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A. Proof of Proposition 4.1
A particle filter with multinomial resampling is defined by the following joint distribution
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where ait−1 ∈ {1, ..., N} is the ancestral index of particle xit and

ωθ,φ(x1, y1) =
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qφ(x1)
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Finally, we have wit ∝ ωθ,φ(x
ait−1

t−1 , x
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t = 1. We do not emphasize notationally that the weights w

ait−1

t−1 are
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The ELBO is given by
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We now compute∇θ`ELBO(θ, φ). We assume from now on that the regularity conditions allowing us to swap the expectation
and differentiation operators are satisfied as in (Maddison et al., 2017; Le et al., 2018; Naesseth et al., 2018). We can split
the gradient using the product rule and apply the log-derivative trick:

∇θ`ELBO(θ, φ) =Eqθ,φ [∇θ log p̂θ(y1:T )] + Eqθ,φ
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For the first part of the ELBO gradient (17), we have
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This gives

∇θ`ELBO(θ, φ) = Eqθ,φ
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When we ignore the gradient terms due to resampling corresponding to (20) as proposed in (Naesseth et al., 2018; Le et al.,
2018; Maddison et al., 2017; Hirt & Dellaportas, 2019), we only use an unbiased estimate of the first term (19), i.e.

∇̂θ`ELBO(θ, φ) :=

N∑
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wi1∇θ log pθ(X
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Now we assume that the mild assumptions ensuring almost sure convergence of the PF estimates are satisfied (see e.g.
(Del Moral, 2004)). Under these assumptions, the estimator (21) converges almost surely as N →∞ towards∫

∇θ log pθ(x1, y1)pθ(x1|y1)dx1 +

T∑
t=2

∫
∇θ log pθ(xt, yt|xt−1)pθ(xt−1:t|y1:t−1)dxt−1:t. (22)

Under an additional uniform integrability condition on ∇̂θ`ELBO(θ, φ), we thus have that Eqθ,φ [∇̂θ`ELBO(θ, φ)] converges
towards (22). We recall that the true score is given by Fisher’s identity and satisfies∫

∇θ log pθ(x1, y1)pθ(x1|y1:T )dx1 +

T∑
t=2

∫
∇θ log pθ(xt, yt|xt−1)pθ(xt−1:t|y1:T )dxt−1:t.

This concludes the proof of Proposition 4.1.

B. Notation and Assumptions
B.1. Filtering Notation

Recall X = Rdx , denote the Borel sets of X by B(X ) and P(X ) the set of Borel probability measures on (X ,B(X )). In
an abuse of notation, we shall use the same notation for a probability measure and its density w.r.t. Lebesgue measure;
i.e. ν(dx) = ν(x)dx. We also use the standard notation ν(ψ) =

∫
ψ(x)ν(x)dx for any test function ψ. In the interest of

notational clarity, we will remove subscript θ, φ where unnecessary in further workings.

We denote {α(t)}t≥0 the predictive distributions where α(t)(xt) = p(xt|y1:t−1) for t > 1 and α(1)(x1) = µ(x1) while
{β(t)}t≥1 denotes the filtering distributions; i.e. β(t)(xt) = p(xt|y1:t) for t ≥ 1.

Using this notation, we have

α(t)(ψ) =

∫
ψ(xt)f(xt|xt−1)β(t−1)(xt−1)dxt−1dxt := β(t−1)f(ψ), (23)

β(t)(ψ) =
α(t)(g(yt|·)ψ)

α(t)(g(yt|·))
=
β(t−1)(f(g(yt|·)ψ))

β(t−1)(f(g(yt|·)))
. (24)

More generally, for a proposal distribution q(xt|xt−1, yt) 6= f(xt|xt−1) with parameter φ 6= θ, the following recursion
holds

β(t)(ψ) =
β(t−1)(q(ωt ψ))

β(t−1)(q(ωt))
(25)

ωt(xt−1, xt) := ω(xt−1, xt, yt) =
g(yt|xt)f(xt|xt−1)

q(xt|xt−1, yt)
. (26)

To simplify the presentation, we will present the analysis in the scenario where φ = θ and q(xt|xt−1, yt) = f(xt|xt−1) so
we will analyze (23) for which ωt(xt−1, xt) = g(yt|xt). In this case, the particle approximations of µ is denoted µN and
for t > 1, α(t) and β(t) are given by the random measures

α
(t)
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where wit ∝ g(yt|Xi
t) with

∑N
i=1 w

i
t = 1 and particles are drawn from Xi

t ∼ f(·|X̃i
t−1).

Here β(t)
N denotes the weighted particle approximation of β(t) while β̃(t)

N is the uniformly weighted approximation obtained
after the DET transformation described in Section 3.2.
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B.2. Optimal Transport Notation

Recall from Section 2.1, POT
t denotes a transport between α(t) and β(t) with accompanying map T(t). POT,N

t denotes an
optimal transport between particle approximations α(t)

N and β(t)
N with corresponding transport matrix, POT with i, j entry

pOT
i,j . To simplify notation, we remove script t when not needed.

Similarly from Section 3.1, POT,N
ε denotes the regularized transport between α(t)

N and β(t)
N with accompanying matrix

POT
ε with i, j entry pOT

ε,i,j . Recall β̃(t)
N = 1

N

∑N
i=1 δX̃i is the uniformly weighted particle approximation for β(t) under the

DET, i.e. X̃i = T
(t)
N,ε(X

i) =
∫
yPOT,N

ε (dy|xi). Note that X̃i
N,ε will be used where necessary to avoid ambiguity when

comparing to other resampling schemes.

Recall also for p > 0:

Wp
p (α, β) = min

P∈U(α,β)
E(U,V )∼P

[
||U − V ||p

]
(28)

where U(α, β) is the collection of couplings with marginals α and β.

B.3. Assumptions

Our results will rely on the following four assumptions.
Assumption B.1. X ⊂ Rd is a compact subset with diameter

d := sup
x,y∈X

|x− y|.

Assumption B.2. There exists κ ∈ (0, 1) such that for any two probability measures π, ρ on X

Wk(πf, ρf) ≤ κWk(π, ρ), k = 1, 2.

Assumption B.3. The weight function ω(t) : X → [∆,∆−1] is 1-Lipschitz for all t.

Assumption B.4. There exists a λ > 0, such that for all t ≥ 0 the unique optimal transport plan between α(t) and β(t) is
given by a deterministic, λ-Lipschitz map T(t).

C. Auxiliary Results and Proof of Proposition 4.2
We start by establishing a couple of key auxiliary results which will be then used subsequently to establish Proposition 4.2.

C.1. Auxiliary Results

As per section 2.1, let S(αN , βN ) denote the collection of coupling matrices between αN =
∑N
i=1 aiδY i with ai > 0 and

βN =
∑N
i=1 biδXi . We also denote entropy by H where H(P) =

∑
i,j pi,j log(1/pi,j) for P = (pi,j)i,j ∈ S(αN , βN ).

Lemma C.1. The entropic radius, RH , of simplex U(αN , βN ) may be bounded above as follows

RH := max
P1,P2∈S(αN ,βN )

H(P1)−H(P2) ≤ 2 log(N)

Proof. Notice that −H(P) is convex, so that H(P) is concave.∑
i,j

pi,j log

(
1

pi,j

)
= N2

∑
i,j

1

N2
pi,j log

(
1

pi,j

)

≤ N2H

 1

N2

∑
i,j

pi,j

 = N2H(1/N2) = N2 1

N2
log
(
N2
)

= 2 log(N).
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In addition since pi,j ≤ 1 for all i, j, we have that H(P) ≥ 0 and therefore we can bound

RH = max
P1,P2∈P

H(P1)−H(P2) ≤ max
P1∈S(αN ,βN )

H(P1) ≤ 2 log(N).

Lemma C.2. Let X ⊂ Rd be compact with diameter d > 0. Suppose we are given two probability measures α, β on X with
a unique deterministic, λ-Lipschitz optimal transport map T while αN =

∑N
i=1 aiδY i with ai > 0 and βN =

∑N
i=1 biδXi .

We write POT,N , resp. POT,N
ε , for an optimal coupling between αN and βN , resp. the ε-regularized optimal transport plan,

between αN and βN . Then

[∫
||y −T(x)||2POT,N

ε (dx, dy)

] 1
2

≤ 2λ1/2E1/2
[
d1/2 + E

]1/2
+ max{λ, 1} [W2(αN , α) +W2(βN , β)] ,

where

E := E(N, ε, α, β) :=W2(αN , α) +W2(βN , β) +
√

2ε log(N).

Proof. From Corollary 3.8 from (Li & Nochetto, 2021)[∫
‖T(x)− y‖2POT,N

ε (dx, dy)

]1/2
≤ 2λ1/2

√
ẽN,ε [W2(α, β) + ẽN,ε]

1/2
+ λW2(αN , α) +W2(βN , β),

where λ is the Lipschitz constant of the optimal transport map T sending α to β, and

ẽN,ε :=W2(αN , α) +W2(βN , β) +

[∫
‖x− y‖2POT,N

ε (dx, dy)

]1/2
−W2(αN , βN ). (29)

From Proposition 4 of (Weed, 2018), ∑
i,j=1,...,N

pOT
ε,i,j |Yi −Xj |2 −W2

2 (αN , βN ) ≤ εRH ,

where RH is the entropic radius as defined in Lemma C.1.

By Lemma C.1 we therefore have that∫
‖x− y‖2POT,N

ε (dx, dy)−W2
2 (αN , βN ) ≤ 2ε log(N).

Since x 7→
√
x is sub-additive, for r, s > 0 we have that

√
r −
√
s ≤
√
r − s, whence[∫

‖x− y‖2POT,N
ε (dx,dy)

]1/2
−W2(αN , βN ) ≤

√
2ε logN.

We thus have

ẽN,ε ≤ W2(αN , α) +W2(βN , β) +
√

2ε log(N).

In addition, by Assumption B.1 we have thatW2(α, β) ≤ d1/2 and the result follows.

C.2. Proof of Proposition 4.2

Proof of Proposition 4.2. By definition, we have β̃N (dx̃) =
∫
αN (dx)δTN,ε(x)(dx̃) with TN,ε(x) :=

∫
x̃POT,N

ε (dx̃|x)

while, asPOT,N
ε belongs to U(αN , βN ), we also have βN (dx̃) =

∫
αN (dx)POT,N

ε (dx̃|x). We then have for any 1-Lipschitz
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function ∣∣∣βN (ψ)− β̃N (ψ)
∣∣∣ =

∣∣∣∣∫ [∫ (ψ(x̃)− ψ(TN,ε(x)))POT,N
ε (dx̃|x)

]
αN (dx)

∣∣∣∣
≤
∫∫
|ψ(x̃)− ψ(TN,ε(x))|αN (dx)POT,N

ε (dx̃|x)

≤
∫∫
||x̃−TN,ε(x)||POT,N

ε (dx, dx̃)

≤
(∫∫

||x̃−TN,ε(x)||2POT,N
ε (dx, dx̃)

) 1
2

≤
(∫∫

||x̃−T(x)||2POT,N
ε (dx, dx̃)

) 1
2

,

where the final inequality follows from the fact that for any random vector V the mapping v 7→ E[‖V − v‖2] is minimized
at v = E[V ]. The stated result is then obtained using Lemma C.2.

D. Proof of Proposition 4.3
For technical reasons, we analyse here a slightly modified PF algorithm where

α
(t)
N =

1

N

N∑
j=1

δXjt
, Xj

t
i.i.d.∼ β̃

(t−1)
N f =

1

N

N∑
j=1

f
(
·
∣∣∣X̃j

t−1

)
. (30)

instead of the standard version where one has

α
(t)
N =

1

N

N∑
j=1

δXjt
, Xj

t ∼ f
(
·
∣∣∣X̃j

t−1

)
.

This slightly modified version of the bootstrap PF was analyzed for example in (Del Moral & Guionnet, 2001). The analysis
does capture the additional error arising from the use of DET instead of resampling. Similar results should hold for the
standard PF algorithm. The main technical reason for analysing this modified algorithm is our reliance on Theorem 2
of (Fournier & Guillin, 2015); analysing the standard PF algorithm requires a version of (Fournier & Guillin, 2015) for
stratified sampling and will be done in future work.

Proposition D.1. Suppose that Assumptions B.1, B.2 and B.3 hold. Suppose also that given β̃(t−1)
N , α(t)

N is defined through
(30). Define the functions

F(x) := x+
√
dK1(∆, d)x

fd(x) :=


x, d < 4

x
log(2+1/x) , d = 4

xd/2, d > 4.

FN,ε,δ,d (x) := F

(
κx+

√
f−1d

(
log(C/δ)

cN

))
,

1

d
G2
ε,δ,N,d(x) := 2λ1/2

[
FN,ε,δ,d (x) +

√
2ε logN

]1/2 [
d1/2 + FN,ε,δ,d (x) +

√
2ε logN

]1/2
+ λκFN,ε,δ,d (x) + max{λ, 1}FN,ε,δ,d (x) . (31)

Then for any ε, δ > 0 we have with probability at least 1− δ, over the sampling step in (30), that

W2

(
β̃
(t)
N , β(t)

)
≤ Gε,δ,N,d

[
W2

(
β̃
(t−1)
N , β(t−1)

)]
(32)

In particular ifW2(β̃
(t−1)
N , β(t−1))→ 0 and εN = o(1/ log(N)) as N →∞ we have that

W2

(
β̃
(t)
N , β(t)

)
→ 0,
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in probability.

Proof of Proposition D.1. To keep notation concise we write for N ≥ 1

αN := α
(t)
N , α′N := β̃

(t−1)
N f, βN := β

(t)
N , β̃N := β̃

(t−1)
N .

ControllingW1(βN , β). Let ψ be 1-Lipschitz. Without loss of generality we may assume that ψ(0) = 0 since otherwise
we can remove a constant.

|βN (ψ)− β(ψ)| =
∣∣∣∣αN (ωψ)

αN (ω)
− α(ωψ)

α(ω)

∣∣∣∣
≤
∣∣∣∣αN (ωψ)

αN (ω)
− α(ωψ)

αN (ω)

∣∣∣∣+

∣∣∣∣α(ωψ)

αN (ω)
− α(ωψ)

α(ω)

∣∣∣∣
≤ ∆−1 |αN (ωψ)− α(ωψ)|+ ∆−2α(ωψ)|αN (ω)− α(ω)|.

At this stage notice that
|(ωψ)′| ≤ |ω′ψ|+ |ωψ′| ≤ ‖ψ‖∞ + ‖ω‖∞.

Notice that
|ψ(x)| = |ψ(x)− ψ(0)| ≤ |x− 0| ≤ d.

Therefore we have that
|(ωψ)′| ≤ d + ∆−1,

and thus ωψ is (d + ∆−1)-Lipschitz. It follows that

|βN (ψ)− β(ψ)| ≤ ∆−1 |αN (ωψ)− α(ωψ)|+ ∆−2α(ωψ)|αN (ω)− α(ω)|
≤ ∆−1(d + ∆−1)W1(αN , α) + ∆−3dW1(αN , α)

=: K1(∆, d)W1(αN , α).

Therefore we have that
W1(βN , β) ≤ K1(∆, d)W1(αN , α). (33)

Notice that using the compactness of the state space we easily get also that

W2(βN , β) ≤
√
dW1(βN , β) ≤

√
dK1(∆, d)W1(αN , α) ≤

√
dK1(∆, d)W2(αN , α), (34)

since clearlyW1(ρ, σ) ≤ W2(ρ, σ) for any two probability measures ρ, σ.

ControllingW1(β̃N,ε, β). Again supposing ψ is 1-Lipschitz, and ψ(0) = 0, consider∣∣∣β̃N (ψ)− β̃(ψ)
∣∣∣ =

∣∣∣∣∫ ψ(TN,ε(x))αN (dx)−
∫
ψ(T(x))α(dx)

∣∣∣∣
≤
∣∣∣∣∫ ψ(TN,ε(x))αN (dx)−

∫
ψ(T(x))αN (dx)

∣∣∣∣
+

∣∣∣∣∫ ψ(T(x))αN (dx)−
∫
ψ(T(x))α(dx)

∣∣∣∣
For the second term, using the fact that T and ψ are λ- and 1-Lipschitz respectively, we have that ψ ◦T is λ-Lipschitz and
therefore ∣∣∣∣∫ ψ(T(x))αN (dx)−

∫
ψ(T(x))α(dx)

∣∣∣∣ ≤ λW1(αN , α) ≤ λW2(αN , α),
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where we used Assumption B.2 for that last inequality For the first term recall that using Cauchy-Schwarz and Jensen we get∣∣∣∣∫ ψ(TN,ε(x))αN (dx)−
∫
ψ(T(x))αN (dx)

∣∣∣∣
≤
∫
|TN,ε(x)−T(x)|αN (dx)

≤
∫ ∣∣∣∣∫ yPN,ε(x, dy)−T(x)

∣∣∣∣αN (dx)

≤
∫∫
|y −T(x)|αN (dx)PN,ε(x,dy)

≤
[∫∫

|y −T(x)|2 αN (dx)PN,ε(x, dy)

]1/2
.

Here we can directly apply Lemma C.2 to obtain[∫∫
|y −T(x)|2 αN (dx)PN,ε(x,dy)

]1/2
≤ 2λ1/2E1/2

[
d1/2 + E

]1/2
+ max{λ, 1} [W2(αN , α) +W2(βN , β)] ,

where
E := E(n, ε, α, β) :=W2(αN , α) +W2(βN , β) +

√
2ε log(N).

From (34) we have that

W2(αN , α) +W2(βN , β) ≤ W2(αN , α) +
√

dK1(∆, d)W2(αN , α).

Next we want to boundW2(αN , α). Notice first that

W2(αN , α) ≤ W2(αN , α
′
N ) +W2(α′N , α) ≤ W2(αN , α

′
N ) + κW2

(
β̃
(t−1)
N , β(t−1)

)
,

by Assumption B.2.

To control the other term we use (Fournier & Guillin, 2015) to obtain a high probability bound on W2(αN , α
′
N ). In

particular, using Theorem 2 from (Fournier & Guillin, 2015), with α =∞ since we are in a compact domain, that for some
positive constants C, c we have

P
[
W2

2 (αN , α
′
N ) ≥ x

]
≤ C exp

[
−cNf2d (x)

]
, (35)

where

fd(x) :=


x, d < 4

x
log(2+1/x) , d = 4

xd/2, d > 4.

(36)

In particular, for any δ > 0, with probability at least 1− δ over the sampling step in FN we have that

W2(αN , α
′
N ) ≤

√
f−1d

(
log(C/δ)

cN

)
. (37)

Assuming that d ≥ 4 the rate then is of order N−1/d as expected.

Therefore with probability at least 1− δ over the sampling step we have that

W2(αN , α) +W2(βN , β) ≤ FN,ε,δ,d
(
W2

(
β̃
(t−1)
N , β(t−1)

))
,

where

FN,ε,δ,d (x) = F

(
κx+

√
f−1d

(
log(C/δ)

cN

))
, F(x) := x+

√
dK1(∆, d)x (38)
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Thus overall we have with probability at least 1− δ over the sample

W2(β̃N,ε, β̃) ≤
√
dW1(β̃N,ε, β̃) ≤ Gε,δ,N,d

(
W2

(
β̃
(t−1)
N , β(t−1)

))
,

where

1

d
G2
ε,δ,N,d(x) := 2λ1/2

[
FN,ε,δ,d (x) +

√
2ε logN

]1/2 [
d1/2 + FN,ε,δ,d (x) +

√
2ε logN

]1/2
+ λκFN,ε,δ,d (x) + max{λ, 1}FN,ε,δ,d (x) .

In particular notice that if we set εN = o(1/ logN) and xN = o(1) we have

GεN ,δ,N,d(xN )→ 0.

Therefore, notice that if εN = o(1/ logN) andW2(µN , µ)→ 0, then for any x > 0 we have that

P
[
W2

(
β̃N,ε, β̃

)
≥ x

]
≤ P[W2(α′N , αN ) ≥ x′],

for some x′ that does not depend on N , where the probability is over the sampling step. The convergence in probability
follows.

Proposition D.2. Let µN = 1
N

∑N
i=1 δXi1 where Xi

1
i.i.d.∼ µ := q(·|y1) for i ∈ [N ] and suppose that for t ≥ 1, α(t)

N is
defined through (30). Under Assumptions B.1, B.2, B.3 and B.4, for any δ > 0, with probability at least 1− 2δ over the
sampling steps, for any bounded 1-Lipschitz ψ, for any t ∈ [1 : T ], the approximations of the filtering distributions and
log-likelihood computed by DPF satisfy

|β̃(t)
N (ψ)− β(t)(ψ)| ≤ G

(t)
ε,δ/T,N,d

(√
f−1d

(
log(CT/δ)

cN

))
(39)

∣∣∣∣log
p̂N (y1:T )

p(y1:T )

∣∣∣∣ ≤ κ

∆
max
t∈[1:T ]

Lip [g(yt | ·)]
T∑
t=1

G
(t)
ε,δ/T,N,d

(√
f−1d

(
log(CT/δ)

cN

))
(40)

where C is a finite constant independent of T , Gε,δ/T,N,d, fd are defined in (31), and Lip[f ] is the Lipschitz constant of the

function f . G(t)
ε,δ/T,N,d denotes the t-repeated composition of function Gε,δ/T,N,d. In particular, if we set εN = o(1/ logN)∣∣∣∣log

p̂N (y1:T )

p(y1:T )

∣∣∣∣→ 0,

in probability.

Proof of Proposition D.2. Following the proof of Proposition D.1, we define α(t)
N

′
= β̃

(t−1)
N f and for t ∈ [1 : T ], the events

At :=W2

(
α
(t)
N , α

(t)
N

′)
≤

√
f−1d

(
log(CT/δ)

cN

)
.

We know from Theorem 2 in (Fournier & Guillin, 2015) that P(At) ≥ 1− δ/T , where the probability is over the sampling
step. In particular we have that

P

[
T⋂
t=1

At

]
= 1− P

[
T⋃
t=1

AC
t

]
≥ 1−

N∑
t=1

P
[
AC
t

]
≥ 1− T δ

T
= 1− δ.

Notice that on the event ∩Tt=1At, iterating the bound (32) we have

W2

(
β̃
(t)
N , β(t)

)
≤ G

(t)
ε,δ/T,N,d (W2 (µN , µ)) ,
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with probability at least 1− δ. Again by Theorem 2 in (Fournier & Guillin, 2015) we have that with probability at least 1− δ

W2(µN , µ) ≤

√
f−1d

(
log(CT/δ)

cN

)
.

Therefore with probability at least 1− 2δ we have

G
(t)
ε,δ/T,N,d

(√
f−1d

(
log(CT/δ)

cN

))
.

It remains to prove (40). Note that | log(x)− log(y)| ≤ |x−y|
min{x,y} for any x, y > 0 so

∣∣ log p̂(y1:T )− log p(y1:T )
∣∣ ≤ T∑

t=1

∣∣ log p̂(yt|y1:t−1)− log p(yt|y1:t−1)
∣∣

≤
T∑
t=1

∣∣ p̂(yt|y1:t−1)− p(yt|y1:t−1)

min(p̂(yt|y1:t−1), p(yt|y1:t−1))

∣∣
≤ ∆−1

T∑
t=1

|p̂(yt|y1:t−1)− p(yt|y1:t−1)
∣∣ (41)

where ∆ is defined in Assumption B.3.

The term in line (41) may be written as follows

p̂(yt|y1:t−1)− p(yt|y1:t−1)

=

∫∫
g(yt|xt)f(dxt|x̃t−1)β̃

(t−1)
N (dx̃t−1)−

∫∫
g(yt|xt)f(dxt|x̃t−1)β̃(t−1)(dx̃t−1)

=β̃
(t−1)
N (h)− β(t−1)(h)

for ∆2 ≤ h(x) :=
∫
g(yt|x′)f(x′|x)dx′ ≤ ∆−2. At this point notice also that

h(x)− h(x′) =

∫
f(dw|x)g(yt | w)−

∫
f(dw|x′)g(yt | w)

=

∫
δx(dz)

∫
f(dw|z)g(yt | w)−

∫
δx′(dz)

∫
f(dw|z)g(yt | w)

= [δxf ][g(yt | ·)]− [δx′f ][g(yt | ·)]
≤ Lip [g(yt | ·)]W1 (δxf, δx′f) ≤ κLip [g(yt | ·)]W1 (δx, δx′) = κLip [g(yt | ·)] |x− x′|,

by Assumption B.2. It follows therefore that h is Lipschitz and therefore that

p̂(yt|y1:t−1)− p(yt|y1:t−1) = β̃
(t−1)
N (h)− β(t−1)(h) ≤ κLip [g(yt | ·)]W1

(
β
(t−1)
N , β(t−1)

)
.

Combining (39) and (41), and using the fact thatW1 ≤ W2, we thus get

∣∣ log p̂(y1:T )− log p(y1:T )
∣∣ ≤ ∆−1κ

T∑
t=1

Lip [g(yt | ·)]W1

(
β̃
(t−1)
N , β(t)

)
≤ ∆−1κ max

t∈[1:T ]
Lip [g(yt | ·)]

T∑
t=1

G
(t)
ε,δ/T,N,d

(√
f−1d

(
log(CT/δ)

cN

))
,

where the last inequality holds with probability at least 1− δ over the sampling steps.

The convergence in probability follows from the corresponding statement of Proposition D.1.
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E. Additional Experiments and Details
E.1. Linear Gaussian model

We first consider the following 2-dimensional linear Gaussian SSM for which exact inference can be carried out using
Kalman techniques:

Xt|{Xt−1 = x} ∼ N (diag(θ1 θ2)x, 0.5I2) , Yt|{Xt = x} ∼ N (x, 0.1 · I2). (42)

We simulate T = 150 observations using θ = (θ1, θ2) = (0.5, 0.5). As a result, we expect in these scenarios that the
filtering distribution pθ(xt|y1:t) is not too distinct from the smoothing distribution pθ(xt|y1:T ) as the latent process is mixing
quickly. From Proposition 4.1, this is thus a favourable scenario for methods ignoring resampling terms in the gradient as
the bias should not be very large. Figure 1, displayed earlier, shows `(θ) obtained by Kalman and ˆ̀(θ;u) computed regular
PF and DPF for the same number N = 25 of particles using qφ(xt|xt−1, yt) = fθ(xt|xt−1). The corresponding gradient
vector fields are given in Figure 1, where the gradient is computed using the biased gradient from (Maddison et al., 2017;
Naesseth et al., 2018; Le et al., 2018) for regular PF.

We now compare the performance of the estimators θ̂SMLE (for DPF) and θ̂ELBO (for both regular PF and DPF) learned using
gradient with learning rate 10−4 on 100 steps, using N = 25 for DPF and N = 500 for regular PF, to θ̂MLE computed
using Kalman derivatives. We simulate M = 50 realizations of T = 150 observations using θ = (θ1, θ2) = (0.5, 0.5). The
ELBO stochastic gradient estimates are computed using biased gradient estimates of `ELBO(θ) ignoring the contributions of
resampling steps as in (Maddison et al., 2017; Naesseth et al., 2018; Le et al., 2018) (we recall that unbiased estimates suffer
from very high variance) and unbiased gradients of `ELBO(θ) using DPF. We average B parallel PFs to reduce the variance
of these gradients of the ELBO and also B PFs (with fixed random seeds) to compute the gradient of ˆ̀

SMLE(θ;u1:B) :=
1
B

∑B
b=1

ˆ̀(θ;ub). The results are given in Table 4. For this example, θ̂DPF
ELBO maximizing `ELBO

DPF (θ) outperforms θ̂PF
ELBO and

θ̂SMLE. However, as B increases, θ̂SMLE gets closer to θ̂DPF
ELBO which is to be expected as ˆ̀SMLE(θ;u1:B) −→ `ELBO(θ). In

Table 4, the Root Mean Square Error (RMSE) is defined as
√

1
M

∑2
i=1

∑M
k=1(θ̂ki − θ̂kMLE,i)

2.

Table 4. 103× RMSE4 over 50 datasets - lower is better

B θ̂PF
ELBO θ̂DPF

ELBO θ̂SMLE

1 1.94 1.30 7.94
4 2.40 1.35 3.28
10 2.80 1.37 2.18

E.2. Variational Recurrent Neural Network

N = 32 particles were used for training, with a regularization parameter of ε = 0.5. The ELBO (scaled by sequence length)
was used as the training objective to maximise for each resampling/ DET procedure. The ELBO evaluated on test data using
N = 500 particles and multinomial resampling. Resampling / DET operations were carried out when effective sample
(ESS) size fell below N/2. Learning rate 0.001 was used with the Adam optimizer.

Recall the state-space model is given by

(Rt, Ot) = RNNθ(Rt−1, Y1:t−1, Eθ(Zt−1)),

Zt ∼ N (µθ(Ot), σθ(Ot)),

p̂t = hθ(Eθ(Zt), Ot),

Yt|Xt ∼ Ber(p̂t).

Network architectures and data preprocessing steps were based loosely on (Maddison et al., 2017). Given the low volume of
data and sparsity of the observations, relatively small neural networks were considered to prevent overfitting, larger neural

4The Root Mean Square Error (RMSE) is defined as
√

1
M

∑2
i=1

∑M
k=1(θ̂

k
i − θ̂kMLE,i)

2.
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networks are considered in the more complex robotics experiments. Rt is of dimension dr = 16, Zt is of dimension dz = 8.
Eθ is a single layer fully connected network with hidden layer of width 16, output of dimension 16 and RELU activation.

µθ and σθ are both fully connected neural networks with two hidden layers, each of 16 units and RELU activation, the
activation function is not applied to the final output of µθ but the softplus is applied to the output of σθ, which is the diagonal
entries of the covariance matrix of the normal distribution that is used to sample Zt.

hθ is a single layer fully connected network with two hidden layers, each of width 16 and RELU activation. The final output
is not put through the RELU and is instead used as the logits for the Bernoulli distribution of observations.

E.3. Robot Localization

Similar to the VRNN example, N = 32 particles were used for training, with a regularization parameter of ε = 0.5 and
resampling / DET operations were carried out when ESS size fell below N/2. Learning rate 0.001 was used with the Adam
optimizer.

Network architectures and data preprocessing were based loosely on (Jonschkowski et al., 2018). There are 3 neural
networks being considered:

• Encoder Eθ maps RBG 24 × 24 pixel images, hence dimension 3 × 24 × 24, to encoding of size dE = 128. This
network consists of a convolutional network (CNN) of kernel size 3 and a single layer fully connected network of
hidden width 128 and RELU activation.

• Decoder Dθ maps encoding back to original image. This consists of a fully connected neural network with three
hidden layers of width 128 and RELU activation function. This is followed by a transposed convolution network with
matching specification to the CNN in the encoder, to return an output with the same dimension as observation images,
3× 24× 24.

• Network Gθ maps the state St = (X
(1)
t , X

(2)
t , γt) to encoding of dimension 128. First angle γt was converted to

sin(γt), cos(γt). Then the augmented state (X
(1)
t , X

(2)
t , sin(γt), cos(γt)) was passed to a 3 layer fully connected

network with hidden layers of dimensions 16, 32, 64 and RELU activation function, with final output of dimension 128.


