖ci − cj‖ ≥ ∆ ·max{ri, rj} (i.e., the
balls are relatively far from each other).

Definition 3.2 (partitioned by ∆-far balls). A tuple X ∈
(Rd)k is partitioned by a given set of k ∆-far balls B =
{B1, . . . , Bk}, if for every i ∈ [k] it holds that |X ∩Bi| =
1. A multiset of k-tuples T ∈ ((Rd)k)∗ is partitioned by
B, if all X ∈ T are partitioned by B. We say that T is
partitioned by ∆-far balls if such a set B of k ∆-far balls
exists.

In some cases we want to use a notion of almost partitioned
property of a database of k-tuples T . This is defined below
using the additional parameter `.

Definition 3.3 (`-nearly partitioned by ∆-far balls). A mul-
tiset T ∈ ((Rd)k)∗ is `-nearly partitioned by a given set
of ∆-far balls B = {B1, . . . , Bk}, if there are at most `
tuples in T that are not partitioned by B. We say that T
is `-nearly partitioned by ∆-far balls if such a set of ∆-far
balls B = {B1, . . . , Bk} exists.

For a database of k-tuples T ∈ ((Rd)k)n, we let Points(T )
be the collection of all the points in all the k-tuples in T .

Definition 3.4 (The points in a collection of k-tuples). For

T = {{x1,j}kj=1, . . . , {xn,j}kj=1} ∈ ((Rd)k)n, we define
Points(T ) = {xi,j}i∈[n],j∈[k] ∈ (Rd)kn.

We next define Partition(T ) of a database T ∈ ((Rd)k)∗

which is partitioned by ∆-far balls for ∆ > 2.

Definition 3.5 (Partition(T )). Given a multiset T ∈
((Rd)k)∗ which is partitioned by ∆-far balls for ∆ >
2, we define the partition of T , which we denote by
Partition(T ) = {P1, . . . ,Pk}, by fixing an (arbitrary) k-
tuple X = {x1, . . . ,xk} ∈ T and setting Pi = {x ∈
Points(T ) : i = argminj∈[k]‖x− xj‖}.

In the supplementary material we prove that Partition(T )
is uniquely defined.

We now define the k-tuple clustering problem.

Definition 3.6 (k-tuple clustering). The input to the prob-
lem is a database T ∈ ((Rd)k)n and a parameter ∆ > 2.
The goal is to output a k-tuple Y = {y1, . . . ,yk} ∈ (Rd)k
such that the following holds: If T is partitioned by ∆-
far balls, then for every i ∈ [k], there exists a clus-
ter in Partition(T ) (call it Pi) such that Pi = {x ∈
Points(T ) : i = argminj∈[k]‖x− yj‖}.

Namely, in the k-tuple clustering problem, the goal is to
output a k-tuple Y that partitions T correctly. We remark
that for applications, we are also interested in the quality
of the solution. Namely, how small is the distance between
yi and Pi, compared to the other clusters in Partition(T ).
We also remark that without privacy, the problem is trivial,
since any k-tuple X ∈ T is a good solution by definition.

4. Our Algorithms
In this section we present two (ε, δ)-differentially pri-
vate algorithms for the k-tuple clustering problem:
PrivatekAverages and PrivatekNoisyCenters. Algorithm
PrivatekAverages attempts to solve the problem by deter-
mining the clusters in Partition(T ) and then privately esti-
mating the average of each cluster using the algorithm from
Proposition 2.9. Algorithm PrivatekNoisyCenters, on the
other hand, does not operate by averaging clusters. Instead,
it first selects one of the input tuples X ∈ T (in a special
way), and then adds a (relatively small) Gaussian noise to
this tuple.2

Both algorithms share the same first step, which is to call
Algorithm PrivateTestPartition (Figure 2), that privately
decides whether T is `-nearly partitioned by ∆-far balls
or not (for small `). If so, the algorithm determines (non-

2We remind that all the tuples in this work are unordered, and
indeed the privacy analysis of our algorithms relies on it (i.e.,
the domain of outputs that we consider is all the unordered k-
tuples, and (ε, δ)-indistinguishability holds for each subset of this
domain).
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privately) a set of ∆-far balls B = {B1, . . . , Bk} that `-
nearly partitions T .

All of the missing proofs are given in the supplementary
material.

4.1. Algorithm PrivateTestPartition

Algorithm PrivateTestPartition is described in Figure 2.
Its main component is Algorithm PrivateTestCloseTuples
(Figure 1), which inputs two multisets of k-tuples T1 and T2

and privately checks whether the tuples in T1 are close to the
tuples in T2. In the supplementary material, we prove that
the value of Status in PrivateTestCloseTuples preserves
ε1-DP w.r.t. T1, and preserves ε2-DP w.r.t. T2.

Algorithm PrivateTestCloseTuples

Input: Multisets T1 ∈ ((Rd)k)m and T2 ∈ ((Rd)k)n, a
privacy parameter ε1 ∈ (0, 1] for T1, a privacy parameter
ε2 ∈ (0, 1] for T2, a confidence parameter β ∈ (0, 1],
and a separation parameter ∆ > 6.

1. For each X = {x1, . . . ,xk} ∈ T1:

(a) BX = {BXi = B(xi, r
X
i )}ki=1, where rXi =

1
∆ ·minj 6=i‖xi − xj‖.

(b) `X = |{Y ∈ T2 : Y is not partitioned by BX}|.
(c) ˆ̀

X = `X + Lap
(
m
ε2

)
.

(d) passX =

{
1 ˆ̀

X ≤ m
ε2
· log

(
m
β

)
0 otherwise

.

2. s =
∑
X∈T1 passX and ŝ← s+ Lap

(
1
ε1

)
.

3. If ŝ < m − 1
ε1

log
(

1
β

)
, set Status = ”Failure”.

Otherwise, set Status = ”Success”.

4. If Status = ”Success” and passX = 1 for at least
one X ∈ T1, let X∗ be the first tuple in T1 with
passX∗ = 1 and set B = BX∗ . Otherwise, set B to
be a set of k empty balls.

5. Output (Status,B).

Figure 1: Algorithm PrivateTestCloseTuples for pri-
vately checking if ∆-far balls around each k-tuples in T1

partitions the tuples in T2.

In the following, we specify our choices of m and ε1 (func-
tions of n, ε, δ, β) that are used by PrivateTestPartition.

Definition 4.1. Let m = m(n, ε, δ, β) be the smallest inte-
ger that satisfies m > 1

ε1
· (2 log(1/δ) + log(1/β)), where

ε1 = log( εn2m − 3).

The dependence between m and ε1 for Algorithm
PrivateTestPartition is due to the choice of T1 as an m-
size random sample of T . A smaller m allows for a larger
value of ε1 for the same overall privacy, by a sub-sampling
argument (e.g., Lemma 2.10). We note that for n � 1/ε
and β, δ ≥ 1

poly(n) , we have ε1 = Θ(log n), which yields
that m = O(1). For smaller values of δ, we obtain that
m = O

(
log(1/δ)

logn

)
.

Algorithm PrivateTestPartition

Input: A multiset T ∈ ((Rd)k)n, privacy parameters
ε, δ ∈ (0, 1], confidence parameter β ∈ (0, 1], and sepa-
ration parameter ∆ > 6.

1. Let m and ε1 be the values from Definition 4.1 w.r.t.
n, ε, δ, β, and let ε2 = ε/2.

2. Let T1 be a uniform sample of m k-tuples from T
(without replacement), and let T2 = T .

3. Output (Status,B) =
PrivateTestCloseTuples(T1, T2, ε1, ε2, β,∆).

Figure 2: Algorithm PrivateTestPartition for privately
checking if T is partitioned by ∆-far balls.

4.1.1. PROPERTIES OF PrivateTestPartition

Claim 4.2 (Correctness). Assume that T is partitioned by
(2∆ + 2)-far balls. Then with probability 1 − β, when
executing PrivateTestPartition on input T , ε, δ, β,∆, it
outputs (“Success”,B), where B is a set of ∆-far balls that
partitions T .

Claim 4.3 (Status is private). Let T and T ′ be two neigh-
boring databases, and consider two independent executions
PrivateTestPartition(T ) and PrivateTestPartition(T ′)
(with the same parameters ε, δ, β,∆). Let Status
and Status′ be the status outcomes of the two execu-
tions (respectively). Then Status and Status′ are ε-
indistinguishable.

The following claim states that when the tests succeed, then
w.h.p., T is `-nearly partitioned by B, for the value of `
defined below.

Definition 4.4. Let ` = `(n, ε, δ, β) = 2m
ε · log

(
m
βδ

)
,

where m = m(n, ε, δ, β) is the value from Definition 4.1.

We note that ` = O
(

log2(1/δ)
ε logn

)
. When β, δ ≥ 1/poly(n),

we have that ` = O
(

1
ε log n

)
.

Claim 4.5 (On success, B almost partitions T ). Let T ∈
((Rd)k)n and δ > 0. Consider a random execution of
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PrivateTestPartition(T , ε, δ, β), and let (Status,B) be
the outcome of the execution. Let S be the event that
Status = “Success”, and let E ⊆ S be the event that
T is `-nearly partitioned by B, where ` = `(n, ε, δ, β) is
the value from Definition 4.4. Then the following holds: If
Pr[S] ≥ δ, then Pr[E | S] ≥ 1− δ.

Recall that Algorithm PrivateTestPartition has two out-
puts: A bit Status and a set of balls B. As we stated in
Claim 4.3, the bit Status preserves privacy. The set of
balls B, however, does not. Still, in the following sec-
tions we use Algorithm PrivateTestPartition as a sub-
routine in our two main algorithms PrivatekAverages and
PrivatekNoisyCenters. To argue about the privacy prop-
erties of these algorithms, we rely on the following key
property of algorithm PrivateTestPartition.

Claim 4.6. LetA∗ be an algorithm that gets as input a mul-
tiset T ∈ ((Rd)k)n and a set of balls B = {B1, . . . , Bk},
and let ` = `(n, ε/2, δ/4, β/2) be the value from Def-
inition 4.4. Assume that A∗ has the property that for
any neighboring multisets T , T ′ and any sets of ∆-far
balls B,B′ that `-nearly partitions T and T ′ (respec-
tively), it holds thatA∗(T ,B) andA∗(T ′,B′) are (ε∗, δ/4)-
indistinguishable. Let A be the algorithm that on input
T , does the following steps: (1) Compute (Status,B) =
PrivateTestPartition(T , ε/2, δ/4, β/2,∆), and (2) If
Status = “Failure”, output ⊥ and abort, and otherwise
output A∗(T ,B). Then A is (ε/2 + ε∗, δ)-differentially
private.

Proof sketch. Consider two executions over two neighbor-
ing databases. If the probability of success is smaller
than δ in the two executions, then the outputs are (0, δ)-
indistinguishable by Lemma 2.4. Otherwise, Claim 4.5 tells
us that when the tests succeed, then w.h.p. the sets of ∆-far
balls `-nearly partitions the databases in both executions.
Hence, the proof holds by the assumption on A∗. �

Remark 4.7. Note that PrivateTestPartition runs in time
O(mdk2n) = Õ(dk2n) since for each iteration X ∈ T1 in
PrivateTestCloseTuples, Step 1a takes O(dk2) time, and
Step 1b takes O(dk2n) times.

4.2. Algorithm PrivatekAverages

In this section we describe and state the properties of Al-
gorithm PrivatekAverages (Figure 3). The properties are
given in the following theorems.

Theorem 4.8 (Utility of PrivatekAverages). Let d, k,Λ >
0, rmin ∈ [0,Λ], ε, δ, β ∈ (0, 1], and let T ∈(
B(0,Λ)k

)n ⊆ ((Rd)k)n. Assume that T is partitioned by
∆-far balls for ∆ = 16, let {P1, . . . ,Pk} = Partition(T )
(according to Definition 3.5), let ri be the radius of the
ball that contains Pi. Then w.p. 1 − β, algorithm
PrivatekAverages on inputs T , rmin, ε, δ, k, outputs k

Algorithm PrivatekAverages

Input: A multiset T ∈
(
B(0,Λ)k

)n ⊆ ((Rd)k)n, pri-
vacy parameters ε, δ ∈ (0, 1], a confidence parameter
β ∈ (0, 1], and a lower bound on the radii rmin ∈ [0,Λ].

1. Compute (Status,B = {B1, . . . , Bk}) =
PrivateTestPartition(T , ε/2, δ/4, β/2,∆ = 7).

2. If Status = ”Failure”, output ⊥ and abort.

3. Let c1, . . . , ck be the centers of B1, . . . , Bk (re-
spectively), and let Qi = {x ∈ Points(T ) : i =
argminj‖x− cj‖}.

4. Let ` = `(n, ε/2, δ/4, β/2) be the value from Defi-
nition 4.4.

5. For i = 1 to k:

• Compute a noisy average âi of Qi using the
algorithm from Proposition 2.9 with param-
eters Λ, rmin, β̂ = β

2k , ε̂ = ε
4k(`+1) , δ̂ =

δ
8k exp(ε/2)(`+1) .

6. Output Â = {â1, . . . , âk}.

Figure 3: Algorithm PrivatekAverages for privately esti-
mating the k averages.

points Â = {â1, . . . , âk} such that for any i ∈ [k], there
exists a cluster (call it Pi) with

‖âi − ai‖ ≤ Õ

max{ri, rmin} ·
dk` log

(
`
δ

)
log
(

Λ
rminβ

)
εn

,
where ai = Avg(Pi) and ` = `(n, ε2 ,

δ
4 ,

β
2 ) is the value

from Definition 4.4.

Theorem 4.9 (Privacy of PrivatekAverages). Let
d, k,Λ > 0, rmin ∈ [0,Λ], ε, δ, β ∈ (0, 1]. Then for
any integer n ≥ 2 · `(n, ε/2, δ/4, β/2) + 2 (where
` is the function from Definition 4.4), algorithm
PrivatekAverages(·, ε, δ, β, rmin) is (ε, δ)-differentially
private for databases T ∈ (B(0,Λ)k)n ⊆ ((Rd)k)n.

Proof Sketch. Consider two independent executions over
neighboring databases T and T ′, and let B and B′ be the
balls from Step 1, respectively. By Claim 4.6, if we treat
Step 3 to 6 as algorithmA∗ of the claim, then it is enough to
prove indistinguishability only in the case that T and T ′ are
`-nearly partitioned by B and B′, respectively. In this case,
since T and T ′ are neighboring and n ≥ 2`+2, there exists
at least one k-tuples that is partitioned by both B and B′,
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yielding that each ball Bi in B intersects a single ball in B′
(call it B′i w.l.o.g.). Since B and B′ are sets of ∆-far balls
for large enough ∆ (∆ = 7, as defined in the algorithm,
is sufficient), then each area Bi ∪ B′i is “far away” from
each Bj ∪ B′j for j 6= i. This yields that the partition into
{Q1, . . . ,Qk} in Step 3 of both executions, agree on all the
points that belong to Bi ∪ B′i for some i. Therefore, this
partition disagree on at most k(`+ 1) points, which are the
points of the (at most) `+1 tuples that are not partitioned by
B or B′. Hence, the privacy now holds by Proposition 2.9
with group privacy of size k(`+ 1). �

Remark 4.10 (Run time of PrivatekAverages). Step 1 of
PrivatekAverages takes Õ(dk2n) time (see Remark 4.7).
By Proposition 2.9, the k executions of Step 5 take time∑k

i=1 Õ(|Ti|) = Õ(dkn). Overall, the running time of
PrivatekAverages is Õ(dk2n).

4.2.1. REDUCING THE DEPENDENCY IN d

Algorithm PrivatekAverages estimates the average of each
cluster Pi with radius ri up to an additive error of Õ

(
d
n · ri

)
(ignoring poly(k, 1/ε) and polylog(n, δ, β,Λ, 1/rmin) fac-
tors). Yet, we can easily reduce the d into

√
d by replacing

in Step 5 the average algorithm of Proposition 2.9 by the av-
erage algorithm of (Nissim et al., 2016) (see Section 2.2.3).

4.3. Algorithm PrivatekNoisyCenters

In this section we describe and state the properties of Algo-
rithm PrivatekNoisyCenters (Figure 4).

The properties of PrivatekNoisyCenters are given in the
following theorems.

Theorem 4.11 (Utility of PrivatekNoisyCenters). Let
d, k > 0, ε, β, δ ∈ (0, 1] with δ < β, let T ∈ ((Rd)k)n,
and assume that T is partitioned by (2∆ + 2)-far balls,

for ∆ = Ω

(
k log(k/δ)

√
log(k/β)

ε

)
. Then when execut-

ing PrivatekNoisyCenters(T , ε, δ, β,∆), with probability
1− β, the output Ĉ = {ĉ1, . . . , ĉk} satisfy for every i and
j 6= i that ‖ĉi − ci‖ < ‖ĉi − cj‖.

We remark that the k factor in the ∆ in Theorem 4.11, comes
from applying basic composition over the k noisy centers Ĉ.
This however can be reduced to Õ(

√
k) factor by applying

advanced composition (Dwork et al., 2010).

Theorem 4.12 (Privacy of PrivatekNoisyCenters).
Let d, k > 0, ε, β ∈ (0, 1], δ ∈ (0, 1/2], ∆ > 6.
Then for any integer n ≥ 2 · `(n, ε/2, δ/4, β/2) + 2
(where ` is the function from Definition 4.4),
PrivatekNoisyCenters(·, ε, δ, β,∆) is (ε + δ/4, δ)-
differentially private for databases T ∈ ((Rd)k)n.

Proof sketch. Consider two independent executions over

Algorithm PrivatekNoisyCenters

Input: A multiset T ∈ ((Rd)k)n, privacy parameters
ε ∈ (0, 1], δ ∈ (0, 1/2], a confidence parameter β ∈
(0, 1], and a separation parameter ∆� 6.

1. Compute (Status,B = {B1, . . . , Bk}) =
PrivateTestPartition(T , ε/2, δ/4, β/2,∆).

2. If Status = ”Failure”, output ⊥ and abort.

3. Let c1, . . . , ck be the centers ofB1, . . . , Bk (respec-
tively).

4. For i = 1 to k:

(a) γi = 4
∆−2 ·

(
Lap(4k/ε) + 4k

ε log(4k/δ) + 1
)

(b) λi = 2
∆ (1 + γi) minj 6=i‖ci − cj‖.

(c) ĉi = ci + (N (0, σ2
i ))d, where σi =

4kλi

ε

√
2 log(10k/δ).

5. Output Ĉ = {ĉ1, . . . , ĉk}.

Figure 4: Algorithm PrivatekNoisyCenters for privately
finding the k centers.

neighboring databases T and T ′, and let B and B′ be the
balls from Step 1, respectively. Similarly to the proof sketch
of Theorem 4.9 (privacy of PrivatekAverages), it is enough
to prove indistinguishability only in the case that T and T ′
are `-nearly partitioned by B and B′, where in this case,
each ball Bi in B intersects a single ball in B′ (call it B′i
w.l.o.g.). Since B and B′ are ∆-far balls, this yields that
the centers of B and B′ are relatively close, i.e., ‖ci − c′i‖
is bounded by (approximately) 2

∆ · minj 6=i‖ci − cj‖ ≈
2
∆ ·minj 6=i

∥∥c′i − c′j
∥∥. Therefore, we deduce by the proper-

ties of the Gaussian mechanism that the outputs are indistin-
guishable. �

Remark 4.13 (Run time of PrivatekNoisyCenters). Step 1
of PrivatekNoisyCenters takes Õ(dk2n) time (see Re-
mark 4.7). The for-loop in Step 4 only takes O(dkn)
time. Overall, the running time of PrivatekNoisyCenters
is Õ(dk2n).

5. Empirical Results
We implemented in Python our two main algo-
rithms for k-tuple clustering: PrivatekAverages
and PrivatekNoisyCenters. We compared the two
algorithms in terms of the sample complexity that
is needed to privately separate the samples from a
given mixture of Gaussians. Namely, how many k-
tuples we need to sample such that, when executing
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Figure 5: The case d = 1 and k = 2, for varies R.

PrivatekAverages or PrivatekNoisyCenters, the result-
ing k-tuple Y = {y1, . . . ,yk} satisfies the following
requirement: For every i ∈ [k], there exists a point in Y (call
it yi), such that for every sample x that was drawn from
the i’th Gaussian, it holds that i = argminj∈[k]‖x− yj‖.
We perform three tests, where in each test we considered a
uniform mixture of k standard spherical Gaussians around
the means {R ·ei,−R ·ei}k/2i=1, where ei is the i’th standard
basis vector. In all the tests, we generated each k-tuple
by running algorithm k-means++ (Arthur & Vassilvitskii,
2007) over enough samples.

In Test1 (Figure 5) we examined the sample complexity in
the case d = 1, k = 2, for R ∈ {25, 26, . . . , 29}. In Test2
(Figure 6) we examined the case d = 4, R = 512 · k, for
k ∈ {2, 4, 6, 8}. In Test3 (Figure 7) we examined the case
k = 2,R = 256

√
d, for d ∈ {4, 8, 12, 16}. In all the experi-

ments we used privacy parameters ε = 1 and δ = e−28, and
used β = 0.05. In all the tests of PrivatekNoisyCenters,
we chose ∆ = 10

ε · k log(k/δ)
√

log(k/β), the number
of k-tuples that we generated was exactly 3781 (the min-
imal value that is required for privacy), but the number
of samples per k-tuple varied from test to test. In the
tests of PrivatekAverages, we chose Λ = 210 · k

√
d and

rmin = 0.1, we generated each k-tuple using ≈ 15 · k sam-
ples, but the number of k-tuples varied from test to test.3 All
the experiments were tested in a MacBook Pro Laptop with
4-core Intel i7 CPU with 2.8GHz, and with 16GB RAM.

The graphs show the main bottleneck of Algorithm
PrivatekAverages in practice. It requires only Oε,δ(kd)

tuples (or Oε,δ(k
√
d) for large values of d) in order to suc-

ceed, but the hidden constant is ≈ 500, 000 for our choice
of ε and δ, and this does not improve even when the as-
sumed separation R is very large. The cause of this large
constant is the group privacy of size O(k`) that we do in

3By using Ω̃(kd) samples for creating each k-tuple, in Test3
(Figure 7) we could avoid the dependency of R in

√
d (see

the supplementary material for more details). However, since
we only used O(k) samples for each k-tuple when testing
PrivatekAverages, then we could not avoid this dependency.

Figure 6: The case d = 4 and R = 512 · k, for varies k.

Step 5, where recall that ` = O
(

log2(1/δ)
ε logn

)
(Definition 4.4).

While in theory this ` is relatively small, with our choice
of parameters we get ` ≈ 1000. This means that we need
to execute the private average algorithm with ε̂ ≈ ε

4000k .
Internally, this ε̂ is shared between other private algorithms,
and in particular, with an Interior Point algorithm that is one
of the internal components of the average algorithm from
Proposition 2.9. This algorithm is implemented using the
exponential mechanism (McSherry & Talwar, 2007), which
simply outputs a random noise when the number of points
is too small.

We remark that prior work on differentially-private cluster-
ing, including in ”easy” settings, is primarily theoretical.
In particular, we are not aware of implemented methods
that we could use as a baseline.4 As a sanity check, we
did consider the following naive baseline: For every sam-
ple point, add a Gaussian noise to make it private. Now,
the resulting noisy samples are just samples from a new
Gaussian mixture. Then, run an off-the-shelf non-private
method to learn the parameters of this mixture. We tested
this naive method on the simple case d = 1 and k = 2,
where we generated samples from a mixture of standard
Gaussians that are separated by R = 512. By the Gaus-
sian mechanism, the noise magnitude that we need to add
to each point for guaranteeing (ε, δ)-differential privacy, is

4We remark that in different settings, such as node, edge or
weight-differential privacy, there exist some available implementa-
tions (e.g., (Pinot et al., 2018)).

Figure 7: The case k = 2, R = 256
√
d, for varies d.
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σ ≈ Λ
ε

√
log(1/δ) � 1 for some Λ > R, meaning that

the resulting mixture consists of very close Gaussians. We
applied GaussianMixture from the package sklearn.mixture
to learn this mixture, but it failed even when we used 100M
samples, as this method is not intended for learning such
close Gaussians.We remark that there are other non-private
methods that are designed to learn any mixture of Gaussians
(even very weakly separated ones) using enough samples
(e.g., (Suresh et al., 2014)). The sample complexity and run-
ning time of these methods, however, are much worse than
ours even asymptotically (e.g., the running time of (Suresh
et al., 2014) is exponential in k), and moreover, we are not
aware of any implementation we could use.5

6. Conclusion
We developed an approach to bridge the gap between the
theory and practice of differentially private clustering meth-
ods. For future, we hope to further optimize the ”constants”
in the k-tuple clustering algorithms, making the approach
practical for instances with lower separation. Tangentially,
the inherent limitations of private versus non-private cluster-
ing suggest exploring different rigorous notions of privacy
in the context of clustering.
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