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A. Discussion of Theorems 1 and 2

The reason we are interested in studying identities like (L) in full generality is to demonstrate that these relationships,
which have been studied in particular specific cases by a number of authors (cf. Tables. 1 and 2) have a simple common
structure. In this manner our goal is to contribute to the understanding of distributional robustness and regularisation directly,
rather than the specific application articulated in the adversarial robustness literature. In particular, our choice of a separable
Banach space for X is primarily motivated by the work of Blanchet & Murthy (2019), wherein the authors consider a
Polish space. When X is a Polish space equipped with a linear structure (so that we can exploit identities from convex
analysis), this makes X a separable Fréchet space. Our analysis is only restricted to the Banach setting only by our use of
the generalised Euler identity (Yang & Wei, 2008, Thm. 3.2), however we feel that this restriction is elementary.

A.1. Results related to Theorem 1

There are a number of similar results concerning identities of the form (L) and these are summarised in Table 1; the
result column refers to the relationship shown in (L). The assumptions necessary to show only inequality in Theorem 1 are
substantially weaker than the complete statement of the theorem (this is shown in the first paragraph of the proof on p. ) and
so we don’t include them in table. The weakest assumptions are highlighed with bold text, and any onerous assumptions
are highlighted with bold red text. In all cases our result is a strict generalisation, and no other works cited observe our
slackness bound using the lack of convexity parameter. The closest result to our slackness bound is not noted in — but can
be derived from — the work of Kuhn et al. (2019), which mention in Remark 3.
Remark 3. A similar slackness bound to (2) can be derived from Kuhn et al. (2019, Thms. 5,10), who show (under additional
assumptions)

sup

⌫2Bk · k(µ,r)

Z
f dµ 

Z
f dµ+ r lip

k · k
(f)

and

sup

⌫2Bk · k(µ,r)

Z
co f dµ =

Z
co f dµ+ r lip

k · k
(co f),

which, together with the observation co f  f , implies the slackness bound
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However, (A.1) neither enjoys the same tightness guarantee as (2) (as demonstrated by Example 1), nor is stated with our
level of generality.
Example 1. Let I def

= [�r0/2, r0/2] ✓ R be an interval defined for some r0 > 0. Let f(x) def
= 1� (2x/r0)2 for x 2 I and

f(x) = 0 for all other points x. Then f is upper semicontinuous, co f ⌘ 0, ⇢(f) = 1. Then
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while the right hand side of (A.1) is

⇢(f) + r0(lipc(f)� lipc(co f)) = 1 + r0 lipc(f).

This shows that

sup

µ2P(I)
�f,k · k,r(µ) < ⇢(f) + r0(lipc(f)� lipc(co f)).

Then, by the intermediate value theorem, there exists 0  r < r0 so that the bound (A.1) is not tight in the same way as (2).

B. Technical results on distributional robustness

For a topological vector space X we denote by X⇤ its topological dual. These are in a duality with the pairing
h · , · i : X ⇥X⇤

! R. The weakest topology on X so that X⇤ is its topological dual is denoted �(X,X⇤
). The continuous

real functions on a topological space ⌦ are collected in C(⌦), and the subset of these that are bounded is Cb(⌦). For
a measure µ 2 P(X) and a Borel mapping f : X ! Y , the push-forward measure is denoted f#µ 2 P(Y ) where
f#µ(A)

def
= µ(f�1

(A)) for every Borel A ✓ Y .

The ✏-subdifferential of a convex function f : X ! R̄ at a point x 2 X is
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and satisfies the following Fenchel–Young rule when f is closed convex
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Finally the domains are dom @f def
= {x 2 X | @f(x) 6= ;} and dom @✏f

def
= {x 2 X | @✏f(x) 6= ;}.

A coupling function c : X ⇥X ! R̄ has an associated conjugacy operation with

f c
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for any function f : X ! R̄. The indicator function of a set A ✓ X is ◆A(x) def
= 0 for x 2 A and ◆A(x)

def
= 1 for x /2 A.

When f : Rd
! R̄ is minorised by an affine function, there is (cf. Hiriart-Urruty & Lemaréchal, 2010, Prop. X.1.5.4;

Benoist & Hiriart-Urruty, 1996)
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B.1. Proof of Theorem 1 and other technical results

Lemma 1 ((Blanchet & Murthy (2019, Thm. 1))). suppose ⌦ is a Polish space and fix µ 2 P(⌦). Let c : ⌦ ⇥⌦ ! R̄�0

be lower semicontinuous with c(!,!) = 0 for all ! 2 ⌦, and f : ⌦ ! R is upper semicontinuous. Then for all r � 0 there
is
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Duality results like Lemma 1 have been the basis of a number of recent theoretical efforts in the theory of adversarial
learning (Sinha et al., 2018; Gao & Kleywegt, 2016; Blanchet et al., 2019; Shafieezadeh-Abadeh et al., 2019), the results of
Blanchet & Murthy (2019) being the most general to date. The necessity for such duality results like Lemma 1 is because
while the supremum on the left hand side of (B.2) is over a (usually) infinite dimensional space, the right hand side only
involves only a finite dimensional optimisation. The generalised conjugate in (B.2) also hides an optimisation, but when the
outcome space ⌦ is finite dimensional, this too is a finite dimensional problem.

We also require the following result of Yang & Wei (2008) to exploit the structure of k-homogenous functions.

Lemma 2 ((Yang & Wei (2008, Thm. 3.2))). Suppose X is a Banach space and c : X ! R̄ is convex, k-positively
homogeneous for k > 0, and lower semicontinuous. Then for every x 2 dom @c there is

8x⇤2@c(x) : c(x) = k�1
hx, x⇤

i.

The following lemma is sometimes stated a consequence of, or in the proof of, the McShane–Whitney extension theorem
(McShane, 1934; Whitney, 1934), but it is immediate to observe.

Lemma 3. Let X be a set. Assume c : X ⇥X ! R̄�0 satisfies c(x, x) = 0 for all x 2 X , f : X ! R. Then

1 � lipc(f) () 8y2X : f(y) = sup
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(f(x)� c(x, y)).

Proof. Suppose 1 � lipc(f). Fix y0 2 X . Then

8x2X : f(x)� c(x, y0)  f(y0),

with equality when x = y0. Next suppose
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as claimed.

Lemma 4. Suppose X is a locally convex Hausdorff topological vector space and c : X ! R̄�0 satisfies c(0) = 0, and
f : X ! R is convex. Then

1 � lipc(f) () 8✏�0 : @✏f(X) ✓ @✏c(0).
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because c(0) = 0. This shows x⇤
2 @✏c(0).



Next assume @✏f(x) ✓ @✏c(0) for all ✏ � 0 and x 2 X . Because f is not extended-real valued, it is continuous on all
of X (via Zălinescu, 2002, Cor. 2.2.10) and @f(x) is nonempty for all x 2 X (via Zălinescu, 2002, Thm. 2.4.9). Fix an
arbitrary x 2 X . Then ; 6= @f(x) ✓ @c(0), and
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where the implication is because x⇤
2 @c(0) and c(0) = 0. Since the choice of x in (B.1) was arbitrary, the proof is

complete.

Lemma 5. Suppose X is a Banach space and c : X ! R̄�0 is convex, k-positively homogeneous. Then (i) c⇤ � ◆ 1
k @c(0),

and (ii) c⇤(x⇤
) = 1 for any x⇤ /2 @c(0).
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holds for every y 2 X . Then, so long as k � 1, we have @✏c(x) = @(k�1)c(x)+✏c(0) ◆ @✏c(0). Setting ✏ = 0 we find
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⇤
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In the first equality we used the fact that cl dom(@c) = cl dom(c). This shows
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and proves (i).

Suppose x⇤

0 /2 @c(0). Then there exists y 2 X so that hy, x⇤

0i > c(y). Let a0 def
= p�1

p
p. Then a0 > 0, ap

0
a0k

= 1, and
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⇤
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where in the last line we used the k-positive homogeneity of c. This shows that kx⇤

0 /2 @c(0). Using (i) we obtain
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⇤
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which completes the proof of (ii).

Lemma 6. Assume X is a Banach space. Suppose X is a Banach space and c : X ! R̄ is convex, k-positively homogeneous,
and lower semicontinuous. Then there is

8y2X : sup
x2X

⇣
f(x)� c(x� y)

⌘
=

(
f(y) 1 � lipc(f)

1 otherwise.

Proof. Fix an arbitrary y0 2 X . From Lemma 4 we know

1 � lipc(f) () 8✏�0 : @✏f(X) ✓ @✏c(0).

Assume @✏f(X) ✓ @✏c(0) for all ✏ � 0. Consequentially @✏f(y0) ✓ @✏c(0) = @✏c( · � y0)(y0) for every ✏ � 0.
From the usual difference-convex global ✏-subdifferential condition (Hiriart-Urruty, 1989, Thm. 4.4) it follows that
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where we note that c(y0 � y0) = c(0) = 0 because c is sublinear.

Assume @✏f(X) 6✓ @✏c(0) for some ✏ � 0. By hypothesis there exists ✏0 � 0, x0 2 X , and x⇤

0 2 X⇤ with

x⇤

0 2 @✏0f(x0) and x⇤

0 62 @✏0c(0).

Using the Toland (1979) duality formula (viz. Hiriart-Urruty, 1986, Cor. 2.3) and the usual calculus rules for the Fenchel
conjugate (e.g. Zălinescu, 2002, Thm. 2.3.1) we have
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0) + hy0, x
⇤

0i
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where the second inequality is because x⇤

0 2 @✏0f(x0).

We have assumed x⇤

0 /2 @✏c(0) ◆ @c(0). Because c convex k-positively homogeneous, c⇤(x⇤

0) = 1 (via Lemma 5(ii)).
Then (B.1) yields
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◆
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which completes the proof.



Theorem (1). Suppose X is a separable Banach space and fix µ 2 P(X). Suppose c : X ! R̄�0 is closed convex,
k-positively homogeneous, and f 2 L1(X,µ) is upper semicontinuous with lipc(f) < 1. Then for all r � 0, there exists
�f,c,r(µ) � 0 so that
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Proof. (1): Since c is k-positively homogeneous, there is c(x, x) = c(x� x) = c(0) = 0 for all x 2 X . Therefore we can
apply Lemma 1 and Lemma 3 to obtain
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and therefore �f,c,r(µ) � 0.

(2): Observing that co f  f , from Lemma 6 we find for all x 2 X
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Similarly, for all x 2 X there is
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Together, (B.3) and (B.4) show
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�
,

which implies (2).

The extension of Theorem 1 for robust classification in the absence of label noise is straight-forward.
Corollary 1. Assume X is a separable Banach space and Y is a topological space. Fix µ 2 P(X ⇥ Y ). Assume
c : (X ⇥ Y )⇥ (X ⇥ Y ) ! R̄ satisfies

c((x, y), (x0, y0)) =

(
c0(x� x0

) y = y0

1 y 6= y0,
(B.6)

where c0 : X ! R̄ satisfies the conditions of Theorem 1, and f 2 L1(X ⇥Y, µ) is upper semicontinuous and has lipc(f) <
1. Then for all r � 0 there is (1) and (2), where the closed convex hull is interpreted co(f)(x, y) def

= co(f( · , y))(x).

Proposition (1). Suppose X is a separable Banach space. Suppose c : X ! R̄�0 satisfies the conditions of Theorem 1,
and f 2

T
µ2P(X0)

L1(X,µ) is upper semicontinuous, has lipc(f) < 1, and attains its maximum on X0 ✓ X . Then for
all r � 0

supµ2P(X0) �f,c,r(µ)

= r lipc(f)�max

n
0, r lipc(co f)� ⇢(f)

o
.

Proof. Let x0 2 X0 be a point at which f(x0) = sup f(X0). Then costc(�x0 , �x0) = 0  r, and sup⌫2Bc(�x0 ,r)

R
f d⌫ =

f(x0). Therefore
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And so we have
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(B.2)
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�f,c,r(µ)
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n
r lipc(co f)� ⇢(f), 0
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 r lipc(f),

which implies the claim.



B.2. Proof of Theorem 2

Lemma 7 will be used to show an equality result in Theorem 2.
Lemma 7. Assume (⌦, c) is a compact Polish space and µ 2 P(⌦) is non-atomic. For r > 0 and ⌫? 2 Bc(µ, r) there is a
sequence (fi)i2N ✓ Aµ(r)

def
=

�
f 2 L0(⌦,⌦)

�� R c d(Id, f)#µ  r
 

with (fi)#µ converging at ⌫? in �(P(⌦),C(⌦)).

Proof. Let P (µ, ⌫) def
= {f 2 L0(X,X) | f#µ = ⌫}. Since µ is non-atomic and c is continuous we have (via Pratelli, 2007,

Thm. B)

8⌫2P(⌦) : inf
f2P (µ,⌫)

Z
c d(Id, f)#µ = costc(µ, ⌫).

Let r? def
= costc(µ, ⌫?), obviously r?  r. Assume r? > 0, otherwise the lemma is trivial. Fix a sequence (✏k)k2N ✓ (0, r?)

with ✏k ! 0. For u � 0 let ⌫(u) def
= µ+ u(⌫? � µ). Then

costc(µ, ⌫(0)) = 0 and costc(µ, ⌫(1)) = r?,

and because costc metrises the �(P(⌦),C(⌦))-topology on P(⌦) (Villani, 2009, Cor. 6.13), the mapping u 7!

costc(µ, ⌫(u)) is �(P(⌦),C(⌦))-continuous. Then by the intermediate value theorem for every k 2 N there is some
uk > 0 with costc(µ, ⌫(uk)) = r? � ✏k, forming a sequence (uk)k2N ✓ [0, 1]. Then for every k there is a sequence
(fjk)j2N ✓ P (µ, ⌫(uk)) so that (fjk)#µ ! ⌫(k) in �(P(⌦),C(⌦)) and

lim
j2N

Z
c d(Id, fjk)#µ = inf

f2P (µ,⌫(k))

Z
c d(Id, fk)#µ

= costc(µ, ⌫(k))

= r? � ✏k.

Therefore for every k 2 N there exists jk � 0 so that for every j � jk
Z

c d(Id, fjk)#µ  r?. (B.2)

Let us pass directly to this subsequence of (fjk)j2N for every k 2 N so that (B.2) holds for all j, k 2 N. Next by construction
we have ⌫(uk) ! ⌫?. Therefore (fjk)j,k2N has a subsequence in k so that (fjk)#µ ! ⌫? in in �(P(⌦),C(⌦)). By
ensuring (B.2) is satisfied, the sequences (fjk)j2N ✓ Aµ(r) for every k 2 N.

We can now prove our main result Theorem 2. When (X, c) is a normed space, the closed ball of radius r � 0, centred
at x 2 X is denoted Bc(x, r)

def
= {y 2 X | c(x� y)  r}.

Theorem (2). Suppose (X, c0) is a separable Banach space. Fix µ 2 P(X) and for r � 0 let Rµ(r)
def
= {g 2 L0(X,R�0) |R

g dµ  r}. Then for f 2 L0(⌦, R̄) and r � 0 there is

sup

g2Rµ(r)

Z
µ(d!) sup

!02Bc0 (!,g(!))
f(!0

)  sup

⌫2Bc0 (µ,r)

Z
f d⌫,

If f is continuous and µ is non-atomically concentrated with compact support, then (4) is an equality.

Proof. For convenience of notation let c def
= c0.

When r = 0, the set Rµ(r) consists of the set of functions g which are 0 µ-almost everywhere, in which case
Bc(x, g(x)) = {0} for µ-almost all x 2 X . Thus (5) is equal to

R
f(x)µ(dx). Since c is a norm, c(0) = 0, and by a similar

argument there is equality with the right hand side. We now complete the proof for the cases where r > 0.

Inequality: For g 2 Rµ(r), let �g : X ! 2
X denote the set-valued mapping with �g(x)

def
= Bc(x, g(x)). Let L0(X,�g)

denote the set of Borel a : X ! X so that a(x) 2 �g(x) for µ-almost all x 2 X . Let Aµ(r)
def
=
S

g2Rµ(r)
L0(X,�g).

Clearly for every a 2 Aµ(r) there is

r �

Z
c(x, a(x)) dµ =

Z
c d(Id, a)#µ,



which shows {a#µ | a 2 Aµ(r)} ✓ Bc(µ, r). Then if there is equality in (B.3), we have

sup

g2Rµ(r)

Z
sup

x02�g(x)
f(x) = sup

g2Rµ(r)
sup

a2L0(X,�g)

Z
f da#µ (B.3)

= sup

a2Aµ(r)

Z
f da#µ

 sup

⌫2Bc(µ,r)

Z
f d⌫,

which proves the inequality.

To complete the proof we will now justify the exchange of integration and supremum in (B.3). The set L0(X,�g) is
trivially decomposable (Giner, 2009, see the remark at the bottom of p. 323, Def. 2.1). By assumption f is Borel measurable.
Since f is measurable, any decomposable subset of L0(X,X) is f -decomposable (Giner, 2009, Prop. 5.3) and f -linked
(Giner, 2009, Prop. 3.7 (i)). Giner (2009, Thm. 6.1 (c)) therefore allows us to exchange integration and supremum in (B.3).

Equality: Under the additional assumptions there exists ⌫? 2 P(⌦) with (via Blanchet & Murthy, 2019, Prop. 2)
Z
f d⌫? = sup

⌫2Bc(µ,r)

Z
f d⌫.

The compact subset where µ is concentrated and non-atomic is a Polish space with the Banach metric. Therefore using
Lemma 7 there is a sequence (fi)i2N ✓ Aµ(r) so that

lim
i2N

Z
fi dµ =

Z
f d⌫? = sup

⌫2Bc(µ,r)

Z
f d⌫,

proving the desired equality.

C. Proofs and additional results on the Lipschitz regularisation of kernel methods

C.1. Random sampling requires exponential cost

The most natural idea of leveraging the samples is to add the constraints kg(ws
)k  L. For Gaussian kernel, we may

sample from N (0,�2I) while for inverse kernel we may sample uniformly from B. This leads to our training objective:

min
f2H

1

l

lX

i=1

loss(f(xi
), yi) +

�

2
kfk2

H
s.t. kg(ws

)k  L, 8s 2 [n].

Unfortunately, this method may require O(
1
✏d ) samples to guarantee

P
j kgjk

2
H

 L2
+ ✏ w.h.p. This is illustrated in

Figure 8, where k is the polynomial kernel with degree 2 whose domain X is the unit ball B, and f(x) = 1
2 (v

>x)2. We
seek to test whether the gradient g(x) = (v>x)v has norm bounded by 1 for all x 2 B, and we are only allowed to test
whether kg(ws

)k  1 for samples ws that are drawn uniformly at random from B. This is equivalent to testing kvk  1,
and to achieve it at least one ws must be from the ✏ ball around v/ kvk or �v/ kvk, intersected with B. But the probability
of hitting such a region decays exponentially with the dimensionality d.

The key insight from the above counter-example is that in fact kvk can be easily computed by
Pd

s=1(v
>w̃s)

2, where
{w̃s

}
d
s=1 is the orthonormal basis computed from the Gram–Schmidt process on d random samples {ws

}
d
s=1 (n = d).

With probability 1, n samples drawn uniformly from B must span Rd as long as n � d, i.e., rank(W ) = d where
W = (w1, . . . , wn

). The Gram–Schmidt process can be effectively represented using a pseudo-inverse matrix (allowing
n > d) as

kvk2 =

���(W>W )
�1/2W>v

���
2
,

where (W>W )
�1/2 is the square root of the pseudo-inverse of W>W . This is exactly the intuition underlying the Nyström

approximation that we will leveraged.



𝜖𝜖

𝑣𝑣𝑤𝑤2

𝑤𝑤1 = �𝑤𝑤1

�𝑤𝑤2

𝜖𝜖

Figure 8: Suppose we use a polynomial kernel with degree 2, and f(x) = 1
2 (v

>x)2 for x 2 B. Then g(x) = (v>x)v. If
we want to test whether supx2B kg(x)k2  1 by evaluating kg(w)k2 on w that is randomly sampled from B such as w1

and w2, we must sample within the ✏ balls around the intersection of B and the ray along v (both directions). See the blue
shaded area. The problem, however, becomes trivial if we use the orthonormal basis {w̃1, w̃2}.

C.2. Spectrum of Kernels

Let k be a continuous kernel on a compact metric space X , and µ be a finite Borel measure on X with supp[µ] = X .
We will re-describe the following spectral properties in a more general way than in §4. Recall Steinwart & Christmann
(2008, §4) that the integral operator for k and µ is defined by

Tk = Ik � Sk : L2(X,µ) ! L2(X,µ)

where Sk : L2(X,µ) ! C(X), (Skf)(x) =

Z
k(x, y)f(y)dµ(y), f 2 L2(X,µ),

Ik : C(X) ,! L2(X,µ), inclusion operator.

By the spectral theorem, if Tk is compact, then there is an at most countable orthonormal set (ONS) {ẽj}j2J of L2(X,µ)
and {�j}j2J with �1 � �2 � . . . > 0 such that

Tf =

X

j2J

�j hf, ẽjiL2(X,µ) ẽj , f 2 L2(X,µ).

In particular, we have hẽi, ẽjiL2(X,µ) = �ij (i.e., equals 1 if i = j, and 0 otherwise), and T ẽi = �iẽi. Since ẽj is an
equivalent class instead of a single function, we assign a set of continuous functions ej = ��1

j Skẽj 2 C(X), which clearly
satisfies

hei, ejiL2(X,µ) = �ij , T ej = �jej .

We will call �j and ej as eigenvalues and eigenfunctions respectively, and {ej}j2J clearly forms an ONS. By Mercer’s
theorem,

k(x, y) =
X

j2J

�jej(x)ej(y), (C.1)

and all functions in H can be represented by
P

j2J ajej where {aj/
p
�j} 2 `2(J). The inner product in H is equivalent

to
DP

j2J ajej ,
P

j2J bjej
E

H

=
P

j2J ajbj/�j . Therefore it is easy to see that

'j
def
=

p
�jej , j 2 J



is an orthonormal basis of H, with Moreover, for all f 2 H with f =
P

j2J ajej , we have hf, ejiH = aj/�j , hf,'jiH =

aj/
p
�j , and

f =

X

j

hf,'jiH 'j =

X

j

p
�j hf, ejiH 'j =

X

j

�j hf, ejiH ej .

Most kernels used in machine learning are infinite dimensional, i.e., J = N. For convenience, we define �m
def
= ('1, . . . ,'m)

and ⇤m = diag(�1, . . . ,�m).

C.3. General sample complexity and assumptions on the product kernel

In this section, we first consider kernels k0 with scalar input, i.e., X0 ✓ R. Assume there is a measure µ0 on X0. This
will serve as the basis for the more general product kernels in the form of k(x, y) =

Qd
j=1 k0(xj , yj) defined over Xd

0 .

With Assumptions 1 and 2, we now state the formal version of Theorem 3 by first providing the sample complexity for
approximating the partial derivatives. In the next subsection, we will examine how three different kernels satisfy/unsatisfy
the Assumptions 1 and 2, and what the value of N✏ is. For each case, we will specify µ0 on X0, and the measure on Xd

0 is
trivially µ = µd

0.
Theorem 5. Suppose {ws

}
n
s=1 are drawn iid from µ0 on X0, where µ0 is the uniform distribution on [�v/2, v/2] for

periodic kernels or periodized Gaussian kernels. Let Z def
= (k0(w1, ·), k0(w2, ·), . . . , k0(wn, ·)), and g1 =

1
l

Pl
a=1 �ag

a
1 :

Xd
0 ! R, where k�k

1
 c1 and

ga1 (y) = @0,1k(xa, y) = ha
1(y1)

dY

j=2

k0(x
a
j , yj) with ha

1(·)
def
= @0,1k0(x

a
1 , ·).

Given ✏ 2 (0, 1], let �m = ('1, . . .'m) where m = N✏. Then with probability 1� �, the following holds when the sample
size n = max(N✏,

5
3✏2N✏Q2

✏ log
2N✏
� ):

kg1k
2
H


1

l2
�>K1� + 3c1

⇣
1 + 2

p
N✏M✏

⌘
✏, (C.2)

where (K1)a,b = (ha
1)

>Z(Z>Z)
�1Z>hb

1

dY

j=2

k0(x
a
j , x

b
j).

Then we obtain the formal statement of sample complexity, as stated in the following corollary, by combining all the
coordinates from Theorem 5.
Corollary 2. Suppose all coordinates share the same set of samples {ws

}
n
s=1. Applying the results in (C.2) for coordinates

from 1 to d and using the union bound, we have that with sample size n = max(N✏,
5

3✏2N✏Q2
✏ log

2N✏
� ), the following holds

with probability 1� d�,

�max(G
>G)  �max(P̃G) + 3c1

⇣
1 + 2

p
N✏M✏

⌘
✏. (C.3)

Equivalently, if N✏, M✏ and Q✏ are constants or poly-log terms of ✏ which we treat as constant, then to ensure �max(G>G) 

�max(P̃G) + ✏ with probability 1� �, the sample size needs to be

n =
15

✏2
c21

⇣
1 + 2

p
N✏M✏

⌘2
N✏Q

2
✏ log

2dN✏

�
.

Remark 4. The first term on the right-hand side of (C.3) is explicitly upper bounded by L2 in our training objective. In
the case of Theorem 6, the values of Q✏, N✏, and M✏ lead to a Õ(

1
✏2 ) sample complexity. If we further zoom into the

dependence on the period v, then note that N✏ is almost a universal constant while M✏ =

p
2⇡
v (N✏ � 1). So overall, n

depends on v by 1
v2 . This is not surprising because smaller period means higher frequency, hence more samples are needed.

Remark 5. Corollary 2 postulates that all coordinates share the same set of samples {ws
}
n
s=1. When coordinates differ in

their domains, we can draw different sets of samples for them. The sample complexity hence grows by d times as we only
use a weak union bound. More refined analysis could save us a factor of d as these sets of samples are independent of each
other.



Proof of Theorem 5. Let ✏0 def
= (1 + 2

p
mM✏)✏. Since

⌦
ga1 , g

b
1

↵
H

=
⌦
ha
1 , h

b
1

↵
H0

dY

j=2

k0(x
a
j , x

b
j)

and
��k0(xa

j , x
b
j)
��  1, it suffices to show that for all a, b 2 [l],

���
⌦
ha
1 , h

b
1

↵
H0

� (ha
1)

>Z(Z>Z)
�1Z>hb

1

���  3✏0.

Towards this end, it is sufficient to show that for any h(·) = ✓x@0,1k0(x, ·) + ✓y@0,1k0(y, ·) where x, y 2 X0 and
|✓x|+ |✓y|  1, we have

���h>Z(Z>Z)
�1Z>h� khk2

H0

���  ✏0. (C.4)

This is because, if so, then
���
⌦
ha
1 , h

b
1

↵
H0

� (ha
1)

>Z(Z>Z)
�1Z>hb

1

���

=

���
1

2

⇣��ha
1 + hb

1

��2
H0

� kha
1k

2
H0

�
��hb

1

��2
H0

⌘

�
1

2

h
(ha

1 + hb
1)

>Z(Z>Z)
�1Z>

(ha
1 + hb

1)

� (ha
1)

>Z(Z>Z)
�1Z>ha

1 � (hb
1)

>Z(Z>Z)
�1Z>hb

1

i���


1

2
(4✏0 + ✏0 + ✏0)

= 3✏0.

The rest of the proof is devoted to (C.4). Since n � m, the SVD of ⇤�1/2
m �>

mZ can be written as U⌃V >, where
UU>

= U>U = V >V = Im (m-by-m identity matrix), and ⌃ = diag(�1, . . . ,�m). Define

↵ = n�1/2V U>⇤�1/2
m �>

mh.

Consider the optimization problem o(↵)
def
=

1
2 kZ↵� hk2

H0
. It is easy to see that its minimal objective value is o⇤ def

=

1
2 khk

2
H0

�
1
2h

>Z(Z>Z)
�1Z>h. So

0  2o⇤ = khk2
H0

� h>Z(Z>Z)
�1Z>h  2o(↵).

Therefore to prove (C.4), it suffices to bound o(↵) = kZ↵� hk
H0

. Since
p
n�m⇤1/2UV >↵ = �m�>

mh, we can
decompose kZ↵� hk

H0
by

kZ↵� hk
H0


��(Z � �m�>

mZ)↵
��
H0

+

���(�m�>

mZ �
p
n�m⇤1/2

m UV >
)↵
���
H0

+
���m�>

mh� h
��
H0

.

(C.5)

The last term
���m�>

mh� h
��
H0

is clearly below ✏ because by Assumption 1 and m = N✏

���m�>

mh� h
��
H0

 |✓x|
���m�>

m@0,1k0(x, ·)� @0,1k0(x, ·)
��
H0

+ |✓y|
���m�>

m@0,1k0(y, ·)� @0,1k0(y, ·)
��
H0

 (|✓x|+ |✓y|)✏

 ✏.



We will next bound the first two terms on the right-hand side of (C.5).

(i) By Assumption 1,
��k0(ws, ·)� �m�>

mk0(ws, ·)
��
H0

 ✏, hence

��(Z � �m�>

mZ)↵
��
H0

 ✏
p
n k↵k2 .

To bound k↵k2, note all singular values of V U> are 1, and so Assumption 2 implies that for all i 2 [m],
�����1/2

j h'j , hiH0

��� =
���hej , hiH0

���

=

���
⌦
ej , ✓x@

0,1k0(x, ·) + ✓y@
0,1k0(y, ·)

↵
H0

���

 sup
x2X

���
⌦
ej , @

0,1k(x, ·)
↵
H0

���

 M✏. (C.6)

As a result,

��(Z � �m�>

mZ)↵j

��
H0

 ✏n1/2
· n�1/2

���⇤�1/2
m �>

mh
���  ✏

p
mM✏.

(ii) We first consider the concentration of the matrix

R def
=

1

n
⇤�1/2
m �>

mZZ>�m⇤�1/2
m 2 Rm⇥m.

Clearly,

E
{ws}

[Rij ] = E
{ws}

"
1

n

nX

s=1

ei(ws)ej(ws)

#
=

Z
ei(x)ej(x) dµ(x) = �ij .

By matrix Bernstein theorem (Tropp, 2015, Theorem 1.6.2), we have

Pr

⇣
kR� Imksp  ✏

⌘
� 1� �

when n � O(.). This is because

k(e1(x), . . . , em(x))k2  mQ2
✏ ,

��E{ws}
[RR>

]
��
sp

 mQ2
✏/n,

and

Pr

⇣
kR� Imksp  ✏

⌘
� 1� 2m exp

 
�✏2

mQ2
✏

n

�
1 +

2
3✏
�

!

� 1� 2m exp

 
�✏2

5mQ2
✏

3n

!

� 1� �,

where the last step is by the definition of n. Since R =
1
nU⌃2U>, this means with probability 1��,

�� 1
nU⌃2U>

� Im
��
sp



✏. So for all i 2 [m],

����
1

n
�2
i � 1

����  ✏ =)

����
1
p
n
�i � 1

���� < ✏

����
1
p
n
�i + 1

����
�1

 ✏. (C.7)



Moreover, �1  1 since k0(x, x) = 1. It then follows that
���(�m�>

mZ �
p
n�m⇤1/2

m UV >
)↵
���
H0

=

�����m⇤1/2
m U⌃V >

1
p
n
V U>⇤�1/2

m �>

mh�
p
n�m⇤1/2

m UV >
1
p
n
V U>⇤�1/2

m �>

mh

����
H0

=

����⇤
1/2
m U

✓
1
p
n
⌃ � Im

◆
U>⇤�1/2

m �>

mh

����
2

(because �>

m�m = Im)



p
�1 max

i2[m]

����
1
p
n
�i � 1

����
���⇤�1/2

m �>

mh
���
2

✏
p
mM✏ (by (C.7), (C.6), and �1  1).

Combining (i) and (ii), we arrive at the desired bound in (C.2).

Proof of Corollary 2. Since P̃G approximates G>G only on the diagonal, P̃G�G>G is a diagonal matrix which we denote
as diag(�1, . . . , �d). Let u 2 Rd be the leading eigenvector of P̃G. Then

�max(P̃G)� �max(G
>G)  u>P̃Gu� u>G>Gu = u>

(P̃G �G>G)u =

X

j

�ju
2
j

(by (C.2))  3c1
⇣
1 + 2

p
N✏M✏

⌘
✏.

The proof is completed by applying the union bound and rewriting the results.

C.4. Case 1: Checking Assumptions 1 and 2 on periodic kernels

Periodic kernels on X0
def
= R are translation invariant, and can be written as k0(x, y) = (x� y) where  : R! R is a)

periodic with period v; b) even, with (�t) = (t); and c) normalized with (0) = 1. A general treatment was given by
(Williamson et al., 2001), and an example was given by David MacKay in (MacKay, 1998):

k0(x, y) = exp

✓
�

1

2�2
sin

⇣⇡
v
(x� y)

⌘2◆
. (C.8)

We define µ0 to be a uniform distribution on [�
v
2 ,

v
2 ], and let !0 = 2⇡/v.

Since  is symmetric, we can simplify the Fourier transform of (t)�v(t), where �v(t) = 1 if t 2 [�v/2, v/2], and 0
otherwise:

F (!) =
1

p
2⇡

Z v/2

�v/2
(t) cos(!t) dt.

It is now easy to observe that thanks to periodicity and symmetry of , for all j 2 Z,

1

v

Z v/2

�v/2
k0(x, y) cos(j!0y) dy =

1

v

Z v/2

�v/2
(x� y) cos(j!0y) dy

=
1

v

Z x+v/2

x�v/2
(z) cos(j!0(x� z)) dz (note cos(j!0(x� z)) also has period v)

=
1

v

Z v/2

�v/2
(z)[cos(j!0x) cos(j!0z) + sin(j!0x) sin(j!0z)) dz (by periodicity)

=
1

v
cos(j!0x)

Z v/2

�v/2
(z) cos(j!0z) dz (by symmetry of )

=

p
2⇡

v
F (j!0) cos(j!0x).



And similarly,

1

v

Z v/2

�v/2
k0(x, y) sin(j!0y) dy =

p
2⇡

v
F (j!0) sin(j!0x).

Therefore the eigenfunctions of the integral operator Tk are

e0(x) = 1, ej(x)
def
=

p

2 cos(j!0x), e�j(x)
def
=

p

2 sin(j!0x) (j � 1)

and the eigenvalues are �j =

p
2⇡
v F (j!0) for all j 2 Z with ��j = �j . An important property our proof will rely on is that

e0j(x) = �j!0e�j(x), for all j 2 Z.

Applying Mercer’s theorem in (C.1) and noting (0) = 1, we derive
P

j2Z �j = 1.

Checking the Assumptions 1 and 2. The following theorem summarizes the assumptions and conclusions regarding the
satisfaction of Assumptions 1 and 2. Again we focus on the case of X ✓ R.

Theorem 6. Suppose the periodic kernel with period v has eigenvalues �j that satisfies

�j(1 + j)2 max(1, j2)(1 + �(j � 1))  c6 · c
�j
4 , for all j � 0, (C.9)

where c4 > 1 and c6 > 0 are universal constants. Then Assumption 1 holds with

N✏ = 1 + 2 bn✏c , where n✏
def
= logc4

✓
2.1c6
✏2

max

✓
1,

v2

4⇡2

◆◆
. (C.10)

In addition, Assumption 2 holds with Q✏ =
p
2 and M✏ =

2
p
2⇡
v bn✏c =

p
2⇡
v (N✏ � 1).

For example, if we set v = ⇡ and �2
= 1/2 in the kernel in (C.8), elementary calculation shows that the condition (C.9)

is satisfied with c4 = 2 and c6 = 1.6.

Proof of Theorem 6. First we show that h(x) def
= @0,1k0(x0, x) is in H0 for all x0 2 X0. Since k0(x0, x) =P

j2Z �jej(x0)ej(x), we derive

h(x) =
X

j2Z

�jej(x0)@
1ej(x) =

X

j2Z

�jej(x0)(�j!0e�j(x)) = !0

X

j2Z

�jje�j(x0)ej(x). (C.11)

h(x) is in H if the sequence �jje�j(x0)/
p
�j is square summable. This can be easily seen by (C.9):

!�2
0 khk2

H0
=

X

j

�jj
2e2

�j(x0) =

X

j2Z

�jj
2e2

�j(x0)

=

X

j2Z

�jj
2e2

�j(x0) = �0 + 2

X

j�1

j2�j 
2c4c5
c4 � 1

.

Finally to derive N✏, we reuse the orthonormal decomposition of h(x) in (C.11). For a given set of j values A where
A ✓ Z, we denote as �A the “matrix” whose columns enumerate the 'j over j 2 A. Let us choose

A def
=

⇢
j : �j max(1, j2)(1 + j2)(1 + �(j � 1)) � min(1, w�2

0 )
✏2

2.1

�
.



If j 2 A, then �j 2 A. Letting N0 = {0, 1, 2, . . .}, we note
P

j2N0

1
1+j2  2.1. So

��h� �A�
>

Ah
��2
H0

= w2
0

X

j2Z\A

�jj
2e2

�j(x0)

= w2
0

X

j2N0\A

�jj
2
⇥
(e2j (x) + e2

�j(x))�(j � 1) + �(j = 0)
⇤

= w2
0

X

j2N0\A

�jj
2
(1 + �(j � 1))

= w2
0

X

j2N0\A

⇢
�jj

2
(1 + j2)(1 + �(j � 1))

1

1 + j2

�


✏2

2.1

X

j2N0

1

1 + j2
=

✏2

2.1

X

j2N0

1

1 + j2
 ✏2.

Similarly, we can bound
��k0(x0, ·)� �A�>

Ak0(x0, ·)
��
H0

by
��k0(x0, ·)� �A�

>

Ak0(x0, ·)
��2
H0

=

X

j2Z\A

�je
2
j (x0) 

X

j2Z\A

�j max(1, j2)e2j (x0)

=

X

j2N0\A

�↵ max(1, j2)[
�
e2j (x) + e2

�j(x)
�
�(j � 1) + �(j = 0)]

=

X

j2N0\A

⇢
�j max(1, j2)(1 + j2)(1 + �(j � 1))

1

1 + j2

�


1

2.1
✏2
X

j2N0

1

1 + j2

 ✏2.

To upper bound the cardinality of A, we consider the conditions for j /2 A. Thanks to the conditions in (C.9), we know
that any j satisfying the following relationship cannot be in A:

c6 · c
�|j|
4 < min(1, w�2

0 )
✏2

2.1
() c�|j|

4 <
1

2.1 · c6
min

✓
1,

4⇡2

v2

◆
✏2.

So A ✓ {j : |j|  n✏}, which yields the conclusion (C.10). Finally Q✏ 
p
2, and to bound M✏, we simply reuse (C.11).

For any j with |j|  n✏,
��hh, ejiH

��  !0 |je�j(x0)| 
2⇡

v

p

2 bn✏c =

p
2⇡

v
(N✏ � 1).

C.5. Case 2: Checking Assumptions 1 and 2 on Gaussian kernels

Gaussian kernels k(x, y) = exp(�kx� yk2 /(2�2
)) are obviously product kernels with k0(x1, y1) = (x1 � y1) =

exp(�(x1 � y1)2/(2�2
)). It is also translation invariant. The spectrum of Gaussian kernel k0 on R is known; see, e.g.,

Chapter 4.3.1 of (Rasmussen & Williams, 2006) and Section 4 of (Zhu et al., 1998). Let µ be a Gaussian distribution
N (0,�2

). Setting ✏2 = ↵2
= (2�2

)
�1 in Eq 12 and 13 of (E Fasshauer, 2011), the eigenvalue and eigenfunctions are (for

j � 0):

�j = c�j�1/2
0 , where c0 =

1

2
(3 +

p

5)

ej(x) =
5
1/8

2j/2
exp

 
�

p
5� 1

4

x2

�2

!
1

p
j!
Hj

⇣
4
p

1.25
x

�

⌘
,



where Hj is the Hermite polynomial of order j.

Although the eigenvalues decay exponentially fast, the eigenfunctions are not uniformly bounded in the L1 sense.
Although the latter can be patched if we restrict x to a bounded set, the above closed-form of eigen-pairs will no longer hold,
and the analysis will become rather challenging.

To resolve this issue, we resort to the period-ization technique proposed by (Williamson et al., 2001). Consider
(x) = exp(�x2/(2�2

)) when x 2 [�v/2, v/2], and then extend  to R as a periodic function with period v. Again let µ
be the uniform distribution on [�v/2, v/2]. As can be seen from the discriminant function f =

1
l

Pl
i=1 �ik(x

i, ·), as along
as our training and test data both lie in [�v/4, v/4], the modification of  outside [�v/2, v/2] does not effectively make
any difference. Although the term @0,1k0(xa

1 , w
1
1) in (10) may possibly evaluate  outside [�v/2, v/2], it is only used for

testing the gradient norm bound of .

With this periodized Gaussian kernel, it is easy to see that Q✏ =
p
2. If we standardize by � = 1 and set v = 5⇡ as an

example, it is not hard to see that (C.9) holds with c4 = 1.25 and c6 = 50. The expressions of N✏ and M✏ then follow from
Theorem 6 directly.

C.6. Case 3: Checking Assumptions 1 and 2 on non-product kernels

The above analysis has been restricted to product kernels. But in practice, there are many useful kernels that are
not decomposable. A prominent example is the inverse kernel: k(x, y) = (2 � x>y)�1. In general, it is extremely
challenging to analyze eigenfunctions, which are commonly not bounded (Zhou, 2002; Lafferty & Lebanon, 2005), i.e.,
supi!1

supx |ei(x)| = 1. The opposite was (incorrectly) claimed in Theorem 4 of Williamson et al. (2001) by citing
an incorrect result in König (1986, p. 145), which was later corrected by Zhou (2002) and Steve Smale. Indeed, uniform
boundedness is not known even for Gaussian kernels with uniform distribution on [0, 1]d (Lin et al., 2017), and Minh et al.
(2006, Theorem 5) showed the unboundedness for Gaussian kernels with uniform distribution on the unit sphere when
d � 3.

Here we only present the limited results that we have obtained on the eigenvalues of the integral operator of inverse
kernels with a uniform distribution on the unit ball. The analysis of eigenfunctions is left for future work. Specifically, in
order to drive the eigenvalue �i below ✏, i must be at least ddlog2

1
✏ e+1. This is a quasi-quadratic bound if we view d and 1/✏

as two large variables.

It is quite straightforward to give an explicit characterization of the functions in H. The Taylor expansion of z�1 at
z = 2 is 1

2

P
1

i=0(�
1
2 )

ixi. Using the standard multi-index notation with ↵ = (↵1, . . . ,↵d) 2 (N [ {0})
d, |↵| =

Pd
i=1 ↵i,

and x↵
= x↵1

1 . . . x↵d
d , we derive

k(x,y) =
1

2� x>y

=
1

2

1X

k=0

✓
�
1

2

◆k

(�x>y)k

=

1X

k=0

2
�k�1

X

↵:|↵|=k

Ck
↵x

↵y↵

=

X

↵

2
�|↵|�1C |↵|

↵ x↵y↵,

where Ck
↵ =

k!Qd
i=1 ↵i!

. So we can read off the feature mapping for x as

�(x) = {w↵x
↵
: ↵}, where w↵ = 2

�
1
2 (|↵|+1)C |↵|

↵ ,

and the functions in H are

H =

(
f =

X

↵

✓↵w↵x
↵
: k✓k`2 < 1

)
. (C.12)

Note this is just an intuitive “derivation” while a rigorous proof for (C.12) can be constructed in analogy to that of
Theorem 1 in Minh (2010).



C.7. Background of eigenvalues of a kernel

We now use (C.12) to find the eigenvalues of inverse kernel.

Now specializing to our inverse kernel case, let us endow a uniform distribution over the unit ball B: p(x) = V �1
d where

Vd = ⇡d/2� (
d
2 +1)

�1 is the volume of B, with � being the Gamma function. Then � is an eigenvalue of the kernel if there
exists f =

P
↵ ✓↵w↵x↵ such that

R
y2B k(x,y)p(y)f(y) dy = �f(x). This translates to

V �1
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↵

w2
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↵y↵
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�

✓�w�y
�
dy = �

X

↵

✓↵w↵x
↵, 8 x 2 B.

Since B is an open set, that means
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X

�

w�q↵+�✓� = �✓↵, 8 ↵,

where

q↵ = V �1
d
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y2B
y↵
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8
><

>:

2
Qd

i=1 �
⇣
1
2↵i+

1
2

⌘

Vd·(|↵|+d)·�

✓
1
2 |↵|+

d
2

◆ if all ↵i are even

0 otherwise

.

In other words, � is the eigenvalue of the infinite dimensional matrix Q = [w↵w�q↵+�]↵,�,

C.8. Bounding the eigenvalues

To bound the eigenvalues of Q, we resort to the majorization results in matrix analysis. Since k is a PSD kernel, all its
eigenvalues are nonnegative, and suppose they are sorted decreasingly as �1 � �2 � . . .. Let the row corresponding to ↵
have `2 norm r↵, and let them be sorted as r[1] � r[2] � . . .. Then by (Schneider, 1953; Shi & Wang, 1965), we have

nY

i=1

�i 

nY

i=1

r[i], 8 n � 1.

So our strategy is to bound r↵ first. To start with, we decompose q↵+� into q↵ and q� via Cauchy-Schwartz:
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✓Z

y2B
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◆2
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To simplify notation, we consider without loss of generality that d is an even number, and denote the integer b def
= d/2. Now
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since � (�i +
1
2 ) < � (�i + 1) = �i!. The summation over k can be bounded by
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where the first equality used the identity
P
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= |↵|, we can continue by
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This bound depends on ↵, not directly on ↵. Letting nl =

✓
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◆
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◆
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Now we can bound �NL by

�NL
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This means that the eigenvalue �i  ✏ provided that i � NL where L =
⌃
log2

1
✏

⌥
. Since NL  dL+1, that means it

suffices to choose i such that

i � ddlog2
1
✏ e+1.

This is a quasi-polynomial bound. It seems tight because even in Gaussian RBF kernel, the eigenvalues follow the order
of �↵ = O(c�|↵|

) for some c > 1 (Fasshauer & McCourt, 2012, p.A742).



D. Algorithm for training a Lipschitz binary SVMs

The pseudo-code of training binary SVMs by enforcing Lipschitz constant is given in Algorithm 1.

Finding the exact argmaxx2X

��rf (i)
(x)
�� is intractable, so we used a local maximum found by L-BFGS with 10

random initialisations as the Lipschitz constant of the current solution f (i) (L(i) in step 6). The solution found by L-BFGS
is also used as the new greedy point added in step 5b.

Furthermore, the kernel expansion f(x) = 1
l

Pl
a=1 �ak(x

a, ·) can lead to high cost in optimisation (our experiment
used l = 54000), and therefore we used another Nyström approximation for the kernels. We randomly sampled 1000
landmark points, and based on them we computed the Nyström approximation for each k(xa, ·), denoted as �̃(xa

) 2 R1000.
Then f(x) can be written as 1

l

Pl
a=1 �a�̃(x

a
)
>�̃(x). Defining w =

1
l

Pl
a=1 �a�̃(x

a
), we can equivalently optimise over

w, and the RKHS norm bound on f can be equivalently imposed as the `2-norm bound on w.

To summarise, Nyström approximation is used in two different places: one for approximating the kernel function, and
one for computing kgjkH either holistically or coordinate wise. For the former, we randomly sampled 1000 landmark points;
for the latter, we used greedy selection as option b in step 5 of Algorithm 1.

D.1. Detailed algorithm for multiclass classification

It is easy to extend Algorithm 1 to multiclass. For example, with MNIST dataset, we solve the following optimisation
problem to defend `2 attacks:

minimise
�1,...,�10

nX

i=1

`(F (x),y), where F def
=

"
nX

i=1

�1
i k(xi, ·); . . . ;
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#
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c vv
>G̃c

!
 L2,

where `(F (x),y) is the Crammer & Singer loss, and the constraint is derived from (11) by using its Nyström approximation
G̃c = [g̃c1, . . . , g̃

c
d], which depends on {�1, . . . ,�10

} linearly. Note that the constraint itself is a supremum problem:

sup

kvk21
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10X
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c vv
>G̃c

!
= sup

kvk21,kuk21
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10X
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G̃>

c vv
>G̃c

!
u.

Since there is only one constraint, interior point algorithm is efficient. It requires the gradient of the constraint, which
can be computed by Danskin’s theorem. In particular, we alternates between updating v and u, until they converge to the
optimal v⇤ and u⇤. Finally, the derivative of the constraint with respect to {�c

} can be calculated from
P10

c=1(u
>

⇤
G̃>

c v⇤)
2,

as a function of {�c
}.

To defend 1-norm attacks, we need to enforce the 1-norm of the Jacobian matrix:
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where the last inequality is due to
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kg(x)k1 = sup
x2X
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1

1
u>g(x)  sup
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1

1
u>G̃>v.

Therefore, the overall optimisation problem for defense against 1-norm attacks is

minimise
�1,...,�10

nX

i=1

`(F (x),y),

subject to 8c2[10] : sup

kvk21,kuk
1

1
u>G̃>

c v  L
(D.1)



For each c, we alternatively update v and u in (D.1), converging to the optimal v⇤ and u⇤. Finally, the derivative of
sup

kvk21,kuk
1

1 u
>G̃>

c v with respect to �c can be calculated from u>

⇤
G̃>

c v⇤, as a function of �c.

E. More experiments

All code and data are available anonymously, with no tracing, at

https://github.com/learndeep2019/DRobust.

E.1. More results on Cross-Entropy attacks
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Figure 9: Test accuracy under PGD attacks on cross-entropy approximation with `2 norm bound
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Figure 10: Test accuracy under PGD attacks on cross-entropy approximation with 1-norm bound

E.2. Visualization of attacks

In order to verify that the robustness of Gauss-Lip is not due to obfuscated gradient, we randomly sampled 10 images
from MNIST, and ran targeted PGD for 100 steps with cross-entropy objective and the `2 norm upper bounded by 8. For
example, in Figure 11, the row corresponding to class 4 tries to promote the likelihood of the target class 4. Naturally the
diagonal is not meaningful, hence left empty. At the end of attack, PDG turned 89 out of 90 images into the target class by
following the gradient of the defense model.

Please note that despite the commonality in using the cross-entropy objective, the setting of targeted attack in Figure 11
is not comparable to that in Figure 9, where to enable a batch test mode, an untargeted attacker was employed by increasing
the cross-entropy loss of the correct class, i.e., decreasing the likelihood of the correct class. This is a common practice.

We further ran PGD for 100 steps on C&W approximation (an untargeted attack used in Figure 5), and the resulting
images after every 10 iterations are shown in Figure 12. Here all 10 images were eventually turned into a different but
untargeted class, and the final images are very realistic.

https://github.com/learndeep2019/DRobust


(a)

(b)

Figure 11: (a) perturbed images at the end of 100-step PGD attack using the (targeted) cross-entropy approximation. The
top row shows 10 random images, one sampled from each class. The 10 rows below correspond to the target class. (b)
classification on the perturbed image given by the trained Gauss-Lip. The left images are quite consistent with human’s
perception.



Figure 12: Perturbed images at the end of 100-step PGD attack using the (untargeted) C&W approximation. The top row
shows 10 random images, one sampled from each class. The 10 rows below show the images after 10, 20, ..., 100 steps of
PGD.


