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A. Additional Experimental Results
A.1. Synthetic Data: Further comparison with GD-GD
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Figure 7. Function values for FedRep and GD-GD. The value of m is fixed in each row and n is fixed in each column. Here r = 1 (full
participation) and the average trajectories over 10 trials are plotted along with 95% confidence intervals. Principal angle distances are not
plotted as the results are very similar. We see that the relative improvement of FedRep over GD-GD increases with n, highlighting the
advantage of FedRep in settings with many clients.

Further experimental details. In the synthetic data experiments, the ground-truth matrices W∗ and B∗ were generated by
first sampling each element as an i.i.d. standard normal variable, then taking the QR factorization of the resulting matrix,
and scaling it by

√
k in the case of W∗. The clients each trained on the same m samples throughout the entire training

process. Test samples were generated identically as the training samples but without noise. Both the iterates of FedRep and
GD-GD were initialized with the SVD of the result of 10 rounds of projected gradient descent on the unfactorized matrix
sensing objective as in Algorithm 1 in (Tu et al., 2016). We would like to note that FedRep exhibited the same convergence
trajectories regardless of whether its iterates were initialized with random Gaussian samples or with the projected gradient
descent procedure, whereas GD-GD was highly sensitive to its initialization, often not converging when initialized randomly.

A.2. Real Data: Further experimental details

Datasets. The CIFAR10 and CIFAR100 datasets (Krizhevsky et al., 2009) were generated by randomly splitting the training
data into Sn shards with 50, 000/(Sn) images of a single class in each shard, as in (McMahan et al., 2017). The full
Federated-EMNIST (FEMNIST) dataset contains 62 classes of handwritten letters, but in Table 1 we use a subset with
only 10 classes of handwritten letters. In particular, we followed the same dataset generation procedure as in (Li et al.,
2019), but used 150 clients instead of 200. When testing on new clients as in Figure 6, we use samples from 10 classes of
handwritten digits from FEMNIST, i.e., the MNIST dataset. In this phase there are 100 new clients, each with 500 samples
from 5 different classes for fine-tuning. The fine-tuned models are then evaluated on 100 testing samples from these same 5
classes. For Sent140, we randomly sample 183 clients (Twitter users) that each have at least 50 samples (tweets). Each
tweet is either positive sentiment or negative sentiment. Statistics of both the FEMNIST and Sent140 datasets we use are
given in Table 2. For both FEMNIST and Sent140 we use the LEAF framework (Caldas et al., 2018).

Hyperparameters. As in (Liang et al., 2020), all methods use SGD with momentum with parameter equal to 0.5. In Table
1, for CIFAR10, CIFAR100, and FEMNIST the local sample batch size is 10 and for Sent140 it is 4. The participation
rate r is always 0.1, besides in the fine-tuning phases in Figure 6, in which all clients are sampled in each round. For each
dataset learning rates were tuned in {0.001, 0.01, 0.1}. We observed that the optimal learning rates for FedAvg were also
typically the optimal base learning rates for the other methods, so we used the same base learning rates for all methods for
each dataset, which was 0.01 in all cases, unless stated otherwise. Note that the batch size and learning rate for CIFAR10
used in Table 1 differs from the standard setting of a batch size of 50 and learning rate of 0.1 (McMahan et al., 2017), but
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we observed improved performance for all methods by using (10, 0.01) instead. In particular, the simulation in Figure 5,
the standard setting of (50, 0.1) is used, but the accuracies are worse than those reported in Table 1 for both FedAvg and
FedRep. Additionally, in Table 1, for CIFAR10 with (n, S) = (100, 2) and (n, S) = (100, 5), we executed 1 local epoch of
SGD with momentum for the representation for FedRep and 1 local epoch for all other methods. For all other datasets we
executed 5 local epochs for the representation for FedRep and for the local updates for all other methods.

Evaluation. As mentioned in the main body, in Table 1, we initialize all methods randomly and train for T = 100
communication rounds for the CIFAR datasets, T = 200 for FEMNIST, and T = 50 for Sent140. The accuracy shown is
the average local test accuracy over all users over the final ten communication rounds, besides for the fine-tuning results, in
which case we report the average local test accuracies of the locally fine-tuned models over all users, after the global model
has been fully trained. We repeat the entire training and evaluation process five times for each model and dataset and report
the averages in Table 1.

Implementations. Our code is an adaptation of the repository from (Liang et al., 2020), written in Pytorch and available
at https://github.com/pliang279/LG-FedAvg/. In particular, we used the implementations of FedAvg, Fed-
MTL and LG-FedAvg given in this repository. For consistency we use this same codebase to implement FedRep, FedPer,
SCAFFOLD, FedProx, APFL, Ditto, L2GD, and PerFedAvg. As in the experiments in (Liang et al., 2020), we used a 5-layer
CNN with two convolutional layers for CIFAR10 and CIFAR100 followed by three fully-connected layers. For FEMNIST,
we use an MLP with two hidden layers, and for Sent140 we use a pre-trained 300-dimensional GloVe embedding1 and train
RNN with an LSTM module followed by two fully-connected decoding layers.

For FedRep, we treated the head as the weights and biases of the final fully-connected layer in each of the models. For LG-
FedAvg, we treated the first two convolutional layers of the model for CIFAR10 and CIFAR100 as the local representation,
and the fully-connected layers as the global parameters, and the input layer and hidden layers as the global parameters.
For FEMNIST, we set all parameters besides those in the output layer as the local representation parameters. For Sent140,
we set the RNN module to be the local representation and the decoder to be the global parameters. Unlike in the paper
introducing LG-FedAvg (Liang et al., 2020), we did not initialize the models for all methods with the solution of many
rounds of FedAvg (instead, we initialized randomly) and we computed the local test accuracy as the average local test
accuracy over the final ten communication rounds, rather than the average of the maximum local test accuracy for each
client over the entire training procedure.

For L2GD (Hanzely & Richtárik, 2020) we executed multiple epochs of local SGD (discussed above) instead of one step
of GD in the local update in order for reasonable comparison with the other methods. We also set p = 0.9, thus the local
parameters are trained on 10% of the communication rounds. We tuned α in {0.05, 0.1, 0.25, 0.5, 0.75} and we tuned λ
over {1, 0.5}. We used (α, λ) = (0.25, 1) in all cases besides the (n, S) = (100, 5) case for CIFAR100, for which we used
α = 0.1. Also, for FEMNIST we improved performance by using a learning rate of 0.001 instead of 0.01. For APFL, we
used a fixed α that we tuned in {0.1, 0.25, 0.5, 0.75}, and chose α = 0.25 for all cases besides the most heterogeneous
CIFAR versions, namely (n, S) = (100, 2) for CIFAR10 and (n, S) = (100, 25) for CIFAR100. For Ditto we tuned λ
among {0.25, 0.5, 0.75, 1}, and used λ = 0.75 for all cases besides CIFAR100, for which we used λ = 1. For PerFedAvg,
we used an inner learning rate of 10−4 and 8 samples as the support set and 2 samples as the target set in each local
meta-gradient update. We used the Hessian-free version. For FedProx we tuned µ among {0.05, 0.1, 0.25, 0.5}, and used
µ = 0.1 for CIFAR and µ = 0.25 for FEMNIST and Sent140. For SCAFFOLD we used a global learning rate of 1 in all
cases besides FEMNIST, for which 0.5 was superior.

Table 2. Dataset statistics.

DATASET NUMBER OF USERS (n) AVG SAMPLES/USER MIN SAMPLES/USER

FEMNIST 150 148 50
SENT140 183 72 50

1Pennington, J., Socher, R., and Manning, C. D. Glove: Global vectors for word representation. In Proceedings of the 2014 conference
on empirical methods in natural language processing (EMNLP), pp. 1532–1543, 2014.

https://github.com/pliang279/LG-FedAvg/
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B. Proof of Main Result
B.1. Preliminaries.

Definition 2. For a random vector x ∈ Rd and a fixed matrix A ∈ Rd1×d2 , the vector A>x is called ‖A‖2-sub-gaussian if
y>A>x is sub-gaussian with sub-gaussian norm ‖A‖2‖y‖2 for all y ∈ Rd2 , i.e. E[exp(y>A>x)] ≤ exp

(
‖y‖22‖A‖22/2

)
.

Definition 3. A rank-k matrix M ∈ Rd1×d2 is µ-row-wise incoherent if maxi∈[d1] ‖mi‖2 ≤ (µ
√
d2/
√
d1)‖M‖F , where

mi ∈ Rd2 is the i-th row of M.

We use hats to denote orthonormal matrices (a matrix is called orthonormal if its set of columns is an orthonormal set). By
Assumption 3, the ground truth representation B∗ is orthonormal, so from now on we will write it as B̂∗.

For a matrix W ∈ Rn×k and a random set of indices I ∈ [n] of cardinality rn, define WI ∈ Rrn×k as the
matrix formed by taking the rows of W indexed by I. Define σ̄max,∗ := maxI∈[n],|I|=rn σmax( 1√

rn
W∗
I) and

σ̄min,∗ := minI∈[n],|I|=rn σmin( 1√
rn

W∗
I), i.e. the maximum and minimum singular values of any matrix that can be

obtained by taking rn rows of 1√
rn

W∗. Note that by Assumption 3, each row of W∗ has norm
√
k, so 1√

rn
acts as a

normalizing factor such that ‖ 1√
rn

W∗
I‖F =

√
k. In addition, define κ = σ̄max,∗/σ̄min,∗.

Let i now be an index over [rn], and let i′ be an index over [n]. For random batches of samples {{(xji , y
j
i )}mj=1}rni=1, define

the random linear operator A : Rrn×d → Rrnm as A(M) = [〈Aj
i ,M〉]1≤i≤rn,1≤j≤m ∈ Rrnm. Here, Aj

i := ei(x
j
i )
>,

where ei is the i-th standard vector in Rrn, and M ∈ Rrn×d. Then, the loss function in (6) is equivalent to

min
B∈Rd×k,W∈Rn×k

{F (B,W) :=
1

2rnm
EA,I

[
‖Y −A(WIB

>)‖22
]
}, (12)

where Y = A(W∗
IB̂
∗>) ∈ Rrnm is a concatenated vector of labels. It is now easily seen that the problem of recovering

W∗B̂∗
>

from finitely-many measurements A(W∗
IB̂
∗>) is an instance of matrix sensing. Moreover, the updates of FedRep

satisfy the following recursion:

Wt+1
It = argmin

WIt∈Rrn×k

1

2rnm
‖At(W∗

ItB̂
∗> −WItB

t>)‖22 (13)

Bt+1 = Bt − η

rnm

(
(At)†At(Wt+1

It Bt> −W∗
ItB̂

∗>)
)>

Wt+1
It (14)

where At is an instance of A, and (At)† is the adjoint operator of At, i.e. (At)†A(M) =
∑rn
i=1

∑m
j=1(〈At,j

i ,M〉)At,j
i .

Note that for the purposes of analysis, it does not matter how wt+1
i′ is computed for all i′ /∈ It, as these vectors do not affect

the computation of Bt+1. Moreover, our analysis does not rely on any particular properties of the batches I1, . . . , IT other
than the fact that they have cardinality rn, so without loss of generality we assume It = [rn] for all t = 1, ...T and drop the
subscripts It on Wt.

B.2. Auxilliary Lemmas

We start by showing that we can assume without loss of generality that Bt is orthonormalized at the end of every
communication round.

Lemma 1. Let Wt ∈ Rrn×k and Bt ∈ Rd×k denote the iterates of Algorithm 2 as outlined in (13) and (14) (with the
subscript It dropped). Now consider the modified algorithm given by the following recursion:

W̃t+1 = arg min
W
‖At(W(B

t
)> −W∗(B̂

∗)>)‖2F (15)

B̃t+1 = B
t − η

rnm

(
(At)†At(W̃t+1(B

t
)> −W∗(B̂

∗)>)
)>

W̃t+1 (16)

B
t+1

= B̃t+1(R̃t+1)−1 (17)

where B
t+1

R̃t+1 is the QR factorization of B̃t+1. Then the column spaces of Bt and B̃t are equivalent for all t.
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Proof. The proof follows a similar argument as Lemma 4.4 in (Jain et al., 2013). Assume that the claim holds for iteration t.
Then there is some full-rank RB ∈ Rk×k such that B̃tRB = Bt. Then B

t
R̃tRB = Bt, where R̃tRB is full rank. Since

W̃t+1 = arg min
W
‖At(W(B

t
)> −W∗(B̂

∗)>)‖2F = arg min
W
‖At((W(R̃tRB)−>)(Bt)> −W∗(B̂∗)>)‖2F (18)

we have that W̃t+1(R̃tRB)−> minimizes ‖At(W(Bt)> −W∗(B̂∗)>)‖2F over W since (R̃tRB)> is full rank. So
Wt+1 = W̃t+1(R̃tRB)−> and the column spaces of W̃t+1 and Wt+1 are equivalent. Next, recall the definition of Bt+1:

Bt+1 = Bt − η

rnm

(
(At)†At(Wt+1(Bt)> −W∗(B̂∗)>)

)>
Wt+1 (19)

= B
t
R̃tRB −

η

rnm

(
(At)†At(W̃t+1(R̃tRB)−>(R̃tRB)>(B

t
)> −W∗(B̂∗)>)

)>
W̃t+1(R̃tRB)−>

=

[
B
t
, − η

rnm

(
(At)†At(W̃t+1(B

t
)> −W∗(B̂∗)>)

)>
W̃t+1

][
R̃tRB

(R̃tRB)−>

]
(20)

so the column space of Bt+1 is equal to the column space of
[
B
t
, − η

rnm

(
(At)†At(W̃t+1(B

t
)> −W∗(B̂∗)>)

)>
W̃t+1

]
.

Finally, note that B̃t+1 can be written as:

B̃t+1 =

[
B
t
, − η

rnm

(
(At)†At(W̃t+1(B

t
)> −W∗(B̂∗)>)

)>
W̃t+1

] [
Ik
Ik

]
(21)

so B̃t+1 has column space that is also equal to the column space of
[
B
t
, − η

rnm

(
(At)†At(W̃t+1(B

t
)> −W∗(B̂∗)>)

)>
W̃t+1

]

.

Note that we cannot orthonormalize Wt, neither in practice (due to privacy constraints) nor for analysis only.

In light of Lemma 1, we now analyze the modified algorithm in Lemma 1 in which Bt is orthonormalized after each iteration.
We will use our standard notation Wt, Bt to denote the iterates of this algorithm, with B̂t being the orthonormalized version
of Bt. For clarity we restate this modified algorithm with the standard notation here:

Wt+1 = arg min
W

1

2rnm
‖At(W(B̂t)> −W∗(B̂

∗)>)‖2F (22)

Bt+1 = B̂t − η

rnm

(
(At)†At(Wt+1(B̂t)> −W∗(B̂∗)>)

)>
Wt+1 (23)

B̂t+1 = Bt+1(Rt+1)−1 (24)

We next explicitly compute Wt+1. Since the rest of the proof analyzes a particular communication round t, we drop
superscripts t on the measurement operators At and matrices At

i,j for ease of notation.

Lemma 2. In the modified algorithm, where B is orthonormalized after each update, the update for W is:

Wt+1 = W∗B̂∗
>

B̂t − F (25)

where F is defined in equation (30) below.

Proof. We adapt the argument from Lemma 4.5 in (Jain et al., 2013) to compute the update for Wt+1, and borrow heavily
from their notation.
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Let wt+1
p (respectively b̂t+1

p ) be the p-th column of Wt (respectively B̂t). Since Wt+1 minimizes F̃ (W, B̂t) :=
1

2rnm‖A
t(W∗(B̂∗)> −W(Bt)>)‖22 with respect to W, we have ∇wp F̃ (Wt+1, B̂t) = 0 for all p ∈ [k]. Thus, for any

p ∈ [k], we have

0 = ∇wp F̃ (Wt+1, B̂t)

=
1

rnm

rn∑

i=1

m∑

j=1

(
〈Ai,j ,W

t+1(B̂t)> −W∗(B̂∗)>〉
)

Ai,jb̂
t
p

=
1

rnm

rn∑

i=1

m∑

j=1

(
k∑

q=1

(b̂tq)
>A>i,jw

t+1
q −

k∑

q=1

(b̂∗q)
>A>i,jw

∗
q

)
Ai,jb̂

t
p

This implies

1

m

k∑

q=1




rn∑

i=1

m∑

j=1

Ai,jb̂
t
p(b̂

t
q)
>A>i,j


wt+1

q =
1

m

k∑

q=1




rn∑

i=1

m∑

j=1

Ai,jb̂
t
p(b̂
∗
q)
>A>i,j


w∗q (26)

To solve for wt+1, we define G, C, and D as rnk-by-rnk block matrices, as follows:

G :=

 G11 · · · G1k

...
. . .

...
Gk1 · · · Gkk

 , C :=

 C11 · · · C1k

...
. . .

...
Ck1 · · · Ckk

 , D :=

 D11 · · · D1k

...
. . .

...
Dk1 · · · Dkk

 (27)

where, for p, q ∈ [k]: Gpq := 1
m

∑rn
i=1

∑m
j=1 Ai,jb̂

t
pb̂

t>

q A>i,j ∈ Rrn×rn, Cpq := 1
m

∑rn
i=1

∑m
j=1 Ai,jb̂

t
p(b̂
∗
q)
>A>i,j ∈

Rrn×rn, and, Dpq := 〈b̂tp, b̂∗q〉Irn ∈ Rrn×rn. Recall that b̂tp is the p-th column of B̂t and b̂∗q is the q-th column of B̂∗.
Further, define

w̃t+1 =




wt+1
1
...

wt+1
k


 ∈ Rrnk, w̃∗ =




w∗1
...

w∗k


 ∈ Rrnk.

Then, by (26), we have

w̃t+1 = G−1Cw̃∗

= Dw̃∗ −G−1 (GD−C) w̃∗

where we can invert G conditioned on the event that its minimum singular value is strictly positive, which Lemma 3 shows
holds with high probability. Now consider the p-th block of w̃t+1, and let ((GD−C) w∗)p denote the p-th block of
(GD−C) w∗. We have

w̃t+1
p =

k∑

q=1

〈b̂tp, b̂∗q〉w∗q − (G−1 (GD−C) w∗)p

=

(
k∑

q=1

w∗q(b̂
∗
p)
>
)

b̂tq − (G−1 (GD−C) w∗)p

=
(
W∗(B̂∗)>

)
b̂tq − (G−1 (GD−C) w∗)p (28)

By constructing Wt+1 such that the p-th column of Wt+1 is wt+1
p for all p ∈ [k], we obtain

Wt+1 = W∗B̂∗(B̂t)> − F (29)

where

F = [(G−1(GD−C)w̃∗)1, . . . , (G
−1(GD−C)w̃∗)k] (30)

and (G−1(GD−C)w̃∗)p is the p-th n-dimensional block of the rnk-dimensional vector G−1(GD−C)w̃∗.
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Next we bound the Frobenius norm of the matrix F, which requires multiple steps. First, we establish some helpful notations.
We drop superscripts indicating the iteration number t for simplicity.

Again let w∗ be the rnk-dimensional vector formed by stacking the columns of W∗, and let b̂p (respectively b̂∗q) be the
p-th column of B̂ (respectively the q-th column of B̂∗). Recall that F can be obtained by stacking G−1(GD − C)w∗

into k columns of length n, i.e. vec(F) = G−1(GD −C)w∗. Further, G ∈ Rrnk×rnk is a block matrix whose blocks
Gpq ∈ Rrn×rn for p, q ∈ [k] are given by:

Gpq =
1

m

rn∑

i=1

m∑

j=1

Ai,jb̂pb̂
>
q A>i,j

=
1

m

rn∑

i=1

m∑

j=1

ei(x
j
i )
>b̂pb̂

>
q xjie

>
i (31)

So, each Gpq is diagonal with diagonal entries

(Gpq)ii =
1

m

m∑

j=1

(xji )
>b̂pb̂

>
q xji = b̂>p

(
1

m

m∑

j=1

xji (x
j
i )
>
)

b̂q (32)

Define Πi := 1
m

∑m
j=1 xji (x

j
i )
> for all i ∈ [rn]. Similarly as above, each block Cpq of C is diagonal with entries

(Cpq)ii = b̂>p Πib̂∗,q (33)

Analogously to the matrix completion analysis in (Jain et al., 2013), we define the following matrices, for all i ∈ [rn]:

Gi :=
[
b̂>p Πib̂q

]
1≤p,q≤k

= B̂>ΠiB̂, Ci :=
[
b̂>p Πib̂∗,q

]
1≤p,q≤k

= B̂>ΠiB̂∗ (34)

In words, Gi is the k × k matrix formed by taking the i-th diagonal entry of each block Gpq, and likewise for Ci. Recall
that D also has diagonal blocks, in particular Dpq = 〈B̂p, B̂

∗
q〉Id, thus we also define Di := [〈B̂p, B̂

∗
q〉]1≤p,q≤k = B̂>B̂∗.

Using this notation we can decouple G−1(GD−C)w∗ into i subvectors. Namely, let w∗i ∈ Rk be the vector formed by
taking the ((p− 1)rn+ i)-th elements of w∗ for p = 0, ..., k − 1, and similarly, let fi be the vector formed by taking the
((p− 1)rn+ i)-th elements of G−1(GD−C)w∗ for p = 0, ..., k − 1. Then

fi = (Gi)−1(GiDi −Ci)w∗i (35)

is the i-th row of F. Now we control ‖F‖F .

Lemma 3. Let δk = c
k3/2
√

log(rn)√
m

for some absolute constant c, then

‖G−1‖2 ≤
1

1− δk

with probability at least 1− e−111k3 log(rn).

Proof. We must lower bound σmin(G). For some vector z ∈ Rrnk, let zi ∈ Rk denote the vector formed by taking the
((p− 1)rn+ i)-th elements of z for p = 0, ..., k − 1. Since G is symmetric, we have

σmin(G) = min
z:‖z‖2=1

z>Gz

= min
z:‖z‖2=1

rn∑

i=1

(zi)>Gizi

= min
z:‖z‖2=1

rn∑

i=1

(zi)>B̂>ΠiB̂zi

≥ min
i∈[rn]

σmin(B̂>ΠiB̂)
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Note that the matrix B̂>ΠiB̂ can be written as follows:

B̂>ΠiB̂ =

m∑

j=1

1√
m

B̂>xji

(
1√
m

B̂>xji

)>
(36)

Let vji := 1√
m

B̂>xji for all i ∈ [rn] and j ∈ [m], and note that each vji is i.i.d. 1√
m

B̂-sub-gaussian. Thus using the
one-sided version of equation (4.22) (Theorem 4.6.1) in (Vershynin, 2018), we have

σmin(B̂>ΠiB̂) ≥ 1− C

(√
k

m
+

r√
m

)
(37)

with probability at least 1− e−r2 for m ≥ k and some absolute constant C. Choosing r such that δk = C

(√
k
m + r√

m

)

yields

σmin(B̂>ΠiB̂) ≥ 1− δk (38)

with probability at least 1− e−(δk
√
m/C−

√
k)2 for m > k. Now, letting δk =

12Ck3/2
√

log(rn)√
m

, we have that (38) holds with
probability at least

1− exp

(
−
(

12k3/2
√

log(rn)−
√
k
)2
)
≥ 1− exp

(
−k(12

√
k
√

log(rn)− 1)2
)

≥ 1− exp
(
121k3 log(rn)

)
(39)

Finally, taking a union bound over i ∈ [n] yields σmin(G) ≥ 1− δk with probability at least

1− rn exp
(
−121k3 log(rn)

)
≥ 1− e−110k3 log(rn), (40)

completing the proof.

Lemma 4. Let δk = c
k3/2
√

log(rn)√
m

for some absolute constant c, then

‖(GD−C)w∗‖2 ≤ δk‖W∗‖2 dist(B̂t, B̂∗)

with probability at least 1− e−111k2 log(rn).

Proof. For ease of notation we drop superscripts t. We define H = GD−C and

Hi := GiDi −Ci = B̂>ΠB̂B̂>B̂∗ − B̂>ΠB̂∗ = B̂>
(

1

m
X>i Xi

)
(B̂B̂> − Id)B̂

∗, (41)

for all i ∈ [rn]. Then we have

‖(GD−C)w∗‖22 =

rn∑

i=1

‖Hiwi
∗‖22

≤
rn∑

i=1

‖Hi‖22‖w∗i ‖22

≤ k

rn
‖W∗‖22

rn∑

i=1

‖Hi‖22 (42)

where the last inequality follows almost surely from Assumption 3 (the 1-row-wise incoherence of W∗) and the fact that
krn = ‖W∗‖2F ≤ k‖W∗‖22 by Assumption 3 and the fact that W∗ has rank k. It remains to bound 1

rn

∑rn
i=1 ‖Hi‖22.

Although ‖Hi‖2 is sub-exponential, as we will show, ‖Hi‖22 is not sub-exponential, so we cannot directly apply standard
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concentration results. Instead, we compute a tail bound for each ‖Hi‖22 individually, then then union bound over i ∈ [rn].
Let U := 1√

m
Xi(B̂B̂> − Id)B̂

∗, then the j-th row of U is given by

uj =
1√
m

B̂∗
>

(B̂B̂> − Id)x
j
i ,

and is 1√
m

B̂∗
>

(B̂B̂> − Id)-sub-gaussian. Likewise, define V := 1√
m

XiB̂, then the j-th row of V is

vj =
1√
m

B̂>xji ,

therefore is 1√
m

B̂-sub-gaussian. We leverage the sub-gaussianity of the rows of U and V to make a similar concentration
argument as in Proposition 4.4.5 in (Vershynin, 2018). First, let Sk−1 denote the unit sphere in k dimensions, and let Nk be
a 1

4 -th net of cardinality |Nk| ≤ 9k, which exists by Corollary 4.2.13 in (Vershynin, 2018). Next, using equation 4.13 in
(Vershynin, 2018), we obtain

‖(B̂∗)>(B̂B̂> − Id)X
>
i XiB‖2 =

∥∥U>V
∥∥

2
≤ 2 max

z,y∈Nk

z>
(
U>V

)
y

= 2 max
z,y∈Nk

z>




m∑

j=1

ujv
>
j


y

= 2 max
z,y∈Nk

m∑

j=1

〈z,uj〉〈vj ,y〉

By definition of sub-gaussianity, 〈z,uj〉 and 〈vj ,y〉 are sub-gaussian with norms 1√
m
‖B̂∗>(B̂B̂> − Id)‖2 =

1√
m

dist(B̂, B̂∗) and 1√
m
‖B̂‖2 = 1√

m
, respectively. Thus for all j ∈ [m], 〈z,uj〉〈vj , z〉 is sub-exponential with

norm c
mdist(B̂, B̂∗) for some absolute constant c. Note that for any j ∈ [m] and any z, E[〈z,uj〉〈vj ,y〉] =

z>((B̂∗)>(B̂B̂> − Id)B)y = 0. Thus we have a sum of m mean-zero, independent sub-exponential random variables. We
can now use Bernstein’s inequality to obtain, for any fixed z,y ∈ Nk,

P




m∑

j=1

〈z,uj〉〈vj ,y〉 ≥ s


 ≤ exp

(
−c′mmin

(
s2

dist2(B̂, B̂∗)
,

s

dist(B̂, B̂∗)

))
(43)

Now union bound over all z,y ∈ Nk to obtain

P
(

1

m
‖(B̂∗)>(B̂B̂> − Id)X

>
i XiB̂‖2 ≥ 2s

)
≤ 92k exp

(
−c′mmin(s2/dist2(B̂, B̂∗), s/dist(B̂, B̂∗))

)
(44)

Let s
dist(B̂,B̂∗)

= max(ε, ε2) for some ε > 0, then it follows that min(s2/dist2(B̂, B̂∗), s/dist(B̂, B̂∗)) = ε2. So we have

P
(

1

m
‖(B̂∗)>(B̂B̂> − Id)X

>
i XiB̂‖2 ≥ 2dist(B̂, B̂∗) max(ε, ε2)

)
≤ 92ke−c

′mε2 (45)

Moreover, letting ε2 = ck2 log(rn)
4m for some constant c, and m ≥ ck2 log(rn), we have

P

(
1

m
‖(B̂∗)>(B̂B̂> − Id)X

>
i XiB̂‖2 ≥ dist(B̂, B̂∗)

√
ck2 log(rn)

m

)
≤ 92ke−c1k

2 log(rn)

≤ e−111k2 log(rn) (46)

for large enough constant c1. Thus, noting that ‖Hi‖22 = ‖ 1
m (B̂∗)>(B̂B̂> − Id)X

>
i XiB̂‖22, we obtain

P
(
‖Hi‖22 ≥ cdist2(B̂, B̂∗)

k2 log(rn)

m

)
≤ e−111k2 log(rn) (47)
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Thus, using (42), we have

P
(
‖(GD−C)w∗‖22 ≥ c‖W∗‖22 dist2(B̂, B̂∗)

k3 log(rn)

m

)

≤ P

(
k

rn
‖W∗‖22

rn∑

i=1

‖Hi‖22 ≥ c‖W∗‖22 dist2(B̂, B̂∗)
k3 log(rn)

m

)

= P

(
1

rn

rn∑

i=1

‖Hi‖22 ≥ cdist2(B̂, B̂∗)
k2 log(rn)

m

)

≤ rnP
(
‖H1‖22 ≥ cdist2(B̂, B̂∗)

k2 log(rn)

m

)

≤ e−110k2 log(rn)

completing the proof.

Lemma 5. Let δk =
ck3/2
√

log(rn)√
m

, then

‖F‖F ≤
δk

1− δk
‖W∗‖2 dist(B̂t, B̂∗) (48)

with probability at least 1− e−110‘k2 log(n).

Proof. By the definition of F and the Cauchy-Schwarz inequality, we have ‖F‖F = ‖G−1(GD − C)w̃∗‖2 ≤
‖G−1‖2‖(GD − C)w̃∗‖2. Combining the bound on ‖G−1‖2 from Lemma 3 and the bound on ‖(GD − C)w̃∗‖2
from Lemma 4 via a union bound yields the result.

We next focus on showing concentration of the operator 1
mA

†A to the identity operator.

Lemma 6. Let δ′k = ck
√
d√

rnm
for some absolute constant c. Then for any t, if δ′k ≤ k,

1

rn

∥∥∥∥∥

(
1

m
A∗A(Qt)−Qt

)>
Wt+1

∥∥∥∥∥
2

≤ δ′k dist(B̂t, B̂∗) (49)

with probability at least 1− e−110d − e−110k2 log(rn).

Proof. We drop superscripts t for simplicity. We first bound the norms of the rows of Q and W. Let qi ∈ Rd be the i-th
row of Q and let wi ∈ Rk be the i-th row of W. Recall the computation of W from Lemma 2:

W = W∗B̂
>
∗ B̂− F =⇒ w>i = (ŵ∗i )

>B̂>∗ B̂− f>i

Thus

‖qi‖22 = ‖B̂B̂>B̂∗ŵ∗i − B̂fi − B̂∗ŵ∗i ‖22
= ‖(B̂B̂> − Id)B̂

∗ŵ∗i − B̂fi‖22
≤ 2‖(B̂B̂> − Id)B̂

∗ŵ∗i ‖22 + 2‖B̂fi‖22
≤ 2‖(B̂B̂> − Id)B̂

∗‖22‖ŵ∗i ‖22 + 2‖fi‖22
= 2kdist2(B̂, B̂∗) + 2‖fi‖22 (50)
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Also recall that vec(F) = G−1(GD−C)ŵ∗ from Lemma 2. From equation (35), the i-th row of F is given by:

fi = (Gi)−1(GiDi −Ci)w∗i

Thus, using the Cauchy-Schwarz inequality and our previous bounds,

‖fi‖22 ≤ ‖(Gi)−1‖22 ‖GiDi −Ci‖22 ‖w∗i ‖22
≤ ‖(Gi)−1‖22 ‖GiDi −Ci‖22 k (51)

where (51) follows by Assumption 3. From (47), we have that

P
(
‖GiDi −Ci‖22 ≥ δ2

k dist2(B̂, B̂∗)
)
≤ e−112k2 log(rn)

where δk is defined in 3. Similarly, from equations (38) and (39), we have that

P
(
‖(Gi)−1‖22 ≥

1

(1− δk)2

)
≤ e−121k3 log(rn) (52)

Now plugging this back into (51) and assuming δk ≤ 1
2 , we obtain

‖qi‖22 ≤ 2k dist2(B̂, B̂∗)

(
1 +

δ2
k

(1− δk)2

)
≤ 4k dist2(B̂, B̂∗) (53)

with probability at least 1− e−111k2 log(rn). Likewise, to upper bound ‖wi‖2 we have

‖wi‖22 ≤ 2‖B̂>B̂∗w∗i ‖22 + 2‖fi‖22
≤ 2‖B̂>B̂∗‖22‖w∗i ‖22 + 2‖fi‖22

≤ 2k + 2
δ2
k

(1− δk)2
dist2(B̂, B̂∗)k (54)

≤ 4k (55)

where (54) holds with probability at least 1 − e−111k2 log(rn) conditioning on the same event as in (53), and
(55) holds almost surely as long as δk ≤ 1/2. For the rest of the proof we condition on the event E :=

∩rni=1

{
‖qi‖22 ≤ 4k dist2(B̂, B̂∗) ∩ ‖wi‖22 ≤ 4k

}
, which holds with probability at least 1 − e−110k2 log(rn) by a union

bound over i ∈ [rn]. Observe that the matrix 1
mA

∗A(Q)−Q can be re-written as

1

m
A∗A(Q)−Q =

1

m

rn∑

i=1

m∑

j=1

(
〈ei(xji )

>,Q〉 ei(x
j
i )
> −Q

)

=
1

m

rn∑

i=1

m∑

j=1

〈xji ,qi〉 ei(x
j
i )
> −Q (56)

Multiplying the transpose by 1
rnW yields

1

rn

(
1

m
A∗A(Q)−Q

)>
W =

1

rnm

n∑

i=1

m∑

j=1

(
〈xji , qi〉 xji (wi)

> − qi(wi)
>
)

(57)

where we have used the fact that (Q)>W =
∑n
i=1 qi(wi)

>. We will argue similarly as in Proposition 4.4.5 in (Vershynin,
2018) to bound the spectral norm of the d-by-k matrix in the RHS of (57).

First, let Sd−1 and Sk−1 denote the unit spheres in d and k dimensions, respectively. Construct 1
4 -nets Nd and Nk over

Sd−1 and Sk−1, respectively, such that |Nd| ≤ 9d and |Nk| ≤ 9k (which is possible by Corollary 4.2.13 in (Vershynin,
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2018)). Then, using equation 4.13 in (Vershynin, 2018), we have

∥∥∥∥∥∥
1

rnm

rn∑

i=1

m∑

j=1

(
〈xji ,qi〉 xji (wi)

> − qi(wi)
>
)
∥∥∥∥∥∥

2

2

≤ 2 max
u∈Nd,v∈Nk

u>




rn∑

i=1

m∑

j=1

(
1

rnm
〈xji ,qi〉 xji (wi)

> − 1

rnm
qi(wi)

>
)
v

= 2 max
u∈Nd,v∈Nk

rn∑

i=1

m∑

j=1

(
1

rnm
〈xji ,qi〉〈u,x

j
i 〉〈wi,v〉 −

1

rnm
〈u,qi〉〈wi,v〉

)
(58)

By the Id-sub-gaussianity of xji , the inner product 〈u,xji 〉 is sub-gaussian with norm at most c‖u‖2 = c for some absolute
constant c for any fixed u ∈ Nd. Similarly, 〈xji ,qi〉 is sub-gaussian with norm at most ‖qi‖2 ≤ 2c

√
k dist(B̂, B̂∗) using

(53). Further, since the sub-exponential norm of the product of two sub-gaussian random variables is at most the product of
the sub-gaussian norms of the two random variables (Lemma 2.7.7 in (Vershynin, 2018)), we have that 〈xji ,qi〉〈u,x

j
i 〉 is

sub-exponential with norm at most 2c2
√
k dist(B̂, B̂∗). Further, 1

rnm 〈x
j
i ,qi〉〈u,x

j
i 〉〈wi,v〉 is sub-exponential with norm

at most
2c2
√
k

rnm
dist(B̂, B̂∗)〈wi,v〉 ≤

2c2
√
k

rnm
dist(B̂, B̂∗)‖wi‖2 ≤

c1k

rnm
dist(B̂, B̂∗).

Finally, note that E[ 1
rnm 〈x

j
i ,qi〉〈u,x

j
i 〉〈wi,v〉 − 1

rnm 〈u,qi〉〈wi,v〉] = 0. Thus, we have a sum of rnm independent,
mean zero sub-exponential random variables, so we apply Bernstein’s inequality.

P




rn∑

i=1

m∑

j=1

(
1

rnm
〈xji ,qi〉〈u,x

j
i 〉〈wi,v〉 −

1

rnm
〈u,qi〉〈wi,v〉

)
≥ s




≤ exp

(
−c1rnmmin

(
s2

k2 dist2(B̂, B̂∗)
,

s

kdist(B̂, B̂∗)

))

Union bounding over all u ∈ Nd and v ∈ Nk, we obtain

P

(∥∥∥∥∥
1

rn

(
1

m
A∗A(Q)−Q

)>
W

∥∥∥∥∥
2

≥ 2s
∣∣∣ E
)
≤ 9d+k exp

(
−c1rnmmin

(
s2

k2 dist2(B̂, B̂∗)
,

s

kdist(B̂, B̂∗)

))

Let s
k dist(B̂,B̂∗)

= max (ε, ε2) for some ε > 0, then ε2 = min
(

s2

k2 dist2(B̂,B̂∗)
, s
k dist(B̂,B̂∗)

)
. Further, let ε2 = 112(d+k)

c1rnm
, then

as long as ε2 ≤ 1, we have

P

(∥∥∥∥∥
1

rn

(
1

m
A∗A(Q)−Q

)>
W

∥∥∥∥∥
2

≥ c2k dist(B̂, B̂∗)
√
d/(rnm)

∣∣∣ Ec
)
≤ e−110(d+k) ≤ e−110d.

Finally, we use P (A | Ec) ≤ P (A | Ec)+P(Ec), whereA :=
{∥∥∥ 1

rn

(
1
mA

∗A(Q)−Q
)>

W
∥∥∥

2
≥ c2k dist(B̂, B̂∗)

√
d/(rnm)

}
,

to complete the proof.

B.3. Main Result

Now we are ready to show Theorem 1, which follows immediately from the following descent lemma.

Lemma 7. Define E0 := 1 − dist2(B̂0, B̂∗) and σ̄max,∗ := maxI∈[n],|I|=rn σmax( 1√
rn

W∗
I) and σ̄min,∗ :=

minI∈[n],|I|=rn σmin( 1√
rn

W∗
I), i.e. the maximum and minimum singular values of any matrix that can be obtained

by taking rn rows of 1√
rn

W∗.
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Suppose that m ≥ c(κ4k3 log(rn)/E2
0 + κ4k2d/(E2

0rn)) for some absolute constant c. Then for any t and any η ≤
1/(4σ̄2

max,∗), we have

dist(B̂t+1, B̂∗) ≤
(
1− ηE0σ̄

2
min,∗/2

)1/2
dist(B̂t, B̂∗),

with probability at least 1− e−100 min(k2 log(rn),d).

Proof. Recall that Wt+1 ∈ Rrn×k and Bt+1 ∈ Rd×k are computed as follows:

Wt+1 = argmin
W∈Rrn×k

1

2rnm
‖A(W∗B̂∗

>
−WB̂t>)‖22 (59)

Bt+1 = B̂t − η

rnm

(
A†A(Wt+1B̂t> −W∗B̂∗

>
)
)>

Wt+1 (60)

Let Qt = Wt+1B̂t> −W∗B̂∗
>

. We have

Bt+1 = B̂t − η

rnm

(
A†A(Qt)

)>
Wt+1

= B̂t − η

rn
Qt>Wt+1 − η

rn

(
1

m
A†A(Qt)−Qt

)>
Wt+1 (61)

Now, multiply both sides by B̂∗
>

⊥ to obtain

B̂∗
>

⊥ Bt+1 = B̂∗
>

⊥ B̂t − η

rn
B̂∗
>

⊥ Qt>Wt+1 − η

rn
B̂∗
>

⊥

(
1

m
A†A(Qt)−Qt

)>
Wt+1

= B̂∗
>

⊥ B̂t(Ik −
η

rn
Wt+1>Wt+1)− η

rn
B̂∗
>

⊥

(
1

m
A†A(Qt)−Qt

)>
Wt+1 (62)

where the second equality follows because B̂∗
>

⊥ Qt> = B̂∗
>

⊥ B̂tWt+1> − B̂∗
>

⊥ B̂∗W∗> = B̂∗
>

⊥ B̂tWt+1> . Then, writing
the QR decomposition of Bt+1 as Bt+1 = B̂t+1Rt+1 and multiplying both sides of (62) from the right by (Rt+1)−1 yields

B̂∗
>

⊥ B̂t+1 =

(
B̂∗
>

⊥ B̂t(Ik −
η

rn
(Wt+1)>Wt+1)− η

rn
B̂∗
>

⊥

(
1

m
A†A(Qt)−Qt

)>
Wt+1

)
(Rt+1)−1 (63)

Hence,

dist(B̂t+1, B̂∗)

=

∥∥∥∥∥

(
B̂∗
>

⊥ B̂t(Ik −
η

rn
(Wt+1)>Wt+1)− η

rn
B̂∗
>

⊥

(
1

m
A†A(Qt)−Qt

)>
Wt+1

)
(Rt+1)−1

∥∥∥∥∥
2

≤
∥∥∥B̂∗>⊥ B̂t(Ik −

η

rn
(Wt+1)>Wt+1)

∥∥∥
2

∥∥(Rt+1)−1
∥∥

2

+
η

rn

∥∥∥∥∥B̂
∗>
⊥

(
1

m
A†A(Qt)−Qt

)>
Wt+1

∥∥∥∥∥
2

∥∥(Rt+1)−1
∥∥

2
(64)

=: A1 +A2. (65)

where (64) follows by applying the triangle and Cauchy-Schwarz inequalities. We have thus split the upper bound on
dist(Bt+1, B̂∗) into two terms, A1 and A2. The second term, A2, is small due to the concentration of 1

mA
†A to the identity

operator, and the first term is strictly smaller than dist(B̂t, B̂∗). We start by controlling A2:

A2 =
η

rn

∥∥∥∥∥B̂
∗>
⊥

(
1

m
A†A(Qt)−Qt

)>
Wt+1

∥∥∥∥∥
2

∥∥(Rt+1)−1
∥∥

2

≤ η

rn

∥∥∥∥∥

(
1

m
A†A(Qt)−Qt

)>
Wt+1

∥∥∥∥∥
2

∥∥(Rt+1)−1
∥∥

2
(66)

≤ ηδ′k dist(B̂t, B̂∗) ‖(Rt+1)−1‖2 (67)
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where (66) follows almost surely by Cauchy-Schwarz and the fact that B̂∗⊥ is normalized, and (67) follows with probability
at least 1− e−110d by Lemma 6. Next we control A1:

A1 =
∥∥∥B̂∗>⊥ B̂t(Ik −

η

rn
(Wt+1)>Wt+1)

∥∥∥
2
‖(Rt+1)−1‖2

≤ ‖B̂∗
>

⊥ B̂t‖2
∥∥∥I− η

rn
(Wt+1)>Wt+1

∥∥∥
2
‖(Rt+1)−1‖2

= dist(B̂t, B̂∗)
∥∥∥Ik −

η

rn
(Wt+1)>Wt+1

∥∥∥
2
‖(Rt+1)−1‖2 (68)

The middle factor gives us contraction. To see this, recall that Wt+1 = W∗B̂∗
>

B̂t − F where F is defined in Lemma 2.
By Lemma 5, we have that

‖F‖2 ≤
δk

1− δk
‖W∗‖2 dist(B̂t, B̂∗) (69)

with probability at least 1− e−110k2 log(rn), which we will use throughout the proof. Conditioning on this event, we have

λmax

(
(Wt+1)>Wt+1

)
= ‖W∗B̂∗

>
B̂t − F‖22

≤ 2‖W∗B̂∗
>

B̂t‖22 + 2‖F‖22

≤ 2‖W∗‖22 + 2
δ2
k

(1− δk)2
‖W∗‖22 dist2(B̂t, B̂∗)

≤ 4‖W∗‖22 (70)

where (70) follows under the assumption that δk ≤ 1/2. Thus, as long as η ≤ 1/(4σ̄2
max,∗), we have by Weyl’s Inequality:

‖Ik −
η

rn
(Wt+1)>Wt+1‖2

≤ 1− η

rn
λmin((Wt+1)>Wt+1) (71)

= 1− η

rn
λmin((W∗B̂∗

>
B̂t − F)>(W∗B̂∗

>
B̂t − F))

≤ 1− η

rn
σ2

min(W∗(B̂∗)>B̂t) +
2η

rn
σmax(F>W∗(B̂∗)>B̂t)− η

rn
σ2

min(F) (72)

≤ 1− η

rn
σ2

min(W∗)σ2
min((B̂∗)>B̂t) +

2η

rn
‖F‖2 ‖W∗(B̂∗)>B̂t‖2 (73)

≤ 1− η

rn
σ2

min(W∗)σ2
min((B̂∗)>B̂t) +

2η

rn

δk
1− δk

‖W∗‖22 (74)

= 1− ησ̄2
min,∗σ

2
min((B̂∗)>B̂t) + 2η

δk
1− δk

σ̄2
max,∗ (75)

where (72) follows by again applying Weyl’s inequality, under the condition that
2σmax(F>W∗(B̂∗)>B̂t) ≤ σ2

min(W∗)σ2
min((B̂∗)>B̂t), which we will enforce to be true (otherwise we would not have

contraction). Also, (73) follows by the Cauchy-Schwarz inequality, and we use Lemma 5 to obtain (74). Lastly, (75) follows
by the definitions of σ̄min,∗ and σ̄max,∗. In order to lower bound σ2

min((B̂∗)>B̂t), note that

σ2
min((B̂∗)>B̂t) ≥ 1− ‖(B̂∗⊥)>B̂t‖22 = 1− dist2(B̂t, B̂∗) ≥ 1− dist2(B̂0, B̂∗) =: E0 (76)

As a result, defining δ̄k := δk + δ′k and combining (64), (67), (68), (75), and (76) yields

dist(B̂t, B̂∗) ≤ ‖(Rt+1)−1‖2 (1− ησ̄2
min,∗E0 + 2η

δk
1− δk

σ̄2
max,∗ + ηδ′k) dist(B̂t,B∗)

≤ ‖(Rt+1)−1‖2 (1− ησ̄2
min,∗E0 + 2η

δ̄k
1− δ̄k

σ̄2
max,∗) dist(B̂t,B∗) (77)
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where (77) follows from the fact that krn = ‖W∗‖2F ≤ k‖W∗‖22 =⇒ 1 ≤ ‖W∗‖22/rn ≤ σ̄2
max,∗. All that remains to

bound is ‖(Rt+1)−1‖2. Define St := 1
mA

†A(Qt) and observe that

(Rt+1)>Rt+1 = (Bt+1)>Bt+1

= B̂t>B̂t − η

rn
(B̂t>St

>
Wt+1 + (Wt+1)>StB̂t) +

η2

(rn)2
(Wt+1)>StSt

>
Wt+1

= Ik −
η

rn
(B̂t>St

>
Wt+1 + (Wt+1)>StB̂t) +

η2

(rn)2
(Wt+1)>StSt

>
Wt+1 (78)

thus, by Weyl’s Inequality, we have

σ2
min(Rt+1) ≥ 1− η

rn
λmax(B̂t>St

>
Wt+1 + (Wt+1)>StB̂t) +

η2

(rn)2
λmin((Wt+1)>StSt

>
Wt+1)

≥ 1− η

rn
λmax(B̂t>St

>
Wt+1 + (Wt+1)>StB̂t) (79)

where (79) follows because (Wt+1)>StSt
>

Wt+1 is positive semi-definite. Next, note that

η

rn
λmax(B̂t>St

>
Wt+1 + (Wt+1)>StB̂t)

= max
x:‖x‖2=1

η

rn
x>B̂t>(St)>Wt+1x + x>(Wt+1)>StB̂tx

= max
x:‖x‖2=1

2η

rn
x>(Wt+1)>StB̂tx

= max
x:‖x‖2=1

2η

rn
x>(Wt+1)>

(
1

m
A†A(Qt)−Qt

)
B̂tx +

2η

rn
x>(Wt+1)>QtB̂tx (80)

We first consider the first term. We have

max
x:‖x‖2=1

2η

rn
x>(Wt+1)>

(
1

m
A†A(Qt)−Qt

)
B̂tx ≤ 2η

rn

∥∥∥∥(Wt+1)>
(

1

m
A†A(Qt)−Qt

)∥∥∥∥
2

∥∥∥B̂t
∥∥∥

2
≤ 2ηδ′k (81)

where the last inequality follows with probability at least 1− e−110d − e−110k2 log(rn) from Lemma 6. Next we turn to the
second term in (80). We have

max
x:‖x‖2=1

2η

rn
x>(Wt+1)>QtB̂tx = max

x:‖x‖2=1

2η

rn

〈
Qt,Wt+1xx>B̂t>

〉

= max
x:‖x‖2=1

2η

rn
〈Qt,W∗B̂∗

>
B̂txx>B̂t>〉 − 2η

rn
〈Qt,Fxx>B̂t>〉 (82)
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For any x ∈ Rk : ‖x‖2 = 1, we have

2η

rn
〈Qt,W∗(B̂∗)>B̂txx>B̂t>〉

=
2η

rn
tr((B̂t(Wt+1)> − B̂∗(W∗)>)W∗B̂∗

>
B̂txx>B̂t>)

=
2η

rn
tr((B̂tB̂t>B̂∗W∗> − B̂tF> − B̂∗W∗>)W∗B̂∗

>
B̂txx>B̂t>)

=
2η

rn
tr((B̂tB̂t> − I)B̂∗

>
W∗>W∗B̂∗

>
B̂txx>B̂t>)− 2η

rn
tr(B̂tF>W∗B̂∗

>
B̂txx>B̂t>)

=
2η

rn
tr(B̂t

⊥B̂∗
>

W∗>W∗B̂∗
>

B̂txx>B̂t>)− 2η

rn
tr(B̂tF>W∗B̂∗

>
B̂txx>B̂t>)

=
2η

rn
tr(B̂∗

>
W∗>W∗B̂∗

>
B̂txx>B̂t>B̂t

⊥)− 2η

rn
tr(B̂tF>W∗B̂∗

>
B̂txx>B̂t>)

= −2η

rn
tr(F>W∗B̂∗

>
B̂txx>B̂t>B̂t) (83)

= −2η

rn
tr(F>W∗B̂∗

>
B̂txx>) (84)

≤ 2η

rn
‖F‖F ‖W∗B̂∗

>
B̂txx>‖F (85)

≤ 2η

rn
‖F‖F ‖W∗‖2‖B̂∗

>
‖2‖B̂t‖2‖xx>‖F (86)

≤ 2η

rn
‖F‖F ‖W∗‖2 (87)

≤ 2η
δk

1− δk
σ̄2

max,∗ (88)

where (83) follows since B̂t>B̂t
⊥ = 0, (84) follows since B̂t>B̂t = Ik, (85) and (86) follow by the Cauchy-Schwarz

inequality, (87) follows by the orthonormality of B̂t and B̂∗ and (88) follows by Lemma 5 and the definition of σ̄max,∗.
Next, again for any x ∈ Rk : ‖x‖2 = 1,

−2η

rn
〈Qt,Fxx>B̂t>〉 = −2η

rn
tr((B̂tB̂t>B̂∗W∗> − B̂tF> − B̂∗W∗>)Fxx>B̂t>)

= −2η

rn
tr((B̂tB̂t> − Id)B̂

∗W∗>Fxx>B̂t>) +
2η

rn
tr(Fxx>B̂t>B̂tF>)

= −2η

rn
tr(B̂∗W∗>Fxx>B̂t>Bt

⊥) +
2η

rn
x>F>Fx

=
2η

rn
x>F>Fx

≤ 2η

rn
‖F‖22

≤ 2η
δ2
k

(1− δk)2
σ̄2

max,∗ (89)

Thus, we have the following bound on the second term of (80):

max
x:‖x‖2=1

2η

rn
〈Qt,Wt+1xx>B̂t>〉 ≤ 2ησ̄2

max,∗

(
δk

1− δk
+

δ2
k

(1− δk)2

)
≤ 4η

δk
(1− δk)2

σ̄2
max,∗ (90)

since 0 ≥ δk ≤ 1 =⇒ δ2
k ≤ δk. Therefore, using (79), (80), (81) and (90), we have

σ2
min(Rt+1) ≥ 1− 2ηδ′k − 4η

δk
(1− δk)2

σ̄2
max,∗ ≥ 1− 4η

δ̄k
(1− δ̄k)2

σ̄2
max,∗ (91)

where δ̄k = δ′k + δk. This means that

‖(Rt+1)−1‖2 ≤
(

1− 4η
δ̄k

(1− δ̄k)2
σ̄2

max,∗

)−1/2

(92)
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Note that 1− 4η δ̄k
(1−δ̄k)2

σ̄2
max,∗ is strictly positive as long as δ̄k

(1−δ̄k)2
< 1, which we will verify shortly, due to our earlier

assumption that η ≤ 1/(4σ̄2
max,∗). Therefore, from (77), we have

dist(B̂t, B̂∗) ≤ 1√
1− 4η δ̄k

(1−δ̄k)2
σ̄2

max,∗

(
1− ησ̄2

min,∗E0 + 2η
δ̄k

(1− δ̄k)2
σ̄2

max,∗

)
dist(B̂t, B̂∗)

Next, let δ̄k < 16E0/(25 · 5κ2). This implies that δ̄k < 1/5. Then δ̄k/(1− δ̄k)2 < 25δ̄k/16 ≤ E0/(5κ
2) ≤ 1, validating

(92). Further, it is easily seen that

1− ηE0σ̄
2
min,∗ + η

δ̄k
(1− δ̄k)2

σ̄2
max,∗ ≤ 1− 4η

δ̄k
(1− δ̄k)2

σ̄2
max

≤ 1− ηE0σ̄
2
min,∗/2 (93)

Thus

dist(B̂t, B̂∗) ≤
(
1− ηE0σ̄

2
min,∗/2

)1/2
dist(B̂t, B̂∗).

Finally, recall that δ̄k = δk + δ′k = c

(
k3/2
√

log(rn)√
m

+ k
√
d√

rnm

)
for some absolute constant c. Choosing m ≥

c′(κ4k3 log(rn)/E2
0 + κ4k2d/(E2

0rn)) for another absolute constant c′ satisfies δ̄k ≤ 16E0/(25 · 5κ2). Also, we have
conditioned on two events, described in Lemmas 5 and 6, which occur with probability at least 1−e−110d−e−110k2 log(rn) ≥
1− e−100 min(k2 log(rn),d), completing the proof.

Finally, Theorem 1 follows by recursively applying Lemma 7 and taking a union bound over all t ∈ [T ].

B.4. Initialization

As mentioned in the main body, our interpretation of Theorem 1 assumes that the initial distance is bounded above by a
constant less than one, i.e., E0 is bounded below by a constant greater than zero. We can achieve such an initialization
without increasing the overall sample complexity via the Method-of-Moments algorithm, ignoring log factors. To show this,
we adapt a result from (Tripuraneni et al., 2020).

Theorem 2 (Theorem 3, (Tripuraneni et al., 2020)). Suppose that each client i ∈ [n] sends the server Zi :=
1
m

∑m
j=1(y0,j

i )2x0,j
i (x0,j

i )> and the server computes ÛDÛ> ← rank-k SVD( 1
n

∑n
i=1 Zi) and sets B0 = Û. Then, if

m ≥ cpolylog(d,mn)kd/(σ4
min,∗n),

dist
(
B, B̂∗

)
≤ Õ

(
kd

σ4
min,∗mn

)
(94)

with probability at least 1 − O((mn)−100) for some absolute constant c, where σmin,∗ := 1√
n
W∗ and Õ(·) hides log

factors.

The above result is a direct adaptation of Theorem 3 in (Tripuraneni et al., 2020) so we omit the proof. This result shows that
m = Ω̃( kd

σ4
min,∗n

) are required for proper initialization. Since κ & 1/σmin,∗, the overall sample complexity is not increased
up to log factors.

B.5. Proof Challenges

We next discuss two analytical challenges involved in proving Theorem 1.

(i) Row-wise sparse measurements. Recall that the measurement matrices At
i,j have non-zero elements only in the i-th row.

This property is beneficial in the sense that it allows for distributing the sensing computation across the n clients. However,
it also means that the operators { 1√

m
At}t do not satisfy Restricted Isometry Property (RIP), which therefore prevents us

from using standard RIP-based analysis. The RIP is defined as follows:
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Definition 4 (Restricted Isometry Property). An operator B : Rn×d → Rnm satisfies the k-RIP with parameter δk ∈ [0, 1)
if and only if

(1− δk)‖M‖2F ≤ ‖B(M)‖22 ≤ (1 + δk)‖M‖2F (95)

holds simultaneously for all M ∈ Rn×d of rank at most k.

Claim 1. Let A : Rrn×d → Rrnm such that A(M) = [〈ei(xji )>,M〉]1≤i≤rn,1≤j≤m, and let the samples xji be i.i.d.
sub-gaussian random vectors with mean 0d and covariance Id. Then if m ≤ d/2, with probability at least 1 − e−cd for
some absolute constant c, 1√

m
A does not satisfy 1-RIP for any constant δ1 ∈ [0, 1).

Proof. Let M = e1(x1
1)>. Then

‖ 1√
m
A(M)‖22 =

1

m

rn∑

i=1

m∑

j=1

〈ei(xji )
>, e1(x1

1)>〉2

=
1

m
‖x1

1‖42 +
1

m

m∑

j=2

〈xj1,x1
1〉2

≥ 1

m
‖x1

1‖42 (96)

Also observe that ‖M‖2F = ‖x1
1‖22. Therefore, we have

P




∥∥∥ 1√
m
A(M)

∥∥∥
2

2

‖M‖2F
≥ d

2m


 ≥ P

(
1
m

∥∥x1
1

∥∥4

2

‖x1
1‖

2
2

≥ d

2m

)

= P
(∥∥x1

1

∥∥2

2
≥ d

2

)

= 1− P
(
‖x1

1‖22 − d ≤
−d
2

)

≥ 1− e−cd (97)

where the last inequality follows for some absolute constant c by the sub-exponential property of ‖x1
1‖22 and the fact that

E[‖x1
1‖22] = d. Thus, with probability at least 1− e−cd,

∥∥∥ 1√
m
A(M)

∥∥∥
2

2
≥ d

2m ‖M‖
2
2, meaning that 1√

m
A does not satisfy

1-RIP with high probability if m ≤ d
2 .

Claim 1 shows that we cannot use the RIP to show O(d/(rn)) sample complexity for m - instead, this approach would
require m = Ω(d). Fortunately, we do not need concentration of the measurements for all rank-k matrices M, but only
a particular class of rank-k matrices that are row-wise incoherent. Leveraging the row-wise incoherence of the matrices
being measured allows us to show that we only require m = Ω(k3 log(rn) + k2d/(rn)) samples per user (ignoring
dimension-independent constants).

(ii) Non-symmetric updates. Existing analyses for nonconvex matrix sensing study algorithms with symmetric update
schemes for the factors W and B, either alternating minimization, e.g. (Jain et al., 2013), or alternating gradient descent,
e.g. (Tu et al., 2016). Here we show contraction due to the gradient descent step in principal angle distance, differing from
the standard result for gradient descent using Procrustes distance (Tu et al., 2016; Zheng & Lafferty, 2016; Park et al., 2018).
We combine aspects of both types of analysis in our proof.


