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1. More details on the mathematical
formulation

1.1. Proofs

In this subsection section, we prove the propositions form
the main paper.
Proposition 1 (Metric properties). For all labelling sets
A,B ⊂ [1 : T ] × [1 : dX ], the mask information and
entropy enjoy the following properties:

Positivity:

IM(A) ≥ 0 SM(A) ≥ 0

Additivity:

IM(A ∪B) = IM(A) + IM(B)− IM(A ∩B)

SM(A ∪B) = SM(A) + SM(B)− SM(A ∩B)

Monotonicity If A ⊂ B :

IM(A) ≤ IM(B) SM(A) ≤ SM(B).

Proof. Let us proof all the properties one by one.

Positivity By definition, all coefficients from the mask are
normalized: mt,i ∈ [0, 1] for (t, i) ∈ [1 : T ]×[1 : dX ]. Pos-
itivity follows trivially from the properties of the logarithm
function

IM(A) = −
∑

(t,i)∈A

ln (1−mt,i)︸ ︷︷ ︸
≤0

≥ 0.

The same goes for the entropy

SM(A) = −
∑

(t,i)∈A

mt,i︸︷︷︸
≥0

lnmt,i︸ ︷︷ ︸
≤0

+ (1−mt,i)︸ ︷︷ ︸
≥0

ln (1−mt,i)︸ ︷︷ ︸
≤0

≥ 0.
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Additivity We first note that the proposition follows trivially
if the sets are distinct A ∩B = ∅:

IM (A ∪B) = −
∑

(t,i)∈A∪B

ln (1−mt,i)

= −
∑

(t,i)∈A

ln (1−mt,i)

−
∑

(t,i)∈B

ln (1−mt,i)

= IM(A) + IM(B).

Now consider the case where C ⊂ D, since C and D \ C
are disjoint, we can write

IM (D) = IM (C) + IM (D \ C) (1)
⇒ IM (D \ C) = IM (D)− IM (C) . (2)

We shall now prove the additivity property in general by
using these two ingredients. First we note that the set A∪B
can be written as the disjoint union A t [B \ (A ∩B)]. It
follows that

IM(A ∪B) = IM (A) + IM (B \ [A ∩B])

= IM (A) + IM (B)− IM (A ∩B) ,

where we have used the additivity property for disjoint sets
in the first equality and the fact that (A ∩B) ⊂ B in the
second equality. The same reasoning holds for the entropy.

Monotonicity To prove the monotonicity property, it is use-
ful to note that if A ⊂ B, we can use (2) to write

IM (A) = IM (B)− IM (B \A)︸ ︷︷ ︸
≥0

≤ IM (B) ,

where we have used the information positivity to produce the
inequality. The same reasoning holds for the entropy.

1.2. Normalized information and entropy

In this subsection, we introduce the normalized counter-
parts of our information theoretic metrics. It is important to
keep in mind that all the available information for issuing
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a black-box prediction is in [1 : T ] × [1 : dX ]. Therefore,
the monotonicity property allows to introduce normalized
counterparts of the information and the entropy.

Definition 2 (Normalized metrics). The normalized mask
information associated to a mask M and a subsequence
(xt,i)(t,i)∈A of the input X with A ⊆ [1 : T ]× [1 : dX ] is

iM(A) =
IM(A)

IM([1 : T ]× [1 : dX ])
.

The same goes for the related normalized mask entropy

sM(A) =
SM(A)

SM([1 : T ]× [1 : dX ])
.

Remark 3. By the monotonicity and the positivity properties,
it is clear that 0 ≤ iM(A), sM(A) ≤ 1 for all A ⊆ [1 :
T ] × [1 : dX ]. This gives a natural interpretation of these
quantities as being, respectively, the fraction of the total
information and entropy contained in the subsequence A
according to the mask M.

The normalized version of the metrics allow to measure
what percentage of the total mask information/entropy is
contained in a given subsequence.

1.3. Definition of a mask for other saliency methods

In this section, we explain how to associate a mask to any
saliency method. Suppose that a given method produces a
score matrix R ∈ RT×dX that assigns an importance score
rt,i for each element xt,i of the input matrix X. Then, if we
normalize the coefficients of the score matrix, we obtain an
associated mask:

M =
1

rmax

[
R− rmin · (1)T×dX

]
,

rmin = min {rt,i | (t, i) ∈ [1 : T ]× [1 : dX ]}
rmax = max {rt,i | (t, i) ∈ [1 : T ]× [1 : dX ]}

where (1)T×dX denotes a T × dX matrix with all elements
set to 1. This mask can subsequently be used to compute the
mask information content and entropy. In our experiments,
we use this correspondence to compare our method with
popular saliency methods.

2. More details on the implementation
2.1. Algorithm

The mask optimization algorithm is presented in Algo-
rithm 1. In the algorithm, we used the notation (0.5)T×dX

for a T × dX matrix with all elements set1 to 0.5. Simi-
larly, (0)T ·dX ·(1−a) denotes a vector with T · dX · (1− a)

1By setting all the initial coefficients of the mask M to 0.5, we
make no prior assumption on the saliency of each feature.

Algorithm 1 Dynamask
Input: input sequence X ∈ RT×dX , black-box f , pertur-
bation operator Π, mask area a ∈ [0, 1], learning rate
η ∈ R+, momentum α ∈ R+, initial size regulator
λ0 ∈ R+, regulator dilation δ ∈ R≥1, time variation
regulator λc ∈ R+ , number of epochs N ∈ N
Output: mask M ∈ [0, 1]T×dX

M← (0.5)T×dX

ra ← (0)T ·dX ·(1−a) ⊕ (1)T ·dX ·a

∆M← 0
λa ← λ0
for i = 1 to N do

X̃← ΠM (X)
Evaluate the error Le (M) between f(X) and f(X̃)
La (M)← ‖vecsort(M)− ra‖2
Lc (M)←

∑dX

i=1

∑T−1
t=1 |mt+1,i −mt,i|

∆M← η · ∇M [Le + λaLa + λcLc] + α ·∆M
M←M + ∆M
M← clamp[0,1] (M)
λa ← λa × exp (log δ/N)

end for

components set to 0 and (1)T ·dX ·a denotes a vector with
T · dX · a components set to 1. The symbol ⊕ denotes the
direct sum between two vector spaces, which is equivalent
to the concatenation in Algorithm 1. The error part of the
loss Le depends on the task (regression or classification), as
explained in Section 3 of the paper. The momentum and the
learning rate are typically set to 1, the number of epoch is
typically 1000. We also use the clamp function, which is
defined component by component as[

clamp[0,1] (M)
]
t,i

= min [max (mt,i, 0) , 1] .

Finally, we note that the mask size regularization coefficient
λa grows exponentially during the optimization to reach a
maximum value of δ · λ0 at the end of the optimization. In
practice, it is initialized to a small value (typically λ0 = 0.1)
and dilated by several order of magnitude during the opti-
mization (typically δ = 1000). In this way, the optimization
procedure works in two times. At the beginning, the loss is
dominated by the error Le(M) so that the mask increases
the mask coefficients of salient features. As the regulation
coefficient λa increases, the regulation term becomes more
and more important so that the mask coefficients are at-
tracted to 0 and 1. At the end of the optimization, the mask
is almost binary.

2.2. Deletion variant

We notice that Algorithm 1 produces a mask that highlights
the features that allow to reproduce the black-box prediction
by keeping the error part of the loss Le(M) to be small.
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However, it is possible to highlight important features in
another way. For instance, we could try to find the features
that maximizes the prediction shift when perturbed. In this
alternative formulation, the mask is obtained by solving the
following optimization problem:

M̃
∗
a = arg min

M∈[0,1]T×dX

−Le (1−M) + λ · La (M) .

Note that, in this case, the sign of the error part is flipped
in order to maximizes the shift in the prediction. Moreover,
the error is now evaluated for 1 −M rather than M. This
is because important features are maximally perturbed in
this case. In this way, a salient feature xt,i can keep a
mask coefficient mt,i close to 1 while being maximally
perturbed. The regulator stays the same in this deletion
variant, as the mask area still corresponds to the number of
mask coefficients set to 1. We use the deletion variant to
obtain the masks in the experiment with clinical data in the
main paper.

3. More details on the experiments
3.1. Metrics

We give the precise definition of each metric that appears
in the experiments. Let us start with the metrics that are
defined when the true importance is known.

Definition 4 (AUP,AUR). Let Q = (qt,i)(t,i)∈[1:T ]×[1:dX ]

be a matrix in {0, 1}T×dX whose elements indicate the true
saliency of the inputs contained in X ∈ RT×dX . By defini-
tion, qt,i = 1 if the feature xt,i is salient and 0 otherwise.
Let M = (mt,i)(t,i)∈[1:T ]×[1:dX ] be a mask in [0, 1]T×dX

obtained with a saliency method. Let τ ∈ (0, 1) be the
detection threshold for mt,i to indicate that the feature xt,i
is salient. This allows to convert the mask into an estimator
Q̂(τ) = (q̂t,i(τ))(t,i)∈[1:T ]×[1:dX ] for Q via

q̂t,i(τ) =

{
1 if mt,i ≥ τ
0 else.

Consider the sets of truly salient indexes and the set of
indexes selected by the saliency method

A = {(t, i) ∈ [1 : T ]× [1 : dX ] | qt,i = 1}
Â(τ) = {(t, i) ∈ [1 : T ]× [1 : dX ] | q̂t,i(τ) = 1} .

We define the precision and recall curves that map each
threshold to a precision and recall score:

P : (0, 1) −→ [0, 1] : τ 7−→ |A ∩ Â(τ)|
|Â(τ)|

R : (0, 1) −→ [0, 1] : τ 7−→ |A ∩ Â(τ)|
|A|

.

The AUP and AUR scores are the area under these curves

AUP =

∫ 1

0

P(τ)dτ

AUR =

∫ 1

0

R(τ)dτ.

Remark 5. Roughly speaking, we consider the identifica-
tion of salient features as a binary classification task. Each
saliency method can thus be seen as a binary classifier for
which we compute the AUP and the AUR.
Remark 6. Integrating over several detection thresholds
allows to evaluate a saliency method with several levels of
tolerance on what is considered as a salient feature.

In our experiment with MIMIC-III, since the ground true
feature importance is unknown, we use the following met-
rics defined for a binary classification problem2.

Definition 7 (CE, ACC). Consider a classifier f that maps
the input X to a probability f(X) ∈ [0, 1]. Let X̃ be a
perturbed input produced by a saliency method3. We define
the function that converts a probability into a class

class(p) =

{
0 if p < 0.5
1 else.

To measure the shift in the classifier’s prediction caused
by the perturbation of the input for several test examples
{Xk | k ∈ [1 : K]}, we use the binary cross-entropy (or log-
loss)

CE = − 1

K

K∑
k=1

class [f(Xk)] · log f
(
X̃k

)
+ (1− class [f(Xk)]) · log

[
1− f

(
X̃k

)]
.

To measure the number of prediction flipped by the pertur-
bation, we use the accuracy

ACC =
|
{
k ∈ [1 : K] : class [f(Xk)] = class

[
f(X̃k)

]}
|

K
.

We reproduce our experiment several times to get an average
and a standard deviation for all of these metrics.

3.2. Computing infrastructure

All our experiments have been performed on a machine with
Intel(R) Core(TM) i5-8600K CPU @ 3.60GHz [6 cores]
and Nvidia GeForce RTX 2080 Ti GPU.

2In our experiment, each input corresponds to a patient. Class
0 indicates that the patient survives and class 1 indicates that the
patient dies.

3In our experiment, we replace the most important features by
the time average of the corresponding feature.
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3.3. Details on the rare experiment

Data generation Since this experiment relies on a white-
box, we only have to generate the input sequences. As we
explain in the main paper, each feature sequence is generated
with an ARMA process:

xt,i = ϕ1 · xt−1,i + ϕ2 · xt−2,i + ϕ3 · xt−3,i + εt,

with ϕ1 = 0.25, ϕ2 = 0.1, ϕ3 = 0.05 and εt ∼ N (0, 1).
We generate one such sequence with t ∈ [1 : 50] for each
feature i ∈ [1 : 50] by using the Python statsmodels library.

In the rare feature experiment, 5 features are selected as
salient. Their indices are contained in AX and drawn uni-
formly without replacement from [1 : 50]. The salient times
are defined as AT = [13 : 38].

In the rare time experiment, 5 time steps are selected
as salient. The initial salient time is drawn uniformly
t∗ ∼ U([1 : 46]). The salient times are then defined
as AT = [t∗ : t∗ + 4]. The salient features are defined as
AX = [13 : 38].

Mask fitting For each time series, we fit a mask by using the
temporal Gaussian blur πg as a perturbation operator with
σmax = 1 and by using the squared error loss. A mask is
fitted for each value of a ∈

{
(n+ 1) · 10−3 | n ∈ [0 : 49]

}
.

The mask M∗a with the lowest squared error Le(M∗a) is se-
lected. The hyperparameters for this optimization procedure
are η = 1, α = 1, λ0 = 1, δ = 1000, λc = 0, N = 1000.

In our experiments, we don’t consider a > 0.05. This is
because we found experimentally that the error Le(M∗a)
generally reaches a plateau as a gets closer to 0.05, as illus-
trated in the examples from Figures 1 & 2. This is consistent
with the fraction of inputs that are truly salient since

|A|
|[1 : 50]× [1 : 50]|

=
25 · 5
50 · 50

= 0.05.

Runtime For rare time, finding the best mask takes on aver-
age 15.7s. For rare feature, finding the best mask takes on
average 20.7s.

Illustrations To illustrate the results of our experiments, we
show the saliency masks produced by various methods for
the rare feature experiment in Figure 3 & 4 and for the rare
time experiment in Figure 5 & 6. For all of these exam-
ples, we notice that Dynamask identifies a bigger portion
of the truly salient inputs, which illustrates the bigger AUR
reported in the main paper.

3.4. Details on the state experiment

Data generation The data generation is governed by a Hid-
den Markov Model (HMM). The initial distribution vector

Figure 1. The error Le(M∗
a) as a function of a. We clearly see that

the error stops decreasing when a gets close to 0.05. This group of
masks are fitted on a time series from the rare feature experiment.

for this HMM is given by π = (0.5, 0.5) and its transition
matrix is

C =

(
0.1 0.9
0.1 0.9

)
.

At each time, the input feature vector has three components
(dX = 3) and is generated according to the current state
via xt ∼ N

(
µst ,Σst

)
with mean vectors depending on

the state: µ1 = (0.1, 1.6, 0.5) or µ2 = (−0.1,−0.4,−1.5).
When it comes to the covariance matrices, only the off-
diagonal terms differ from one state to another:

Σ1 =

0.8 0 0
0 0.8 0.01
0 0.01 0.8


Σ2 =

 0.8 0.01 0
0.01 0.8 0

0 0 0.8

 .

To each of these input vectors is associated a binary label
yt ∈ {0, 1}. This binary label is conditioned by one of the
three component of the feature vector, based on the state:

pt =

{
(1 + exp [−x2,t])−1 if st = 0

(1 + exp [−x3,t])−1 if st = 1
.

The length of each time series is fixed to 200 (T = 200).
We generate 1000 such time series, 800 are used for model
training and 200 for testing.

Model training We train a RNN with one layer made of
200 GRU cells trained using the Adam optimizer for 80
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Figure 2. The error Le(M∗
a) as a function of a. We clearly see that

the error stops decreasing when a gets close to 0.05. This group
of masks are fitted on a time series from the rare time experiment.

epochs (lr = 0.001, β1 = 0.9, β2 = 0.999 and no weight
decay).

Mask fitting For each test time series, we fit a mask by us-
ing the temporal Gaussian blur πg as a perturbation operator
with σmax = 1. A mask is optimized for each value of a ∈{

0.15 + 2n · 10−2 | n ∈ [0 : 10]
}

. We keep the extremal

mask for a threshold set to ε = 0.9 · Le

(
M = (1)

T×dX

)
.

The hyperparameters for this optimization procedure are
η = 1, α = 1, λ0 = 0.1, δ = 100, λc = 1, N = 1000.

Runtime Finding the extremal mask for a given input takes
49.8s on average.

Illustrations To illustrate the results of our experiments, we
show the saliency masks produced by various methods on
Figure 7 & 8. By inspecting these figures, we notice that
only Dynamask and Integrated Gradients seem to produce
saliency maps where the imprint of the true saliency can be
distinguished. One advantage of Dynamask is the contrast
put between these salient inputs and the rest. In the case
of Integrated Gradients, we see that many irrelevant inputs
are assigned an important saliency score, although smaller
than the truly salient inputs. This is because gradients are
computed individually, without the goal of achieving parsi-
monious feature selection.
In addition, we have reported the mask entropy for each of
the methods. As claimed in the main paper, Dynamask pro-
duces mask that have significantly lower entropy. Among
the methods that produce masks with high entropy, we no-
tice two trends. Some methods, such as RETAIN, produce
masks where a significant portion of the inputs are assigned

a mask entropy close the 0.5. As discussed in the main
paper, these significance of the saliency scores is limited
in this situation, since no clear contrast can be drawn be-
tween the saliency of different inputs. On the other hand,
some methods like FIT produce masks with many different
masks coefficients, which renders the saliency map some-
what fuzzy. In both cases, the high entropy detects these
obstructions for legibility.

3.5. Details on the mimic experiment

Data preprocessing The data preprocessing used here is
precisely the same as the one described in (Tonekaboni et al.,
2020), we summarize it here for completeness. We use the
adult ICU admission data from the MIMIC-III dataset (John-
son et al., 2016). For each patient, we use the features Age,
Gender, Ethnicity, First Admission to the ICU, LACTATE,
MAGNESIUM, PHOSPHATE, PLATELET, POTASSIUM,
PTT, INR, PR, SODIUM, BUN, WBC, HeartRate, DiasBP,
SysBP, RespRate, SpO2, Glucose, Temp (in total, dX = 31).
The time series data is converted in 48 hour blocks (T = 48)
by averaging all the measurements over each hour block.
The patients with all 48 hour blocks missing for a specific
features are excluded, this results in 22,9888 ICU admis-
sions. Mean imputation is used when HeartRate, DiasBP,
SysBP, RespRate, SpO2, Glucose, Temp are missing. For-
ward imputation is used when LACTATE, MAGNESIUM,
PHOSPHATE, PLATELET, POTASSIUM, PTT, INR, PR,
SODIUM, BUN, WBC are missing. All features are stan-
dardized and the label is a mortality probability score in [0,
1]. The resulting dataset is split into a training set (65%), a
validation set (15%) and a test set (20%).

Model training The model that we train is a RNN with a sin-
gle layer made of 200 GRU cells. It is trained for 80 epochs
with an Adam optimizer (lr = 0.001, β1 = 0.9, β2 = 0.999
and no weight decay).

Mask fitting For each test patient, we simply fit a mask
with a = 0.1 by maximizing the cross-entropy loss in the
deletion variant formulation of Dynamask. We use the fade-
to-moving average perturbation πm with W = 48. The
hyperparameters for this optimization procedure are η =
1, α = 1, λ0 = 0.1, λc = 0, δ = 1000, N = 1000.

Runtime Fitting a mask for a given patient takes 3.58 s on
average.

Illustrations To illustrate the results of our experiments, we
show the 10% most important features for patients that are
predicted to die on Figure 9 & 10 and for patients that are
predicted to survive on Figure 11 & 12. In each case, we
indicate the cross-entropy between the unperturbed and the
perturbed prediction, as defined in Definition 7. We note
that Dynamask identifies the features that create the biggest
shift. Qualitatively, we note that Dynamask seems to focus
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Table 1. Influence of perturbation operator.

Acc πg πm πp

πg 1 .85 .80
πm .85 1 .80
πp .80 .80 1

AUROC .90 .90 .86

much more on the input that appear at latter time. This
is consistent with the observations in (Ismail et al., 2019):
these inputs are the most important for the black-box, since
it is trained to predict the mortality after the 48 hours and
RNNs have short term memory.

3.6. Influence of the perturbation operator

To study the effect of the perturbation operator choice,
we have performed the following experiment: in the set-
up of the state experiment, we optimize 100 masks on
distinct examples by using a Gaussian blur perturbation
(πg, σmax = 1) and a fade-to-moving average perturbation
(πm,W = 3). We do the same with a fade-to-past aver-
age perturbation that only uses past values of the features:
(πp,W = 6). For each pair of perturbation operators, we
compute the average accuracy between the associated masks
(i.e. the fraction of inputs where both masks agree). For
each method, we report the AUROC for the identification of
true salient inputs. The results are reported in Table 1. We
observe that πg, πm, πp generally agree and offer similar
performances.
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Figure 3. Saliency masks produced by various methods for the test example 1 of the rare feature experiment.
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Figure 4. Saliency masks produced by various methods for the test example 2 of the rare feature experiment.
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Figure 5. Saliency masks produced by various methods for the test example 1 of the rare time experiment.
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Figure 6. Saliency masks produced by various methods for the test example 2 of the rare time experiment.
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Figure 7. Saliency masks produced by various methods for the test example 5 of the state experiment. For each method, the global entropy
of the mask SM ([1 : 100]× [1 : 3]) is reported.
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Figure 8. Saliency masks produced by various methods for the test example 21 of the state experiment. For each method, the global
entropy of the mask SM ([1 : 100]× [1 : 3]) is reported.
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Patient 64 - Prediction = die

Figure 9. Most important inputs for patient 64. For each saliency method, the 10% most important inputs are represented in green. The
black-box predicts that this patient will die. In each case, the cross entropy (CE) between the unperturbed and the perturbed prediction is
reported.
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Figure 10. Most important inputs for patient 144. For each saliency method, the 10% most important inputs are represented in green. The
black-box predicts that this patient will die. In each case, the cross entropy (CE) between the unperturbed and the perturbed prediction is
reported.
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Patient 13 - Prediction = survive

Figure 11. Most important inputs for patient 13. For each saliency method, the 10% most important inputs are represented in green. The
black-box predicts that this patient will survive. In each case, the cross entropy (CE) between the unperturbed and the perturbed prediction
is reported.
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Figure 12. Most important inputs for patient 666. For each saliency method, the 10% most important inputs are represented in green.
The black-box predicts that this patient will survive. In each case, the cross entropy (CE) between the unperturbed and the perturbed
prediction is reported.
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