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A Discriminative Technique for Multiple-Source Adaptation

A. Related and Previous Work on Multiple-Source Adaptation (MSA)
The general theoretical problem of adaptation from a single domain to a target domain has been studied in a series of
publications in the last two decades or so (Kifer et al., 2004; Ben-David et al., 2007; Blitzer et al., 2008; Mansour et al.,
2009b; Cortes and Mohri, 2011; 2014; Cortes et al., 2015; 2019). There are many distinct instances of adaptation problems.

Multiple-source adaptation extends the single-source single-target scenario, and has been extensively studied from various
aspects. (Yang et al., 2007) proposed to learn a linear combination of pre-trained auxiliary classifiers using SVMs on labeled
target data. (Duan et al., 2009; 2012) further assumed plenty of unlabeled target data to form a meaningful regularizer,
and a small set of labeled target data for training. (Khosla et al., 2012; Blanchard et al., 2011) combined all the source
data to jointly train a single predictor. (Pei et al., 2018; Zhao et al., 2018) extended single domain adversarial learning
techniques to the multiple-source setting to extract domain-invariant features. (Ghifary et al., 2015) extended auto-encoders
to the multi-task setting and minimized the sum of reconstruction errors across domains. (Peng et al., 2019) proposed to
align moments of feature distribution across source and target domains. (Muandet et al., 2013) proposed Domain-Invariant
Component Analysis to transform features onto a low dimensional subspace that minimizes the dissimilarity across domains.

(Zhang et al., 2015) adopted a causal view of MSA where label Y is the cause for features X , estimated the weights
for combining source conditional probabilities (PX|Y ), and proposed various ways to construct target predictor based on
estimated weights. (Crammer et al., 2008) considered learning accurate models for each source domain, using “nearby”
data of other domains. (Gong et al., 2012) ranked multiple source domains by how good can they adapt to a target domain.
(Gong et al., 2013a) learned domain-invariant features by constructing multiple auxiliary tasks, and learning new feature
representations from each auxiliary task. (Gong et al., 2013b) proposed to discover multiple latent domains by maximizing
distinctiveness and learnability between latent domains. (Jhuo et al., 2012) transfered source samples into an intermediate
representation such that each transformed source sample can be linearly reconstructed by target samples. Wen et al. (2019)
adjusted the weight of each source domain during training based on discrepancy minimization theory. Fernando et al.
(2013) considered aligning subspaces for visual domain adaptation. Liu et al. (2016) proposed to preserve the structure
information from source domains via clustering. Gan et al. (2016) tackled the multiple-source adaptation problem via
attributes possessing. Sun et al. (2011) considered a two-stage adaptation where in the first stage one combines weighted
source data based on marginal probability, and in the second stage based conditional probability as well.

More recently, Mansour, Mohri, Ro, Suresh, and Wu (2021) presented a theoretical and algorithmic study of the multiple-
source domain adaptation problem in the common scenario where the learner has access only to a limited amount of labeled
target data, but where they have at their disposal a large amount of labeled data from multiple source domains. They showed
that a new family of algorithms based on model selection ideas benefits from very favorable guarantees in this scenario and
discussed some theoretical obstacles affecting some alternative techniques.
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B. Rényi Divergences
The Rényi Divergence is parameterized by α ∈ [0,+∞] and denoted by Dα. The α-Rényi Divergence of two distributions
D and D is defined by

Dα(D ‖ D) =
1

α− 1
log

∑
(x,y)∈X×Y

D(x, y)

[
D(x, y)

D(x, y)

]α−1

,

where, for α ∈ {0, 1,+∞}, the expression is defined by taking the limit. For α = 1, the Rényi divergence coincides with
the relative entropy. For α = +∞, it coincides with log supx∈X

D(x)
D(x) . It can be shown that the Rényi Divergence is always

non-negative and that for any α > 0, Dα(D ‖ D) = 0 iff D = D (Arndt, 2004). We will denote by dα(D ‖ D) the
exponential:

dα(D ‖ D) = eDα(D‖D) =

[ ∑
(x,y)∈X×Y

Dα(x, y)

Dα−1(x, y)

] 1
α−1

.

The following lemma from (Van Erven and Harremos, 2014) summarizes some useful properties of the Rényi divergence.

Lemma 1. The Rényi divergence admits the following properties:

1. Dα(D ‖ D) is a non-decreasing function of α.

2. Dα(D ‖ D) is jointly convex in (D,D) for α ∈ [0, 1].

3. Dα(D ‖ D) is convex in D for α ∈ [0,∞].

4. Dα(D ‖ D) is jointly quasi-convex in (D,D) for α ∈ [0,∞].

The following general triangle inequality for Rényi divergences is due to Hoffman et al. (2021). Here, we give the full proof
for completeness.

Proposition 2. Let P, Q, R be three distributions on X × Y. Then, for any γ ∈ (0, 1) and any α > γ, the following
inequality holds: [

dα(P ‖ Q)
]α−1

≤
[
dα
γ

(P ‖ R)
]α−γ[

dα−γ
1−γ

(R ‖ Q)
]α−1

.

Proof. Fix γ ∈ (0, 1). By Hölder’s inequality, we can write:[
dα(P ‖ Q)

]α−1

=
∑
x

Pα(x, y)

Qα−1(x, y)
=
∑
x

Pα(x, y)

Rα−γ(x, y)

Rα−γ(x, y)

Qα−1(x, y)

≤
[∑

x

( Pα(x, y)

Rα−γ(x, y)

) 1
γ

]γ[∑
x

(Rα−γ(x, y)

Qα−1(x, y)

) 1
1−γ
]1−γ

=

[∑
x

P
α
γ (x, y)

R
α
γ−1(x, y)

]γ[∑
x

R
α−γ
1−γ (x, y)

Q
α−γ
1−γ −1(x, y)

]1−γ

=
[
dα
γ

(P ‖ R)
]α−γ[

dα−γ
1−γ

(R ‖ Q)
]α−1

.

This concludes the proof.
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C. DMSA Guarantees
C.1. General Guarantee

Theorem 1 gives a guarantee in terms of a Rényi divergence of DT and D̂. Using the triangle inequality result of Proposition 2,
we can derive an upper bound in terms of a Rényi divergence of DT and D instead and only Rényi divergences between the
distributions Dk and their estimate D̂k.

Theorem 3. For any δ > 0, there exists z ∈ ∆ such that the following inequality holds for any α > 1 and arbitrary target
distribution DT :

L(DT , ĝz) ≤ [(ε̂+ δ) d̂′]
α−1
α [d2α(DT ‖ D)]

2α−1
2α M

1
α ,

where ε̂ = (εd̂)
α−1
α M

1
α , d̂ = maxk∈[p] dα(D̂k ‖ Dk), and d̂′ = maxk∈[p] d2α−1(Dk ‖ D̂k), with D̂k = Q̂(k|x)D(x)

Q̂(k)
.

Proof. For α > 1, by Proposition 2, choosing γ = 1
2 , the following holds for any λ ∈ ∆:

[dα(DT ‖ D̂λ)]α−1 ≤ [d2α(DT ‖ Dλ)]α−
1
2 [d2α−1(Dλ ‖ D̂λ)]α−1

= [d2α(DT ‖ Dλ)]α−
1
2 [eD2α−1(Dλ‖D̂λ)]α−1

≤ [d2α(DT ‖ Dλ)]α−
1
2 [emaxk∈[p](D2α−1(Dk‖D̂k)]α−1

(quasi-convexity of Rényi divergence (Lemma 1))

= [d2α(DT ‖ Dλ)]α−
1
2 [max
k∈[p]

d2α−1(Dk ‖ D̂k)]α−1. (monotonicity of exp)

Thus, by Theorem 1, for ε̂ = maxk∈[p]

[
ε dα(D̂k ‖ Dk)

]α−1
α

M
1
α , for any λ ∈ ∆, we have:

L(DT , ĝz) ≤
[
(ε̂+ δ) dα(DT ‖ D̂λ)

]α−1
α

M
1
α = (ε̂+ δ)

α−1
α

[
dα(DT ‖ D̂λ)

]α−1
α

M
1
α

≤ (ε̂+ δ)
α−1
α [d2α(DT ‖ Dλ)]

2α−1
2α [max

k∈[p]
d2α−1(Dk ‖ D̂k)]

α−1
α M

1
α .

Taking the infimum of the right-hand side over λ ∈ ∆ completes the proof.

C.2. Conditional Maxent

Here, we prove a general pointwise guarantee for conditional Maxent that will be later used in the analysis of DMSA, when
used with this algorithm (Appendix C.3).

Theorem 4. Let ŵ be the solution of problem (7) and w∗ the population solution of the conditional Maxent optimization
problem:

w∗ = argmin
w∈RN

µ‖w‖2 − E
(x,k)∼Q

[
log pw[k|x]

]
.

Then, for any δ > 0, with probability at least 1− δ, for any (x, k) ∈ X× [p], the following inequality holds:

∣∣∣log pŵ[k|x]− log pw∗ [k|x]
∣∣∣ ≤ 2

√
2r2

µ
√
m

[
1 +

√
log(1/δ)

]
.

Proof. By Theorem 2 of (McDonald et al., 2009), for any δ > 0, with probability at least 1− δ, the following inequality
holds:

‖ŵ − w∗‖ ≤ r

µ
√
m/2

[
1 +

√
log 1/δ

]
.
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Next, for any (x, k) ∈ X× [p], observe that

∇w [log pw[k|x]] = ∇w

w · Φ(x, k)− log

 p∑
j=1

ew·Φ(x,j)

 = ∇w

[
Φ(x, k)−

∑p
j=1 e

w·Φ(x,j)Φ(x, j)∑p
j=1 e

w·Φ(x,j)

]
= E
j∼pw[·|x]

[Φ(x, k)− Φ(x, j)] .

Thus, the following upper bound holds: ‖∇w log pw[k|x]‖ ≤ ‖Ej∼pw[·|x][Φ(x, k)−Φ(x, j)]‖ ≤ 2r for any (x, k) ∈ X×[p].
Therefore, by the 2r-Lipschitzness of w 7→ log pw[k|x] for any (x, k) ∈ X× [p], with probability at least 1−δ, the following
inequality holds:

∣∣∣ log pŵ[k|x]− log pw∗ [k|x]
∣∣∣ ≤ 2r‖ŵ − w∗‖ ≤ 2

√
2r2

µ
√
m

[
1 +

√
log(1/δ)

]
,

which completes the proof.

C.3. Guarantees for DMSA with Conditional Maxent

Theorem 5 (DMSA). There exists z ∈ ∆ such that for any δ > 0, with probability at least 1 − δ the following inequality
holds DMSA used with conditional Maxent, for an arbitrary target mixture DT :

L(DT , ĝz) ≤ ε p e
6
√

2r2

µ
√
m

[
1+
√

log(1/δ)
]
d∗ d′∗,

with d∗ = sup
x∈X

d∞ (Q∗[·|x] ‖ Q(·|x))

d′∗ = sup
x∈X

d2
∞ (Q(·|x) ‖ Q∗[·|x]) ,

where Q∗(·|x) = pw∗ [·|x] is the population solution of conditional Maxent problem (statement of Theorem 4).

We give the proof for the following more general result.

Theorem 7. There exists z ∈ ∆ such that the following inequality holds for any α > 1 and arbitrary target mixture DT :

L(DT , ĝz) ≤ ε
(α−1)2

α2 M
2α−1

α2 p
(2α−1)(α+2)

2α2 e
(12α2−11α+2)

2α2 r‖w∗−ŵ‖d1(α)d2(α)d3(α)

with d1(α) =

[
E

x∼D

[
d4α−3

4α−2

(
Q(·|x) ‖ Q∗(·|x)

)]] 1
4α

d2(α) =

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2α

d3(α) =

[
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]]α−1

2α2

.

Proof. The proof relies on the auxiliary Lemmas 2 and 3 proven below. In Theorem 3, the bound depends on
maxk∈[p] dα(Dk ‖ D̂k) and maxk∈[p] dα(D̂k ‖ Dk), for some Rényi parameter α > 1. We will analyze these terms
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here for the DMSA solution, for which D̂k(x) = Q̂(k|x)D(x)

Q̂(k)
. Using this expression, for any α > 1, we can write:

max
k∈[p]

[
dα(Dk ‖ D̂k)

]α−1

= max
k∈[p]

[ ∑
(x,y)∈X×Y

Dα
k (x, y)

D̂α−1
k (x, y)

]
= max

k∈[p]

[ ∑
(x,y)∈X×Y

[
Dk(x)Dk(y|x)

]α
[
D̂k(x)Dk(y|x)

]α−1

]

= max
k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)

[
Dk(x)

]α
[
D̂k(x)

]α−1

]

= max
k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)

[
Q(k|x)D(x)/(1/p)

]α
[
Q̂(k|x)D(x)/Q̂(k)

]α−1

]

= max
k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)D(x)pαQ̂α−1(k)
Qα[k|x]

Q̂α−1[k|x]

]

= max
k∈[p]

[∑
x∈X

D(x)pαQ̂α−1(k)
Qα[k|x]

Q̂α−1[k|x]

]
.

Next, upper-bounding the maximum by a sum yields:

max
k∈[p]

[
dα(Dk ‖ D̂k)

]α−1

≤
∑
k∈[p]

[∑
x∈X

D(x)pαQ̂α−1(k)
Qα[k|x]

Q̂α−1[k|x]

]
=

[∑
x∈X

D(x)
∑
k∈[p]

pαQ̂α−1(k)
Qα[k|x]

Q̂α−1[k|x]

]

≤ pα
[∑
x∈X

D(x)
∑
k∈[p]

Qα[k|x]

Q̂α−1[k|x]

]

= pα E
x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

]
.

Thus, by Lemma 2, we have

max
k∈[p]

[
dα(Dk ‖ D̂k)

]α−1

≤ pαe(2α−1)r‖w∗−ŵ‖
[

E
x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2

,

and therefore max
k∈[p]

[
d2α−1(Dk ‖ D̂k)

]2α−2

≤ p2α−1e(4α−3)r‖w∗−ŵ‖
[

E
x∼D

[
d4α−3

4α−2

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2

,

an expression needed later. As for the previous analysis of the Rényi divergence, we can write for any α > 1:

max
k∈[p]

[
dα(D̂k ‖ Dk)

]α−1

= max
k∈[p]

[ ∑
(x,y)

D̂α
k (x, y)

Dα−1
k (x, y)

]
= max

k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)

(
Q̂(k|x)D(x)/Q̂(k)

)α
(
Q(k|x)D(x)/Q(k)

)α−1

]

= max
k∈[p]

[ ∑
(x,y)∈X×Y

D(y|x)D(x)
1

pα−1Q̂α(k)

Q̂αk (x)

Qα−1
k (x)

]

= max
k∈[p]

[∑
x∈X

D(x)
1

pα−1Q̂α(k)

Q̂αk (x)

Qα−1
k (x)

]
.
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Using the upper bound on 1

Q̂(k)
of Lemma 3 yields:

max
k∈[p]

[
dα(D̂k ‖ Dk)

]α−1

≤ p
2α−1
α−1 E

x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

] α
α−1

max
k∈[p]

[∑
x∈X

D(x)
Q̂αk (x)

Qα−1
k (x)

]

≤ p
2α−1
α−1 E

x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

] α
α−1

∑
k∈[p]

[∑
x∈X

D(x)
Q̂αk (x)

Qα−1
k (x)

]

≤ p
2α−1
α−1 E

x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

] α
α−1 E

x∼D

[
dα−1
α

(
Q̂(x) ‖ Q(x)

)]
.

Thus, by Lemma 2, we have

max
k∈[p]

[
dα(D̂k ‖ Dk)

]α−1

≤ p
2α−1
α−1 e

α(2α−1)
α−1 r‖w∗−ŵ‖

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] α
2α−2

e(2α−1)r‖ŵ−w∗‖
[

E
x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]] 1
2

= p
2α−1
α−1 e

(2α−1)2)
α−1 r‖w∗−ŵ‖

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] α
2α−2

[
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]] 1
2

.

Plugging these inequalities into the bound of Theorem 3 yields:

L(DT , ĝz) ≤ ε
(α−1)2

α2 M
2α−1

α2

[
max
k∈[p]

d2α−1(Dk ‖ D̂k)
]α−1

α
[

max
k∈[p]

dα(D̂k ‖ Dk)
] (α−1)2

α2

≤ ε
(α−1)2

α2 M
2α−1

α2

[
p

2α−1
2α e

4α−3
2α r‖w∗−ŵ‖

[
E

x∼D

[
d4α−3

4α−2

(
Q(·|x) ‖ Q∗(·|x)

)]] 1
4α

]
[
p

2α−1

α2 e
(2α−1)2

α2 r‖w∗−ŵ‖
[
E
[
d2α−1

2α

(
Q(·|x) ‖ Q∗(·|x)

)]] 1
2α
[
E
[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]]α−1

2α2

]
= ε

(α−1)2

α2 M
2α−1

α2 p
(2α−1)(α+2)

2α2 e
(12α2−11α+2)

2α2 r‖w∗−ŵ‖d1(α)d2(α)d3(α)

with d1(α) =

[
E

x∼D

[
d4α−3

4α−2

(
Q(·|x) ‖ Q∗(·|x)

)]] 1
4α

d2(α) =

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2α

d3(α) =

[
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]]α−1

2α2

,

which completes the proof.

Lemma 2. For any α > 1 and k ∈ [p], the following inequalities hold for the expected Rényi divergences between Q and Q̂:

E
x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

]
≤ e(2α−1)r‖w∗−ŵ‖

[
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2

E
x∼D

[
dα−1
α

(
Q̂(·|x) ‖ Q(·|x)

)]
≤ e(2α−1)r‖ŵ−w∗‖

[
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]] 1
2

,

where Q∗(·|x) = pw∗ [·|x], and Q̂(·|x) = pŵ[·|x], the population and empirical solution of conditional Maxent problem (7),
respectively.
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Proof. By Proposition 2, we can write for any γ ∈ (0, 1), γ < α:

E
x∼D

[
dα−1
α (Q(·|x) ‖ Q̂(·|x))

]
=
∑
x∈X

D(x) dα−1
α (Q(·|x) ‖ Q̂(·|x))

≤
∑
x∈X

D(x)

[
p∑
k=1

Q
α
γ

k [k|x]

Q
∗αγ−1

k [k|x]

]γ  p∑
k=1

Q
∗α−γ1−γ
k [k|x]

Q̂
α−γ
1−γ −1

k [k|x]

1−γ

=
∑
x

[
D(x)

p∑
k=1

Q
α
γ

k [k|x]

Q
∗αγ−1

k [k|x]

]γ D(x)

p∑
k=1

Q
∗α−γ1−γ
k [k|x]

Q̂
α−γ
1−γ −1

k [k|x]

1−γ

≤

[∑
x

D(x)

p∑
k=1

Q
α
γ

k [k|x]

Q
∗αγ−1

k [k|x]

]γ ∑
x

D(x)

p∑
k=1

Q
∗α−γ1−γ
k [k|x]

Q̂
α−γ
1−γ −1

k [k|x]

1−γ

(Hölder’s inequality)

=

[
E

x∼D

[
d
α
γ−1
α
γ

(
Q(·|x) ‖ Q∗[·|x]

)]]γ [
E

(x,k)∼D×Q∗

[
Q∗[k|x]

Q̂(k|x)

]α−γ
1−γ
]1−γ

≤
[
e(α−γ1−γ )2r‖w∗−ŵ‖

]1−γ [
E

x∼D

[
d
α
γ−1
α
γ

(
Q(·|x) ‖ Q∗[·|x]

)]]γ
. (Theorem 4)

Choosing γ = 1
2 gives

E
x∼D

[
dα−γα (Q(·|x) ‖ Q̂(·|x))

]
≤
[
e(2α−1)r‖w∗−ŵ‖

] [
E

x∼D

[
d2α−1

2α

(
Q(·|x) ‖ Q∗[·|x]

)]] 1
2

.

Similarly, we can write:

E
x∼D

[
dα−1
α

(
Q̂(·|x) ‖ Q(·|x)

)]
≤
∑
x∈X

[
D(x)

∑
k∈[p]

Q̂
α
γ

k (x)

Q
∗αγ−1

k (x)

]γ[
D(x)

∑
k∈[p]

Q
∗α−γ1−γ
k (x)

Q
α−γ
1−γ −1

k (x)

]1−γ

≤
[∑
x∈D

D(x)
∑
k∈[p]

Q̂
α
γ

k (x)

Q
∗αγ−1

k (x)

]γ[∑
x∈D

D(x)
∑
k∈[p]

Q
∗α−γ1−γ
k (x)

Q
α−γ
1−γ −1

k (x)

]1−γ

(Hölder’s ineq.)

= E
(x,k)∼D×Q̂

[ Q̂(k|x)

Q∗(k|x)

]α
γ−1

γ [ E
x∼D

[
d
α−γ
1−γ −1
α−γ
1−γ

(
Q∗(·|x) ‖ Q(·|x)

)]]1−γ

≤
[
e(α−γ)2r‖ŵ−w∗‖

][
E

x∼D

[
d
α−γ
1−γ −1
α−γ
1−γ

(
Q∗(·|x) ‖ Q(·|x)

)]]1−γ

. (Theorem 4)

Choosing γ = 1
2 gives

E
x∼D

[
dα−1
α

(
Q̂(·|x) ‖ Q(·|x)

)]
≤
[
e(2α−1)r‖ŵ−w∗‖

][
E

x∼D

[
d2α−2

2α−1

(
Q∗(·|x) ‖ Q(·|x)

)]] 1
2

,

which completes the proof.

Lemma 3. For any α > 1 and k ∈ [p], the following inequality holds:

1

Q̂(k)
≤ p

α
α−1 E

x∼D

[
dα−1
α

(
Q(·|x) ‖ Q̂(·|x)

)] 1
α−1

.
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Proof. Observe that, for any k ∈ [p], we have:

Q(k) =
∑
x∈X

Q̂(k|x)D(x) =
∑
x∈X

[
Q(k|x)

Q̂
α−1
α (k|x)

D
1
α (x)

] [
Q̂
α−1
α (k|x)D

α−1
α (x)

]

≤

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α
[∑
x∈X

Q̂(k|x)D(x)

]α−1
α

(Hölder’s ineq.)

=

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α

Q̂
α−1
α (k).

Thus, for any k ∈ [p], we can write:

1

Q̂(k)
≤
[

1

Q(k)

] α
α−1

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α−1

= p
α
α−1

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α−1

(Q(k) = 1
p )

≤ p
α
α−1 max

k∈[p]

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α−1

≤ p
α
α−1

∑
k∈[p]

[∑
x∈X

Qα(k|x)

Q̂α−1(k|x)
D(x)

] 1
α−1

= p
α
α−1

∑
x∈X

∑
k∈[p]

Qα(k|x)

Q̂α−1(k|x)

D(x)

 1
α−1

= p
α
α−1 E

x∼D

[
dα−1
α

(
Q(·|x) ‖ Q̂(·|x)

)] 1
α−1

,

which completes the proof.
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D. DMSA Optimization Algorithm
Here we give a DC-decomposition for the DMSA optimization problem both in the regression model with the squared loss
and the probability model with the cross-entropy loss. We then describe the DC algorithm based on these decompositions.

Proposition 3 (Regression model). Let ` be the squared loss. Then, for any k ∈ [p], L(D̂k, gz′) − L(D̂z, gz′) =
uk(z)− vk(z), where uk and vk are convex functions defined for all z by

uk(z) = L(D̂k, gz′)− 2M

[∑
x∈X

D̂k(x) log Q̂z(x)

]
,

vk(z) = L(D̂z, gz′)− 2M

[∑
x∈X

D̂k(x) log Q̂z(x)

]
,

where z′k = zk/Q̂(k)∑p
j=1 zj/Q̂(j)

, D̂z =
∑p
k=1 zkD̂k, and Q̂z(x) =

∑p
j=1 zjQ̂(j|x).

Proof. First, notice that gz′(x) = gz , where zk = zk/Q̂(k), since in the expression of gz′(x) we can divide the numerator
and the denominator by

∑p
j=1 zj/Q̂(j).

Next, observe that (gz(x)− y)2 = Fz(x, y)−Gz(x), where, for all (x, y) ∈ X× Y, Fz and Gz are functions defined for
all z ∈ ∆ by

Fz(x, y) = (gz(x)− y)
2 − 2M log Q̂z(x) and Gz(x) = −2M log Q̂z(x).

We will show that Fz(x, y) and Gz(x) are convex functions of z. Since composition with an affine function preserves
convexity, this will show that Fz(x, y) and Gz(x) are also convex functions of z. The convexity of Fz(x, y) and Gz(x)
holds since their Hessians with respect to z are positive semi-definite:

HFz(x,y) =
2

Q̂2
z(x)

[
hd,z(x)h>d,z(x) +

(
M − (y − gz(x))2

)
D(x)D>(x)

]
,

HGz(x) =
2M

Q̂2
z(x)

D(x)D(x)>,

where hd,z(x) is the p-dimensional vector defined as [hd,z]k(x) = Q̂(k|x) (hk(x) + y − 2gz(x)) for k ∈ [p], and D(x) =

(Q̂(1|x), . . . , Q̂(p|x))>. Using the fact that M ≥ (y−gz(x, y))2, HFz(x,y) and HGz(x,y) are positive semi-definite matrices,
and thus Fz and Gz are convex functions of z for all (x, y) ∈ X× Y.

uk(z) is a convex function of z, since it can be expressed as an expectation of Fz:

uk(z) =
∑

(x,y)∈X×Y

D̂k(x, y)
[
(y − gz(x))2 − 2M log Q̂z(x)

]
=

∑
(x,y)∈X×Y

D̂k(x, y)Fz(x, y).

Next, denote by jz(x) =
∑p
k=1 zkQ̂(k|x)hk(x) and kz(x) = Q̂z(x) =

∑p
k=1 zkQ̂(k|x). By definition of ĝz , we have

ĝz(x) = jz(x)/kz(x).

Similarly, we can write the second term of vk(z) as
∑
x∈X D̂k(x)Gz(x), which is a convex function of z as an expectation

of Gz . Using the notation previously introduced, to analyze the vk(z), notice that we can write∑
(x,y)∈X×Y

D̂z(x, y)
[
y − jz(x)

kz(x)

]2
=

∑
(x,y)∈X×Y

p∑
k=1

zk
Q̂(k|x)D(x, y)

Q̂(k)

[
y − jz(x)

kz(x)

]2
=

∑
(x,y)∈X×Y

D(x, y)
(jz(x)2

kz(x)
− 2yjz(x) + y2kz(x)

)
.



A Discriminative Technique for Multiple-Source Adaptation

The Hessian matrix of jz(x)2/kz(x) with respect to z is

∇2
z

( j2
z (x)

kz(x)

)
=

1

kz(x)
(hD(x)− gz(x)D(x))(hD(x)− gz(x)D(x))>

where hD(x) = (h1(x)Q̂(1|x), . . . , hp(x)Q̂(p|x))> and D(x) = (Q̂(1|x), . . . , Q̂(p|x))>. Thus, jz(x)2/kz(x) is convex
and so is jz(x)2/kz(x), by composition with an affine function. −2yjz(x) + y2kz(x) is an affine function of z and is
therefore convex. Thus, the first term of vk(z) is also a convex function of z, which completes the proof.

Proposition 4 (Probability model). Let ` be the cross-entropy loss. Then, for k ∈ [p], L(D̂k, gz′) − L(D̂z, gz′) =
uk(z)− vk(z), where uk and vk are convex functions defined for all z by

uk(z) =
∑

(x,y)∈Y×Y

−D̂k(x, y) log

[
p∑
k=1

z′kQ̂(k|y)hk(x, y)

]

vk(z) = L(D̂z, gz′)−
∑

(x,y)∈X×Y

D̂k(x, y) logQz′(x),

where z′k = zk/Q̂(k)∑p
j=1 zj/Q̂(j)

, D̂z =
∑p
k=1 zkD̂k, and Q̂z(x) =

∑p
j=1 zjQ̂(j|x).

Proof. Let jz and kz be defined for all (x, y) ∈ X × Y and z ∈ ∆ by jz(x, y) =
∑p
k=1 zkQ̂(k|x)hk(x, y), and kz(x) =

Q̂z(x). By definition, gz(x, y) = jz(x, y)/kz(x). We can write

L(D̂k, gz)− L(D̂z, gz)

=
∑

(x,y)∈X×Y

(
D̂z(x, y)− D̂k(x, y)

)
log

[
jz(x, y)

kz(x)

]

=

 ∑
(x,y)∈X×Y

−D̂k(x, y) log jz(x, y)

−
 ∑

(x,y)∈X×Y

D̂z(x, y) log
[ kz(x)

jz(x, y)

]
− D̂k(x, y) log kz(x)


= uk(z)− vk(z).

uk is convex since − log jz is convex as the composition of the convex function − log with an affine function. Similarly,
− log kz is convex, which shows that the second term in the expression of vk is a convex function.

Observe that we can write:

kz(x)

jz(x, y)
=

∑p
k=1 zkQ̂(k|x)∑p

k=1 zkQ̂(k|x)hk(x, y)
=

∑p
k=1 zkQ̂(k|x)D(x, y)∑p

k=1 zkQ̂(k|x)hk(x, y)D(x, y)
=

∑p
k=1 zkD̂k(x, y)∑p

k=1 zkD̂k(x, y)hk(x, y)
=
Kz(x, y)

Jz(x, y)

where Jz(x, y) =
∑p
k=1 zkD̂k(x, y)hk(x, y), and Kz(x, y) = D̂z(x, y). Thus, the first term of vk can be written in terms

of the unnormalized relative entropy B(· ‖ ·) as follows:

∑
(x,y)∈X×Y

D̂z(x, y) log
[ kz(x)

jz(x, y)

]
=

∑
(x,y)∈X×Y

Kz(x, y) log
[Kz(x, y)

Jz(x, y)

]
= B(Kz ‖ Jz) +

∑
(x,y)∈X×Y

(Kz − Jz)(x, y).

The rest of the proof follows from (Hoffman et al., 2018): The unnormalized relative entropy B(· ‖ ·) is jointly convex, thus
B(Kz ‖ Jz) is convex; (Kz − Jz) is an affine function of z and is therefore convex too.
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Given the DC decompositions from Proposition 3 and 4, one can cast the min-max optimization problem (6) into the
following variational form of a DC-programming problem (Tao and An, 1997; 1998; Sriperumbudur and Lanckriet, 2012):

min
z∈∆,γ∈R

γ (8)

s.t.
(
uk(z)− vk(z) ≤ γ

)
∧
(
− zk ≤ 0

)
, ∀k ∈ [p],∑p

k=1 zk − 1 = 0.

The DC-programming algorithm works by repeatedly solving the following convex optimization problem:

zt+1 ∈ argmin
z,γ∈R

γ (9)

s.t. uk(z)− vk(zt)− (z − zt)∇vk(zt) ≤ γ
− zk ≤ 0,

∑p
k=1 zk − 1 = 0, ∀k ∈ [p],

where z0 ∈ ∆ is an arbitrary starting value, and (zt)t denotes the sequence of solutions. Then, (zt)t is guaranteed to
converge to a local minimum of problem (6) (Sriperumbudur and Lanckriet, 2012). This leads to an efficient DC algorithm
that guarantees convergence to a stationary point. Furthermore, since the minimal objective value of (6) is zero, it is
straightforward to check the global optimality of a solution z. In our experiments, we have found the result of the DC
algorithm to be almost always optimal.
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E. Guarantees for GMSA
E.1. Convergence Results for Kernel Density Estimation

In this section, we show that the true marginal distribution D can be closely approximated via kernel density estimation
(KDE), where the quality of approximation depends on the choice of the kernel function Kσ(·, ·).

Kernel density estimation (KDE) is a widely used nonparametric method for estimating densities. Let Kσ(·, ·) ≥ 0 be a
normalized kernel function that satisfies

∫
x∈XKσ(x, x′)dx = 1 for all x′ ∈ X, where σ is the bandwidth parameter. A

well-known kernel function is the Gaussian kernel: Kσ(x, x′) =
(

1√
2πσ

)d
exp
{
−‖x−x

′‖2
2σ2

}
, where d is the dimension of

the input space X ⊆ Rd. Let Sn = {x1, . . . , xn} be a sample of size n drawn from the true distribution D. Then, the kernel
density estimation based on the sample Sn is defined by D̂Sn(·) = 1

n

∑n
i=1Kσ(·, xi). With a slight abuse of notation, we

adopt the shorthand DS∞(·) = Ex∼D[Kσ(·, x)], the kernel density estimation based on the entire population.

Consider two samples Sn and S′n that only differ by one point: Sn = Sn−1 ∪ {xn}, S′n = Sn−1 ∪ {x′n}, where xn 6= x′n.
Assume that for all such pairs of samples Sn, S′n, we have d∞(D̂Sn ‖ D̂S′n

) ≤ Bn for some positive constant Bn. Then,
the following result holds, which depends on Bn and the choice of the kernel function (Hoffman et al., 2021)[Theorem 10].
Observe that we can choose Bn = κn.

Theorem 8. For any δ > 0, with probability at least 1− δ, each of the following two inequalities holds:

dα
(
D̂Sn ‖ D

)
≤ E
x∼D

[
dα
(
Kσ(·, x) ‖ D

)]
B

α
α−1

√
n log 1

δ /2
n , for all α ∈ [1, 2] ,

dα
(
D ‖ D̂Sn

)
≤ E
x∼D

[
dα
(
D ‖ Kσ(·, x)

)]
B

√
n log 1

δ /2
n , for all α ≥ 1.

Theorem 8 shows that the Rényi divergence between D̂Sn and D is upper bounded by the product of two terms: the first
term is the expected pointwise divergence, or, more precisely, the expected Rényi divergence between the kernel function
centered at x, Kσ(·, x), and the true distribution D, with the expectation taken over x ∼ D. Thus, the first term is purely
determined by the choice of the kernel function Kσ(·, ·). The second term is a polynomial function of B

√
n

n . As shown
by Hoffman et al. (2021)[Theorem 12], we have Bn = 1 + O( 1

n ) under mild conditions, which implies B
√
n

n → 1 as n
increases, and thus the second term converges to 1. Therefore, as the sample size n goes to infinity, we have

dα
(
D̂Sn ‖ D

)
≤ E
x∼D

[
dα
(
Kσ(·, x) ‖ D

)]
for all 1 ≤ α ≤ 2, (10)

dα
(
D ‖ D̂Sn

)
≤ E
x∼D

[
dα
(
D ‖ Kσ(·, x)

)]
for all α ≥ 1. (11)

Thus, the kernel density estimation is accurate, provided that the expected pointwise Rényi divergence is small with a
suitably chosen kernel function Kσ(·, ·).

E.2. Guarantees for GMSA with Kernel Density Estimation

The following is an analogue of Theorem 3 for GMSA.

Theorem 9. For any δ > 0, there exists z ∈ ∆ such that the following inequality holds for any α > 1 and arbitrary target
distribution DT :

L(DT , ĥz) ≤ [(ε̂+ δ) d̂′]
α−1
α [d2α(DT ‖ D)]

2α−1
2α M

1
α ,

where ε̂ = (εd̂)
α−1
α M

1
α , d̂ = maxk∈[p] dα(D̂k ‖ Dk), and d̂′ = maxk∈[p] d2α−1(Dk ‖ D̂k).

Proof. By Theorem 1, there exists z ∈ ∆ such that the following inequality holds for any α > 1 and arbitrary target mixture
DT ∈ D:

L(DT , ĥz) ≤ ε̂
α−1
α M

1
α

[
max
k∈[p]

d2α−1(Dk ‖ D̂k)
]
,

where ε̂ = maxk∈[p]

[
ε dα(D̂k ‖ Dk)

]α−1
α

M
1
α . The rest of the proof is identical to that of Theorem 3.
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Using this theorem and the previous results for KDE, we can show the following.

Theorem 6 (GMSA). There exists z ∈ ∆ such that, for any δ > 0, with probability at least 1− δ the following inequality
holds for GMSA used KDE, for an arbitrary target mixture DT :

L(DT , ĥz) ≤ ε
1
4M

3
4 e

6κ√
2(m/p)

√
log p+log(1/δ)

d∗d′∗,

with κ = maxx,x′,x′′∈X
Kσ(x,x′)
Kσ(x,x′′) , and

d∗ = max
k∈[p]

E
x∼Dk

[d+∞
(
Kσ(·, x) ‖ Dk

)
],

d′∗ = max
k∈[p]

E
x∼Dk

[d+∞
(
Dk ‖ Kσ(·, x)

)
].

We will prove in fact the more general result below. Setting α = 2 in the following theorem and upper bounding the α-Rényi
divergences by the +∞-Rényi divergences yields immediately the result of Theorem 6. The result assumes that the number
of samples used in each domain for density estimation is (m/p).

Theorem 10 (GMSA). There exists z ∈ ∆ such that, for any δ > 0, with probability at least 1− δ the following inequality
holds for any α ∈ (1, 2] and arbitrary target mixture DT :

L(DT , ĥz) ≤ ε
(α−1)2

α2 M
2α−1

α2 e
2κ(2+ 1

α−1 )
√

log
p
δ

2(m/p) d∗(α) d′∗(α),

with κ = maxx,x′,x′′∈X
Kσ(x,x′)
Kσ(x,x′′) , and

d∗(α) = max
k∈[p]

E
x∼Dk

[
dα
(
Kσ(·, x) ‖ Dk

)]
,

d′∗(α) = max
k∈[p]

E
x∼Dk

[
d2α−1

(
Dk ‖ Kσ(·, x)

)]
.

Proof. By Theorem 8, for any δ > 0, with probability at least 1− δ, each of the following two inequalities holds for all
domains:

dα
(
D̂k ‖ Dk

)
≤ E
x∼Dk

[
dα
(
Kσ(·, x) ‖ Dk

)]
κ

α
α−1

√
(m/p) log p

δ /2
m for all 1 ≤ α ≤ 2

dα
(
Dk ‖ D̂k

)
≤ E
x∼Dk

[
dα
(
Dk ‖ Kσ(·, x)

)]
κ

√
(m/p) log p

δ /2
m , for all α ≥ 1

with κm = 1 + 2
(m/p)

[
maxxi,xj ,x∈X

Kσ(x,xi)
Kσ(x,xj)

]
. It follows that, for all 1 < α ≤ 2,

max
k∈[p]

dα
(
D̂k ‖ Dk

)
≤ max

k∈[p]
E

x∼Dk

[
dα
(
Kσ(·, x) ‖ Dk

)]
κ

α
α−1

√
(m/p) log p

δ /2
m ,

max
k∈[p]

dα
(
Dk ‖ D̂k

)
≤ max

k∈[p]
E

x∼Dk

[
dα
(
Dk ‖ Kσ(·, x)

)]
κ

√
(m/p) log p

δ /2
m .

Plugging in these inequalities into the bound of Theorem 9, for 1 < α ≤ 2, we obtain the following:

L(DT , ĥz) ≤ ε
(α−1)2

α2 M
2α−1

α2

[
max
k∈[p]

dα(D̂k ‖ Dk)
] (α−1)2

(α)2
[

max
k∈[p]

d2α−1(Dk ‖ D̂k)
]α−1

α

≤ ε
(α−1)2

α2 M
2α−1

α2

[
max
k∈[p]

dα(D̂k ‖ Dk)
][

max
k∈[p]

d2α−1(Dk ‖ D̂k)
]

(since dα(Dk ‖ D̂k) ≥ 1 and dα(D̂k ‖ Dk) ≥ 1)

≤ ε
(α−1)2

α2 M
2α−1

α2 κ
(2+ 1

α−1 )
√

(m/p) log p
δ /2

m d∗(α) d′∗(α),
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with

d∗(α) = max
k∈[p]

E
x∼Dk

[
dα
(
Kσ(·, x) ‖ Dk

)]
, d′∗(α) = max

k∈[p]
E

x∼Dk

[
d2α−1

(
Dk ‖ Kσ(·, x)

)]
.

The bound can be further simplified as follows:

L(DT , ĥz) ≤ ε
(α−1)2

α2 M
2α−1

α2 κ
(2+ 1

α−1 )
√

(m/p) log p
δ /2

m d∗(α) d′∗(α)

= ε
(α−1)2

α2 M
2α−1

α2 e(2+ 1
α−1 )
√

(m/p) log p
δ /2 log(1+ 2κ

(m/p) )d∗(α) d′∗(α)

≤ ε
(α−1)2

α2 M
2α−1

α2 e
2κ(2+ 1

α−1 )
√

log
p
δ

2(m/p) d∗(α) d′∗(α),

which completes the proof.
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F. Additional Experiments
In this section, we report experimental results for the scenario where the target domain is close to being a mixture of the
source domains but where it may not necessarily be such a mixture, a scenario not covered by (Hoffman et al., 2018).

We begin with the three datasets used in Section 5: Google Street View House Numbers (SVHN), MNIST, and USPS. For
these experiments, the learner is only given access to feature vectors and base predictors for two of the three domains, and is
asked to predict on all three domains combined. Thus, the target domain is not a mixture of the source domains, but is not
too far away from that. Table 5 presents the accuracy on all test data combined, for various baselines: the base predictors,
the uniform combination of two base predictors, and DMSA trained on two domains. DMSA outperforms unif in two of the
three cases, and is very close to unif in the other case.

To further evaluate the performance of DMSA, we also increased the number of source domains by introducing two additional
digit datasets: MNIST-M (MNIST digits superimposed on patches randomly extracted from color photos), and a synthetic
dataset (for details for these two additional datasets, see http://yaroslav.ganin.net/). Again, we left out one domain
and trained on the other four, and then tested on all domains combined. The results are given in Table 6. With more source
domains, DMSA significantly outperforms other baselines in all cases. This robust performance of the algorithm on domains
that are poorly represented or even unrepresented during training makes the algorithm a strong candidate for tackling fairness
questions.

Table 5. Train on two domains and test on all domains combined. Column name dom means that the learner is given features and base
predictors from all domains except from domain dom.

Train data svhn mnist usps

CNN-svhn - 84.2 84.2
CNN-mnist 41.0 - 41.0
CNN-usps 32.9 32.9 -
CNN-unif 43.8 85.1 90.9
DMSA 43.4 85.4 93.3

Table 6. Train on four domains and test on all domains combined. Column name dom means that the learner is given features and base
predictors from all domains except from domain dom.

Train data svhn mnist usps mnistm synth

CNN-svhn - 78.0 78.0 78.0 78.0
CNN-mnist 43.5 - 43.5 43.5 43.5
CNN-usps 28.4 28.4 - 28.4 28.4
CNN-mnistm 59.4 59.4 59.4 - 59.4
CNN-synth 83.8 83.8 83.8 83.8 -
CNN-unif 77.0 91.7 90.3 87.7 77.2
DMSA 91.1 93.5 94.0 89.8 92.4

http://yaroslav.ganin.net/

