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Abstract
The article introduces an elementary cost and stor-
age reduction method for spectral clustering and
principal component analysis. The method con-
sists in randomly “puncturing” both the data ma-
trix X ∈ Cp×n (or Rp×n) and its corresponding
kernel (Gram) matrix K through Bernoulli masks:
S ∈ {0, 1}p×n for X and B ∈ {0, 1}n×n for
K. The resulting “two-way punctured” kernel is
thus given by K = 1

p [(X � S)H(X � S)] � B.
We demonstrate that, for X composed of inde-
pendent columns drawn from a Gaussian mixture
model, as n, p → ∞ with p/n → c0 ∈ (0,∞),
the spectral behavior of K – its limiting eigen-
value distribution, as well as its isolated eigen-
values and eigenvectors – is fully tractable and
exhibits a series of counter-intuitive phenomena.
We notably prove, and empirically confirm on var-
ious real image databases, that it is possible to
drastically puncture the data, thereby providing
possibly huge computational and storage gains,
for a virtually constant (clustering or PCA) perfor-
mance. This preliminary study opens as such the
path towards rethinking, from a large dimensional
standpoint, computational and storage costs in
elementary machine learning models.

1. Introduction
The ever-increasing tremendous amounts of data that ma-
chine learning algorithms now need to face start to tip the
scale towards a major computational and storage resource
bottleneck. In such fields as astrophysics with the recent
SKA radiotelescope or Internet data mining, the collected
data are simply too large to be stored and must therefore
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be processed in real-time before being discarded altogether.
In parallel, even if those data could be stored, algorithm
complexities beyond linear can in general not be afforded.
This is already a problem for as elementary methods as
principal component analysis (PCA) or spectral clustering –
both related to Gram matrix eigenvector retrieval.

Evidently, numerous works have proposed various direc-
tions of cost-efficient methods for PCA and spectral cluster-
ing. For instance, the line of works (Johnstone & Lu, 2009;
Cai et al., 2013; Deshpande & Montanari, 2014) provides a
series of sparse PCA methods by assuming that the principal
components are sparse: the main gain arises from automati-
cally selecting the reduced set of covariates having largest
amplitude. More recently, inspired by statistical physics,
(Zhong et al., 2020) proposes an empirical Bayes version of
PCA, by setting a (non-Gaussian) product measure prior on
the principal components: (Zhong et al., 2020) in particular
obtains (in simulations) a thousand-fold reduction in the
number of data necessary to maintain equal performance
with respect to standard PCA. Yet, the most popular meth-
ods to handle large dimensional PCA fall into the realm of
dimensionality reduction and random projections (Freund
et al., 2007) which, one way or another, also require prior
knowledge on the sought principal components to avoid
dramatic performance losses. Similar ideas have been de-
vised for spectral clustering, such as hierarchical clustering
(Murtagh & Contreras, 2012).

But these works all exploit strong structural prior on the
data (e.g., a prior on principal components) to reduce the
effective data dimension, and in general only operate on one
dimension – either the data size or number.

As for mitigating storage constraints, clustering can be per-
formed in a streaming manner, as proposed in (Keriven et al.,
2018) by means of a data sketching approach. This approach
however looses much discriminating power in not effectively
“comparing” all raw data and thus fails to compete against
spectral methods. Stochastic gradient descent in deep neural
networks also performs clustering in a non-spectral man-
ner by “streaming” in small data batches (Bottou, 1991),
but these algorithms only converge after multiple epochs,
meaning that the data must be stored for later reuse. More
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conventionally, since the addition of new data induce succes-
sive rank-1 perturbations of the sample covariance, iterative
perturbation methods based on the Sherman-Morrison for-
mula can be exploited (Engel et al., 2004), however here
again at the cost of full data storage.

To cope with these limitations, the present article introduces
a new random data sparsification method which trades off
storage and computational cost reduction against perfor-
mance. The proposed two-way puncturing approach con-
sists in random Bernoulli deletions of entries (i) of the data
matrix X = [x1, . . . , xn] ∈ Cp×n (the indices of non-zero
entries differing across data) and (ii) of the Gram (sample
covariance 1

nXX
H or kernel 1

pX
HX) matrix, generically

resulting in the kernel matrix model

K =

{
1

p
(X � S)H(X � S)

}
�B ∈ Cn×n (1)

for random independent Bernoulli S ∈ {0, 1}p×n and (sym-
metric) B ∈ {0, 1}n×n, with respective parameters εS and
εB ∈ (0, 1]. Small values of εS reduce the storage size of
X and the cost of the inner-product evaluation xHi xj , while
small values of εB reduce the number of inner-product cal-
culus in K and the subsequent processing of the sparsified
matrix K. The approach follows after our preliminary work
(Zarrouk et al., 2020), restricted to S = 1p1

T
n (or equiva-

lently εS = 1) and to a simpler model for X , which already
revealed that, contrary to intuition, the puncturing proce-
dure in general does not affect the structure of the estimated
eigenvectors (thus principal components in PCA or data
classes in clustering). This conclusion still holds true here.
More surprisingly, the analysis also demonstrates that there
exist well-defined regimes – in terms of the ratio p/n and
puncturing intensities εS and εB – for which the PCA per-
formance is virtually unaltered. In particular, for equivalent
levels of sparsity (in terms of resulting computational costs),
we confirm here the finding of (Zarrouk et al., 2020) accord-
ing to which the performance of PCA or spectral clustering
onK largely overtakes the performance of the possibly more
natural subsampling alternative.1 This result is recalled in
Figure 1 for εS = 1 and εB ≡ ε.

Our main findings may be summarized as follows:

1. for data xi arising from a Gaussian mixture
model

∑k
`=1 π`N (µ`, In) (resp., a Gaussian measure

N (0, C) with C = Ip + R and R of low rank), we
show that K has a limiting eigenvalue distribution fol-
lowing a variation of the popular Marc̆enko-Pastur and

1Subsampling consists here in performing PCA or spectral
clustering on n/ε subsets of the data, each of size εn, for some
ε ∈ (0, 1] a multiple of 1/n, before merging the n/ε results
(which for simplicity we assume here comes at no cost).
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Figure 1. Phase transition diagram of spectral clustering for punc-
turing matrix K with εS = 1 and εB ≡ ε versus subsampling
Ksub ∈ Cnε×nε. Here for xi ∼ 1

2
CN (µ, Ip) + 1

2
CN (−µ, Ip),

and n/p = 100 in the large n, p limit. Solid and dashed lines
indicate theoretical phase transitions. The puncturing approach
largely overtakes the subsampling method.

semi-circle laws; upon conditions on the eigenvalues of
the matrix {√πiπjµT

i µj}ki,j=1 (resp., of the matrix R),
a phase transition phenomenon occurs beyond which
some eigenvalues of K isolate, and their associated
eigenvectors correlate to the population eigenvectors;

2. the quantities p/n, εS , and εB modulate the storage-
and-computational cost versus (PCA or spectral clus-
tering) performance trade-off; in particular, for small
εS , εB , the performance only depends on ε2

SεB
p
n ;

3. for small p/n ratios (i.e., for huge amounts of data), the
performance of PCA and spectral clustering plateaus
for a large range of values of εB (with εS fixed), before
suffering a sharp avalanche phenomenon for εB below
a certain threshold: this in particular indicates that
intensive puncturing (and thus complexity and storage
reduction) almost comes for free in this regime;

4. simulations on Fashion-MNIST and BigGAN gener-
ated images qualitatively (and partially quantitatively)
confirm our theoretical findings, justifying the possi-
bility to drastically reduce computational cost with
virtually no impairment on classification performance.

Supplementary material and codes. The proofs of our
main results are deferred to the supplementary material. All
codes to reproduce our figures are available in the gitlab
repository https://gricad-gitlab.univ-grenoble-alpes.fr/

chatelaf/two-way-kernel-matrix-puncturing.

2. The two-way puncturing model
Before relating our study to principal component analysis
and spectral clustering, we first formalize the model under
study in a generic (and thus abstract) manner.

https://gricad-gitlab.univ-grenoble-alpes.fr/chatelaf/two-way-kernel-matrix-puncturing
https://gricad-gitlab.univ-grenoble-alpes.fr/chatelaf/two-way-kernel-matrix-puncturing
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2.1. Abstract model

Let X ∈ Cp×n be a random matrix satisfying the following
assumptions.2

Assumption 1 (Data model).

X = Z + P

in which Zij ∼ CN (0, 1) are independent, and P ∈ Cp×n
is a rank-k matrix for some integer k.

Also define the binary puncturing matrices S ∈ {0, 1}p×n
and B ∈ {0, 1}n×n as follows.
Assumption 2 (Puncturing matrices). Let

• Sij ∈ {0, 1} be Bernoulli random variables with mean
εS , independent across i, j;

• Bij = Bji ∈ {0, 1} be Bernoulli random variables
with mean εB , independent across i > j;

• Bii = b ∈ {0, 1} be deterministic and fixed.

Besides, matrices S, B, and X are mutually independent.

Our objective is to study the spectral properties of the ran-
dom matrix model (1). Specifically, we determine the limit-
ing spectrum as well as the existence and characterization of
isolated eigenvalues (i.e., away from the limiting spectrum
and referred to as spikes) and their associated eigenvectors,
in the limit of large p, n. To this end, the following growth
rate assumptions are requested.
Assumption 3 (Large p, n asymptotics). As n→∞,

p/n→ c0 ∈ (0,∞)

and there exists a decomposition P = LV H of P with
V ∈ Cn×k isometric (i.e., V HV = Ik) and

1

n
LHL→ L

for some deterministic matrix L ∈ Ck×k. In particular, the
eigenvalues of L are the limiting k non-trivial eigenvalues
of 1

nP
HP . Besides,

lim sup
n

max
1≤i≤n
1≤j≤k

{
√
nV 2

ij} = 0.

The condition p/n → c0 ∈ (0,∞) translates the practical
fact that both the dimension and number of data are large
and commensurable. The convergence (1/n)LHL → L
with P = LV H is merely technical: the decomposition
P = LV H can always be ensured by singular value decom-
position, and the convergence to L is mostly for technical
convenience. In effect, the only stringent condition is that
lim supn maxi,j

√
nV 2

ij = 0: while naturally satisfied for
spectral clustering (the Vij’s are the normalized binary class
indicators), for PCA this demands that the principal compo-
nents be delocalized, i.e., not sparse.

2All results are provided in C but are equally valid in R.

2.2. PCA and spectral clustering

The model (1) specializes to principal component analysis
and spectral clustering.

Spectral clustering. Letting P = MJT, where
M = [µ1, . . . , µk] ∈ Cp×k and J = [j1, . . . , jk] ∈
{0, 1}n×k with [j`]i = δ{E[xi]=µ`} for some n1, . . . , nk,
X models a k-class Gaussian mixture model with xi ∼∑k
a=1 πaCN (µa, Ip) and na/n → πa almost surely as

n→∞. Further assuming that

n`/n→ π` = [π]` ∈ (0,∞)

D
1
2
πM

HMD
1
2
π →M

where Dπ = diag({πi}ki=1), we get that P =

(MD
1
2
n )(JD

− 1
2

n )H with Dn = diag({ni}ki=1), for which

(JD
− 1

2
n )T(JD

− 1
2

n ) = Ik,
1

n
(MD

1
2
n )H(MD

1
2
n )→M

thereby satisfying Assumptions 1–3, for L = M. Under
this setting, 1

pX
HX is (the elementary version of) a kernel

random matrix used in machine learning as the base ingre-
dient for kernel-based classification methods. In particular,
the eigenvectors associated with the dominant eigenvalues
of 1

pX
HX are the base elements of the popular (kernel)

spectral clustering algorithm (Von Luxburg, 2007).

Principal component analysis. Letting instead P = Z̃AH

with A ∈ Cn×k deterministic and Z̃ ∈ Cp×k random with
i.i.d. CN (0, 1) entries, independent of Z, we get

XH =
[
In A

] [ZH

Z̃H

]
which is a matrix with CN (0, In + AAH) independent
columns, so that 1

pX
HX is a sample covariance matrix for

the p rows3 of X of dimension n; the dominant eigenvec-
tors of 1

pX
HX are therefore the principal components of

the popular principal component analysis method. Further
requesting A to have spectral decomposition A = USV H,
where S ∈ Rk×k+ satisfies SHS → S deterministic, one gets
that P = (Z̃US)V H with V HV = Ik and

1

n
(Z̃US)H(Z̃US)→ S

again satisfying Assumption 3 for L = S.

3. Main results
As per standard random matrix methods, the technical ap-
proach to study the limiting spectrum of K consists in char-
acterizing the resolvent matrix

Q(z) = (K − zIn)−1

3One must be careful here that standard notations of n and p
are reversed under this setting.
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defined for z ∈ C \ {λi}ni=1 with λi the eigenvalues of
K. Specifically, the spectral measure νn ≡ 1

n

∑n
i=1 δλi

of K relates to the Stieltjes transform mn(z) ≡
∫

(t −
z)−1νn(dt) = 1

n trQ(z), while the eigenvector ûi ∈ Cn as-
sociated to eigenvalue λi(K) relates to the Cauchy-integral
ûiû

H
i = −1

2πı

∮
Γλi

Q(z)dz for Γλi a small positively oriented
complex contour circling around λi only.

3.1. Limiting spectral behavior

Our core technical result provides a said deterministic equiv-
alent for the random matrix Q(z), from which the limiting
behavior of the eigenvalues and eigenvectors of K follows.
Theorem 1 (Deterministic equivalent for Q). Under As-
sumptions 1–3, let z ∈ C be away from the limsup of the
union of the supports of ν1, ν2, . . .. Then, as n→∞,

Q(z)↔ m(z)

[
In +

c−1
0 ε2

SεBm(z)

1 + εBεSc
−1
0 m(z)

V LV H

]−1

where m(·) is the unique Stieltjes transform solution to

z = εSb−
1

m(z)
− c−1

0 εBε
2
Sm(z) +

c−2
0 ε3

Bε
3
Sm(z)2

1 + c−1
0 εBεSm(z)

and the notation A ↔ B indicates that, for any linear
functional u : Cn×n → R of bounded infinity norm, u(A−
B)→ 0 almost surely as n→∞.

One must understand the theorem as follows: since Q(z)
encapsulates the structural spectral information about K,
this information is fully determined (in the large n, p limit)

(i) by the scalars εS , εB , c0 and b; these mostly impact the
shape of the limiting spectrum in defining m(·)) and
modulate the “noise level” of the eigenvectors (from
the factor preceding V LV H in the expression of Q(·));

(ii) by the rank-k matrix V LV H; this matrix defines the
“average” behavior of the dominant eigenvectors of K:
these eigenvectors are simply “isotropic noisy versions”
of linear combinations of the columns of V . That
is, mapped to the applications in Section 2.2, noisy
versions of either the class canonical vectors ja’s or of
the genuine PCA vector.

As an immediate – and possibly quite surprising – con-
sequence, the dominant eigenvectors of K are, up to ex-
tra homogeneous noise, the same as those of PHP =
E[ 1

pX
HX] − In. The proposed two-way puncturing algo-

rithm therefore does not affect spectral algorithms as the
structure of the retrieved eigenvectors is maintained.

Let us now quantify these so far qualitative statements. As
a first corollary of Theorem 1, with probability one,

1

n
trQ(z) ≡ mn(z)→ m(z)

which implies, according to random matrix theory, that

νn ≡
1

n

n∑
i=1

δλi → ν

almost surely, where ν is the unique probability measure
having Stieltjes transform m(z) (i.e., m(z) =

∫
(t −

z)−1ν(dt)). It thus suffices to solve the defining equation
for m(z) in Theorem 1 to estimate the limiting spectral
distribution ν of K.4 Figure 2 indeed confirms the corre-
spondence between the empirical (finite n, p) spectrum νn
of K versus the estimated limit ν.

Remark 1 (Sitting between Marc̆enko-Pastur and Wigner).
Not surprisingly, when εB = 1 and b = 1, K = 1

p (X �
S)H(X � S) with X � S a matrix with i.i.d. entries of
zero mean and variance ε2

S , so that ν falls back onto the
popular Marc̆enko-Pastur distribution (Marčenko & Pastur,
1967) (up to an εS scale). Precisely, for z′ = z/εS and
m̃(z) =

∫
(t/εS−z)−1ν(dt) (i.e., the Stieltjes transform of

the limiting measure of the λi/εS), the canonical equation
of m(z) in Theorem 1 becomes

z′ = 1− 1

m̃(z′)
− c−1

0 m̃(z′)

1 + c−1
0 m̃(z′)

which is the defining Stieltjes transform equation of the
Marc̆enko-Pastur law. The more interesting small εB setting
is treated in Section 3.3 and gives rise to a Wigner semi-
circle limit instead (Wigner, 1958). As such, through the
values εS , εB , the limiting spectral measure ν continuously
moves from the Marc̆enko-Pastur to the Wigner semi-circle
laws. Figure 2 illustrates this observation: the shape of ν is
simultaneously reminiscent of both laws.

3.2. Phase transition and dominant eigenvectors

The limiting Stieltjes transform m(z) determines the
“macroscopic” behavior of the spectrum νn of K, but does
not provide the position of its isolated eigenvalues and even
less the shape of the associated eigenvectors. To this end, a
deeper investigation of the deterministic equivalent of Q(z)
is needed. Our next result provides this analysis.

Theorem 2 (Phase transition, isolated eigenvalues and
eigenvectors). Define the functions

F (t) = t4 +
2

εS
t3 +

1

ε2
S

(
1− c0

εB

)
t2 − 2c0

ε3
S

t− c0
ε4
S

G(t) = εSb+ c−1
0 εBεS(1 + εSt) +

εS
1 + εSt

+
εB

t(1 + εSt)

and Γ ∈ R be the largest real solution to F (Γ) = 0.
Further denote `1 > . . . > `k̄ the k̄ ≤ k distinct eigen-
values of L of respective multiplicities L1, . . . , Lk̄, and

4The measure ν is practically retrieved from m(·) by using the
inverse formula ν(dt) = limy↓0

1
π
=[m(t+ ıy)]dt.
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Figure 2. Eigenvalue distribution νn of K versus limit measure
ν, for p = 200, n = 4 000, xi ∼ .4N (µ1, Ip) + .6N (µ2, Ip)
for [µT

1 , µ
T
2 ]T ∼ N (0, 1

p
[ 10 5.5
5.5 15 ] ⊗ Ip); εS = .2, εB = .4,

b = 1. Sample vs theoretical spikes in blue vs red circles. The two
“humps” remind the semi-circular and Marc̆enko-Pastur laws.

Π1, . . . ,Πk̄ ∈ Rk×k the projectors on their respective asso-
ciated eigenspaces. Similarly denote (λ1, v̂1), . . . , (λn, v̂n)
the eigenvalue-eigenvector pairs of K in descending order
and gather the first k eigenvectors under the isometric ma-
trices V̂1 = [v̂1, . . . , v̂L1

] up to V̂k̄ = [v̂k−Lk̄+1, . . . , v̂k].

Then, for i ∈ {1, . . . , k̄} and for all j ∈ {L1 + . . .+Li−1 +
1, . . . , L1 + . . .+ Li},

λj → ρi ≡
{
G(`i) , if `i > Γ
G(Γ) , if `i ≤ Γ

almost surely, and

V̂iV̂H
i ↔ ζiVΠiV

H, for ζi =

{
F (`i)ε

3
S

`i(1+εS`i)3 , `i > Γ

0 , `i ≤ Γ

with the notation ‘↔’ introduced in Theorem 1. In par-
ticular, if the `i’s have unit multiplicities with associated
population eigenvectors vi, then

|vHi v̂i|2 → ζi, i = 1, . . . , k.

To best understand the theorem, suppose that P = lvH is
a rank-1 matrix with ‖v‖2 = 1 and ‖l‖2/n = `. Then,
if ` > Γ, with Γ the largest solution to F (Γ) = 0 – this
threshold only depending on εS , εB and c0 –, the spectrum
of K exhibits an isolated eigenvalue λ, the eigenvector v̂
of which aligns to v: i.e., |v̂Hv|2 → ζ > 0. Otherwise, if
` < Γ, the largest eigenvalue λ of K remains “stuck” in the
limiting bulk of eigenvalues of K and |v̂Hv|2 → 0 (i.e., the
eigenvector v̂ does not carry any information on v: PCA
and spectral clustering both fail in this scenario). Figure 3
illustrates the limiting (squared) alignment ζ as a function
of `.

In the more general setting where P is a rank-k matrix, pos-
sibly with multiplicities, the theorem specifies the conditions
on εB , εS and c0 under which the dominant eigenvectors of
K remain correlated (and to which extent) to the population
eigenspaces. This characterization is of tremendous impor-
tance to assess the exact performance of PCA and spectral

Figure 3. Illustration of Theorem 2: asymptotic sample-population
eigenvector alignment for L = ` ∈ R, as a function of the “in-
formation strength” `. Various values of (εS , εB , c0) indicated in
legend. Black dashed lines indicate the limiting (small εS , εB)
phase transition threshold Γ = (ε2SεBc

−1
0 )−

1
2 . As εS , εB → 0,

performance curves coincide when εBε2Sc−1
0 is constant (plain

versus dashed set of curves).

clustering under the double-puncturing cost reduction. Fig-
ure 3 illustrates Theorem 2 in a clustering setting.

An important quantity of Theorem 2 is the functionF , which
intervenes both to establish the condition under which infor-
mative isolated eigenvalues are found in the spectrum of K,
thereby defining the phase transition threshold for the pop-
ulation eigenvalue `i (through F (`i) = 0), and to evaluate
the corresponding empirical eigenvector(s) quality through
ζi = F (`i)ε

3
S/(`i(1 + εS`i)

3) (which is zero right at the
phase transition threshold). The phase transition determines
which values of the tuple (εS , εB , c0, `i) coincide with the
emergence of an isolated eigenvalue in the spectrum of K
associated to the population eigenvalue `i, and thus to the
actual feasibility of PCA or spectral clustering.

Assume now that c0 � 1 (i.e., n � p) and that εB and `i
are kept fixed and away from zero. Then, in the expression
of F (`i), 1 � c0/εB so that, in the first order, F (`i) is
independent of εB . This quite importantly implies that the
“function” εS : εB 7→ εS(εB) such that F (`i) = 0 is mostly
flat for a range of non-small values of εB . This behavior is
confirmed in Figure 4 (left display). Also, since ζi would
also marginally depend on εB , the eigenvector quality is also
the same for a wide range of εB . The major consequence of
this remark is that, for c0 � 1, εB can be taken quite small
without affecting the quality of the dominant eigenvectors:
puncturing through B does not affect the PCA or spectral
clustering performance and thus almost comes for free!

Conversely, still for c0 � 1, for εS fixed and away from
zero, we find that, at the phase transition,

εB ' c0/(1 + εS`i)
2.

As such, the reverse function εB(εS) is quite different from
εS(εB): it mostly behaves as 1/ε2

S so that, in order not to
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Figure 4. Phase transition curves F (`) = 0 for L = ` ∈ R and
varying values of `, for c0 = .05. Above each phase transition
curve, a spike eigenvalue is found away from the support of ν. For
large `, a wide range of εB’s (resp.εS) is admissible at virtually
no performance loss. Here, also, sparser B matrices are more
effective than sparser S matrices.

loose performance, increased sparsification through S must
come along with reduced sparsification through B.

Of utmost interest though is the case where c0 and `i are
fixed (although, as we will see, `2i /c0 must be large), and
where both Bernoulli parameters εB and εS assume small
values. This scenario is all the more relevant that Theo-
rems 1–2 and their corollaries take on simple and intuitive
forms. This setting is discussed next.

3.3. Small εB , εS limit

Letting z′ =
√
c0/εBε2

S(z − εSb), we obtain, in the limit
of small εB and εS , that

z′ = −1/m0(z′)−m0(z′) + o
(

(εBε
2
Sc
−1
0 )

1
2m0(z′)

)
with m0(z) = (c−1

0 εBε
2
S)

1
2m((c−1

0 εBε
2
S)

1
2 z + εSb), i.e.,

for ν the measure associated to m(z), m0 is the Stieltjes
transform of the measure ν(t/(c−1

0 εBε
2
S)

1
2 ).

This is the defining equation of Wigner’s semi-circle law
(Wigner, 1958) centered at εSb and with edges εSb ±
2(c−1

0 εBε
2
S)

1
2 .

Similarly, assuming `i > Γ, and letting ρ′i = (ρi −
εSb)/c

−1
0 εBε

2
S

1
2 and `′i = `i(εBε

2
Sc
−1
0 )

1
2 , we find, after

first order Taylor expansion, the spike equation m0(ρ′i) =

−1/`′i + o((εBε
2
Sc
−1
0 )

1
2 ), or equivalently

ρ′i = `′i + 1/`′i + o
(

(εBε
2
Sc
−1
0 )

1
2

)
which is the classically known isolated eigenvalue from
the deformed Wigner random matrix (Pastur & Shcherbina,
2011, Chapter 2.2). The scaling of `i into `′i importantly in-
dicates that, for a non-trivial spike to emerge, the eigenvalue
`i of L must scale like O((c0ε

−1
B ε−2

S )
1
2 ).

In practical terms, these results show that (i) for spectral
clustering to be feasible (but non-trivial), the inter-class

distance ‖µa − µb‖2 must scale like
√
c0/(εBε2

S), and (ii)
for PCA, the eigenvalues of the principal components must
scale like

√
c0/(εBε2

S).

As for the alignment of eigenspaces, it is given by

ÛiÛ ′i ↔
(

1− 1/(`′i)
2 + o

(
(εBε

2
Sc
−1
0 )

1
2

))
VΠiV

H

which, again, is a classical result in the deformed Wigner
random matrix model. Setting the alignment to zero, this
result also provides a much simpler value for the phase
transition threshold `i = Γ of Theorem 2 (in the limit of
small εS , εB) which corresponds to `′i ' 1, or equivalently

Γ ' 1/(εBε
2
Sc
−1
0 )

1
2 .

Remark 2 (Trading off εB , εS and c0). As a consequence
of the results above, it appears that, for small values of
εB , εS and c−1

0 , the spectral behavior (eigenvalues and
eigenvectors) of K is unaltered so long that εBε2

Sc
−1
0 is

constant. For instance, doubling n is equivalent to doubling
εB or multiplying εS by

√
2. This is confirmed by Figure 3 in

which the two sets of plain or dashed curves, corresponding
to constant εBε2

Sc
−1
0 , almost coincide.

It is important to further note that, unlike εB , εS is squared
in the expression εBε2

Sc
−1
0 due to the fact that, denoting S =

[s1, . . . , sn], the inner products (xi � si)H(xj � sj), for all
i 6= j, involve on average ε2

S terms (since 1
pE[sTi sj ] = ε2

S).

One must be careful not to confuse the findings of Sec-
tion 3.2 on non-small εB according to which εB ∈ (0, 1]
has a marginal impact on performance (and thus that inten-
sive puncturing comes for free), to the present results which
on the opposite indicate that for small εB , more intensive
puncturing decreases the performance. Both regimes are
very different as Figure 4 clearly indicates.

4. Practical consequences: the
storage/complexity performance trade-off

The main interest of the two-way puncturing approach lies
in its effective computational and storage cost reductions,
while maintaining high performance levels. As a follow-up
of Remark 2, puncturing through the matrix S can be traded
off by puncturing through B, and vice-versa, with, we will
see, varying effects on storage and computational costs.

4.1. Storage and computation costs

Computing K. For Bij = 1, evaluating Kij comes at
average cost of E[

∑p
`=1 Si`S`j ] = ε2

S products. As a result,
the whole matrix K, with an average

∑n
i,j=1 E[Bij ] =

εBn
2 (if b = 1, and εB(n− 1)2 if b = 0) non-zero entries,

has O(n2pε2
SεB) theoretical computation cost.
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Storage data. In terms of storage, if one wishes to main-
tain the data information X � S for further (non-kernel
related) use, the net gain is a factor εS on average (for a
net storage of εSpn values). If instead only the matrix K
is of relevance for future use, then the storage is restricted
to εBn(n − 1)/2 + n values when b = 1 (accounting for
symmetry) or εBn(n− 1)/2 values when b = 0.

Spectral methods. When it comes to spectral methods
(PCA or spectral clustering), one needs to retrieve the (few)
dominant eigenvectors of K. Using a power method on K
to sequentially iterate over each eigenvector is in general
optimal and comes at a cost of O(εBn

2), where the O(·)
notation encompasses the number of iterations required for
convergence (which depends on the spectral gap between
isolated eigenvalues and thus does not scale with n in our
setting). This is a gain of order εB over no puncturing.

Yet, when p � n, to evaluate the dominant eigenpairs of
XHX , it is more efficient in practice to proceed to a singular
value decomposition of the n × p matrix XH, again via a
power method. When operating the Hadamard product with
B though, this strategy cannot be put in place as XHX �B
is in general of full rank n. It is thus in this case beneficial
to divert the sparsity into letting εB = 1 and εS � 1 so to
be able to run a singular vector decomposition over the very
sparse matrix (X � S)H.

Remark 3 (Cache issues). The computational costs re-
ported in this section are provided in terms of net number
of product operations, irrespective of computer architecture
or implementation. But computing the entries of the Gram
matrixXHX can be advantageously performed “block-wise”
by caching vectors in sequences of blocks and computing
the corresponding subblocks of XHX . This powerful trick
cannot be performed on the two-way punctured matrix K
which, due to the randomness in S and B, is not organized
in blocks. In practice, we observed that the cost of system-
atically retrieving the xi’s by pairs from remote memory
is not outbalanced by the gains in net number of products.
Improved software designs are thus required to overtake this
practical limitation.

4.2. Application: large data clustering

As a telling application of our results, let us consider the
spectral clustering setting described in Section 2.2.

4.2.1. SYNTHETIC DATA

We first let x1, . . . , xn ∈ Rp arise from a synthetic two-
class Gaussian mixture with n = 4 000 and p = 2 000. Two
puncturing approaches are compared: (i) reducing the cost
of the inner products xTi xj using a 5-fold (εS = .2 while
εB = 1) random puncturing of the data vectors xi, versus
(ii) a 25-fold puncturing of the matrix 1

pX
TX (εB = .04

K=



 K=





Figure 5. Two-way punctured matrices K for (left) (εS , εB) =
(.2, 1) or (right) (εS , εB) = (1, .04), with c0 = 1

2
, n = 4 000,

p = 2 000, b = 0. Clustering setting with xi ∼ .4N (µ1, Ip) +
.6N (µ2, Ip) for [µT

1 , µ
T
2 ]T ∼ N (0, 1

p
[ 20 12
12 30 ] ⊗ Ip). (Top) first

100× 100 absolute entries of K (white for zero); (Middle) spec-
trum of K, theoretical limit, and isolated eigenvalues; (Bottom)
second dominant eigenvector v̂2 of K against theoretical average
in red. As confirmed by theory, although (top) K is dense for
εB = 1 and sparse for εB = .04 (96% empty) and (middle) the
spectra strikingly differ, (bottom) since ε2SεBc−1

0 is constant, the
eigenvector alignment |v̂T2 v2|2 is the same in both cases.

while εS = 1). Figure 5 depicts (for a setting detailed in
caption) the matrices K, their spectra and second dominant
eigenvector v̂2 (v̂1 is not discriminating in this setting, due to
PHP having a dominant all-ones eigenvector). The reported
scenario is interesting in that we purposely took εBε2

Sc
−1
0

constant in both cases; as such, while the matrices K and
their spectra dramatically differ, eigenvector v̂2 is essentially
the “same” in both matrices. This first confirms the theory
but most importantly defies the natural intuition that so
different matrices cannot possibly give rise to the same
eigenvector structure and quality.

In the very symmetric setting of two classes of equal sizes
(n/2 elements per class) and opposed statistical means
(i.e., with xi ∼ .5N (µ, Ip) + .5N (−µ, Ip)), only one
spike population eigenvalue is non-zero and v = v1 is
known: its normalized entries belong to {± 1√

n
} (indeed,

hereM = 1
2‖µ‖

2[ 1 −1
−1 1 ], the eigenvalues of which equal

‖µ‖2 and 0 with respective eigenvectors [1,−1] and [1, 1]).
By symmetry, the random entries of the sample eigenvec-
tor v̂ ≡ v̂1 are asymptotically centered on ±

√
ζ/n with

variance asymptotically equal to (1− ζ)/n for ζ ≡ ζ1 pro-
vided by Theorem 2 (with `1 = ‖µ‖2). Related random
matrix studies (e.g., (Kadavankandy & Couillet, 2019) for
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Figure 6. Limiting probability of error of spectral clustering of
N (±µ, Ip) with equal class sizes on K: as a function of εB for
fixed ` = ‖µ‖2 = 50 (top), and εS for fixed ` = 50 (bottom).
Simulations (single realization) in markers for p = n = 4 000
(×) and p = n = 8 000 (+). Very good fit between theory and
practice for not too small εS , εB .

εS = εB = 1) have shown that the fluctuations of the entries
of v̂ are asymptotically Gaussian and pairwise independent;
this suffices to justify that the asymptotic classification error
Pe incurred by spectral clustering is given by:

Pe =
1

n

n∑
i=1

δ{sign([v̂]i[v]i)<0} → Q
(√

ζ/(1− ζ)
)

almost surely, where Q(t) = 1√
2π

∫∞
t
e−u

2/2du is the
Gaussian tail function, and the (arbitrary) signs of v, v̂ are
chosen such that 0 ≤ Pe ≤ 1

2 . Figure 6 depicts the limiting
error for various values of (εS , εB , c0, `). Despite εB and
εS being particularly in this setting, the simulations show a
strong fit between theory and practice, even for not so large
values of n.

Remark 4 (How large should n, p be in practice?). It is well
established in random matrix theory that limiting results
can be obtained at speeds up to O(1/

√
pn) = O(1/n). We

may in particular show here that Pe = Q(
√
ζ/(1− ζ)) +

O(1/n). As a consequence, our practical predictions are
already accurate for quite small values of n.

This being said, the O(1/n) term hides constants, particu-
larly depending on εS , εB which cannot be taken too small.
As a rule of thumb, 1/εS , 1/εB must remain small compared
to p, n.5 This last remark explains in passing the disrupted
behavior of Figure 6-(bottom) for too small εB .

5If not, as discussed in the article concluding remarks, K falls
into a “sparse regime” no longer supported by the present random
matrix analysis.

Figure 7. Examples of BigGAN-generated images, ‘collie’ dog
instances (top row), ‘tabby’ cat instances (bottom row).

4.2.2. RESILIENCE TO REAL-WORLD IMAGES

To practically confirm our theoretical findings, we next ap-
ply the two-way puncturing kernel to vectors xi arising
from a two-class mixture (‘tabby’ cats versus ‘collie’
dogs; see Figure 7) of the (globally centered and scaled)
p = 4 096-VGG features of randomly BigGAN-generated
images (Brock et al., 2018). The results are for varying εB
and either fixed εS or εS set such that ε2

SεB = 5 ·10−4. The
simulation depicted in Figure 8 corroborates the presence
of a performance “plateau” and a significant reduction of
the transition value of εB (from .05 to .015) when n (and
thus 1/c0) increases fourfold. This supports the theoretical
performance of the central display in Figure 6. Maintaining
ε2
SεB constant pushes this plateau further down to smaller

values of εB until the method breaks. The same conclusion
can be drawn on non-pretreated p = 784-dimensional real
word images from the Fashion-MNIST dataset, as shown in
Figure 9.

More interestingly, as shown in Figure 10, while for
εB = εS = 1 the eigenvalues of K for the GAN images
spread far from the theoretical Marc̆enko-Pastur limit,6 for
εB , εS � 1, the empirical spectrum is very close to the
predicted (uncorrelated vector) limit: this strongly suggests
that intensive puncturing has the effect to “decorrelate” data.
This remark has the powerful advantage to improve the
theoretical tractability of these preprocessed data. More sur-
prisingly, for both small or large εB , εS , despite the general
spectrum mismatch, the anticipated dominant eigenvalue
position and eigenvector behavior are extremely good, mak-
ing it still possible to predict clustering performance with
good accuracy. The same conclusions apply to the Fashion-
MNIST dataset (see figures in the gitlab repository).

6This may at first be thought to follow from strong feature
covariance (thus not close to Ip), but it turns out that in-sample
correlation is even stronger as the VGG-features of the produced
GAN images appear to have a very low variability.
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Figure 8. Empirical classification errors for 2-class (balanced)
BigGAN-generated images (‘tabby’ vs ‘collie’), with n =
2 500 (top) and n = 10 000 (bottom). Theoretically predicted

“plateau”-behavior observed for all εB not too small.

Figure 9. Empirical classification errors for 2-class (balanced)
MNIST-fashion images (‘trouser’ vs ‘pullover’), with n =
512 (top) and n = 2048 (bottom). Similar “plateaus” as pre-
dicted by the theory and observed in Figure 8.

5. Concluding remarks
A fundamental conclusion of the article, confirmed on prac-
tical data, is that drastic computation and storage reduction
can be theoretically achieved while virtually incurring no
loss in PCA or spectral clustering. This follows from the
peculiar behavior of (doubly) punctured kernel and sample
covariance matrices K. As shown in an enlarging spectrum
of articles, the large dimensional behavior of Q has imme-
diate further implications to the performance behavior of
many machine learning algorithms, ranging from support
vector machines (Kammoun & Alouini, 2020; Huang, 2017)
to semi-supervised graph inference (Mai & Couillet, 2018),
transfer and multi-task learning (Tiomoko et al., 2020), ran-
dom feature maps (Liao & Couillet, 2018b; Pennington &
Worah, 2019), or neural network dynamics (Liao & Couillet,
2018a; Advani et al., 2020), to cite a few. As such, the
article, rather than providing a ready-to-use method for fast

Figure 10. Sample vs limiting spectra and dominant eigenvec-
tor of K for 2-class GAN images (tabby vs collie); (left)
εS = εB = 1 (error rate: Pe = .004); (right) εS = 0.01,
εB = 0.2 (Pe = .011). Surprisingly good fit between sam-
ple and predicted isolated eigenvalue/eigenvector in all cases;
as for spectral measure, significant prediction improvement as
εS , εB → 0.

unsupervised learning, really lays the theoretical ground to
a systematic cost and storage reduction approach to a host
of learning algorithms.

On the downside though, following up on Remark 3, the ef-
fective software libraries for sparse matrix operations (which
heavily rely on block-sparsity) are far from optimal when
compared to efficient dense matrix operations, and thus
demand a profound treatment to ensure that our claimed
computational cost improvements are truly met in practice.
This is not a negligible aspect of the puncturing framework
which we shall investigate in greater depth in the future.

Another critical aspect lies in the request that εB , εS = O(1)
with respect to p, n, thereby not allowing for truly sparse K.
For more severe puncturing, random matrix theory fails to
provide accurate predictions and, worse, the optimal phase
transition threshold is no longer met by clustering from K
but from more elaborate matrices (such as proposed by sta-
tistical physicists (Krzakala et al., 2013; Dall’Amico et al.,
2019)). Pushing towards sparser models therefore demands
a dramatic change of theoretical standpoint.
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