
Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

A. Missing Proofs from Section 4
A.1. Proof of Lemma 1

Proof. The proof is constructive and is inspired by (Calinescu et al., 2011; Han et al., 2020). For clarity, we provide a
procedure to construct σi(·), as shown by Algorithm 3. Suppose that the elements in Si are {z1, · · · , zq} (listed according
to the order that they are added into Si). Algorithm 3 finds a series of sets J0 ⊆ J1 ⊆ · · · ⊆ Jq = Qi such that all the
elements in Mt = Jt \ Jt−1 is mapped to zt by σi(·) for any t ∈ {1, 2, · · · , q}. From Algorithm 3, it can be easily seen that
σi(·) satisfies the conditions required by the lemma. The only problem left is to prove that all the elements in Qi is mapped
by σi(·), i.e., to prove J0 = ∅. Indeed, we can prove a stronger result ∀t ∈ {0, 1, · · · , q} : |Jt| ≤ kt by induction:

• When t = q, we will prove |Jq| ≤ kq by showing that Si is a base of Qi ∪ Si. It is obvious that each element u ∈ O−i
satisfies Si ∪ {u} /∈ I according to the definition of O−i . Moreover, for any element u ∈ ∪j∈[`]\{i}(O

i−
j ∪ Ô

i−
j), we

must have Si ∪ {u} /∈ I, because otherwise we have S<i (u) ∪ {u} ∈ I due to S<i (u) ⊆ Si and the down-closed
property of independence systems, contradicting the definition of Oi−j and Ôi−j . These reasoning implies that Si is a
base of Qi ∪ Si. Note that Qi ⊆ O. So we can get |Jq| = |Qi| ≤ k|Si| = kq according to the definition of k-systems.

• Suppose that |Jt| ≤ kt holds, we will prove |Jt−1| ≤ k(t − 1). If the set Ct determined in Line 3 of Algorithm 3
has a cardinality larger than k, then we have |Mt| = k according to Algorithm 3 and hence |Jt−1| = |Jt| − k ≤
k(t − 1). If |Ct| ≤ k, then {z1, · · · , zt−1} must be a base of {z1, · · · , zt−1} ∪ Jt−1, because there does not
exist u ∈ Jt−1 \ {z1, · · · , zt−1} such that {z1, · · · , zt−1} ∪ {u} ∈ I according to Algorithm 3. So we also have
|Jt−1| ≤ k(t− 1) according to Jt−1 ∈ I and the definition of k-systems.

From the above reasoning we know J0 = ∅. So the lemma follows.

Algorithm 3 CONSTRUCTING THE MAPPING σi(·)
Initialize: Denote the elements in Si as {z1, · · · , zq}, where elements are listed according to the order that they are
added into Si; Jq ← Qi

1: for t = q to 0 do
2: Ct ← {e ∈ Jt\{z1, · · · , zt−1} : {z1, · · · , zt−1, e} ∈ I}
3: if |Ct| ≤ k then
4: Mt ← Ct
5: end if
6: if |Ct| > k then
7: if zt ∈ Ct then
8: Find a subset Mt ⊆ Ct satisfying |Mt| = k and zt ∈Mt

9: else
10: Find a subset Mt ⊆ Ct satisfying |Mt| = k
11: end if
12: end if
13: Let σi(z) = zt for all z ∈Mt; Jt−1 ← Jt \Mt

14: end for

A.2. Proof of Lemma 2

Proof. We first prove Eqn. (3). According to the definitions of Oi+j and Ôi+j , any element u ∈ Oi+j ∪ Ô
i+
j can also be

added into Si without violating the feasibility of I when u is inserted into Sj . Therefore, according to the greedy rule of
RANDOMMULTIGREEDY and the submodularity of f(·), we must have

∀u ∈ Oi+j ∪ Ô
i+
j : f(u | Si) ≤ f(u | S<i (u))) ≤ f(u | S<j (u))) = δ(u) (11)

Now we prove Eqn. (4). Recall that Qi = ∪j∈[`]\{i}(O
i−
j ∪ Ô

i−
j) ∪ (O ∩ Si) ∪O−i . According to Lemma 1, any element

u ∈ Oi−j ∪ Ô
i−
j (j 6= i) can be added into S<i (πi(u)) without violating the feasibility of I . Moreover, u must have not been

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

considered by the algorithm at the moment that πi(u) is added into Si, because otherwise we have S<i (u) ⊆ S<i (πi(u))
and hence S<i (u) ∪ {u} ∈ I due to the definition of independence systems, which contradicts the definitions of Oi−j and
Ôi−j . Therefore, according to the greedy rule of RANDOMMULTIGREEDY and submodularity, we can get

∀u ∈ Oi−j ∪ Ô
i−
j : f(u | Si) ≤ f(u | S<i (u))) ≤ f(u | S<i (πi(u))) ≤ f(πi(u) | S<i (πi(u))) = δ(πi(u)) (12)

By similar reasoning, we can also prove ∀u ∈ O−i : f(u | Si) ≤ f(u | S<i (πi(u))) ≤ δ(πi(u)). Finally, f(u | Si) ≤
δ(πi(u)) trivially holds for all u ∈ O ∩ Si as πi(u) = u due to Lemma 1. So the lemma follows.

A.3. Proof of Lemma 3

As the proof of Lemma 3 is a bit involved, we first introduce Lemma 9, and then use Lemma 9 to prove Lemma 3.

Lemma 9. We have∑
i∈[`]

(∑
j∈[`]\{i}

(∑
u∈Oi+j

δ(u) +
∑

u∈Oi−j ∪Ô
i−
j

δ(πi(u))

)
+
∑
u∈O−i

δ(πi(u))

)
≤ `(k + `− 2)f(S∗) (13)

Proof. For any i ∈ [`], let λ(i) = (i mod `) + 1. So we have

∑
i∈[`]

∑
u∈Oi+

λ(i)

δ(u) =
∑
j∈[`]

∑
u∈Oλ

−1(j)+
j

δ(u) ≤
∑
j∈[`]

∑
u∈O∩Sj

δ(u) =
∑
i∈[`]

∑
u∈O∩Si

δ(u), (14)

where the inequality is due to Oλ
−1(j)+
j ⊆ O ∩ Sj and ∀u ∈ Sj : δ(u) > 0. So we can get

∑
i∈[`]

∑
j∈[`]\{i}

∑
u∈Oi+j

δ(u) =
∑
i∈[`]

(∑
j∈[`]\{i,λ(i)}

∑
u∈Oi+j

δ(u) +
∑

u∈Oi+
λ(i)

δ(u)

)

≤
∑
i∈[`]

∑
j∈[`]\{i,λ(i)}

∑
u∈O∩Sj

δ(u) +
∑
i∈[`]

∑
u∈O∩Si

δ(u) (15)

≤ `(`− 2)f(S∗) +
∑
i∈[`]

∑
u∈O∩Si

δ(u) (16)

where we leverage Eqn. (14) to derive Eqn. (15), and Eqn. (16) is due to
∑
u∈O∩Sj δ(u) ≤

∑
u∈Sj δ(u) ≤ f(Sj) ≤ f(S∗).

Moreover, we can get

∑
i∈[`]

(∑
j∈[`]\{i}

(∑
u∈Oi+j

δ(u) +
∑

u∈Oi−j ∪Ô
i−
j

δ(πi(u))

)
+
∑
u∈O−i

δ(πi(u))

)

=
∑
i∈[`]

∑
j∈[`]\{i}

∑
u∈Oi+j

δ(u) +
∑
i∈[`]

(∑
j∈[`]\{i}

∑
u∈Oi−j ∪Ô

i−
j

δ(πi(u)) +
∑
u∈O−i

δ(πi(u))

)

≤ `(`− 2)f(S∗) +
∑
i∈[`]

(∑
u∈O∩Si

δ(u) +
∑

j∈[`]\{i}

∑
u∈Oi−j ∪Ô

i−
j

δ(πi(u)) +
∑
u∈O−i

δ(πi(u))

)
(17)

= `(`− 2)f(S∗) +
∑
i∈[`]

∑
u∈Qi

δ(πi(u))

≤ `(`− 2)f(S∗) + k
∑
i∈[`]

∑
u∈Si

δ(u) (18)

≤ `(`− 2)f(S∗) + k
∑
i∈[`]

f(Si) ≤ `(k + `− 2)f(S∗) (19)

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

where Qi = ∪j∈[`]\{i}(O
i−
j ∪ Ô

i−
j) ∪ (O ∩ Si) ∪O−i is defined in Lemma 1; Eqn. (17) is due to Eqn. (16); and Eqn. (18)

is due to Lemma 1. So the lemma follows.

Now we provide the proof of Lemma 3:

Proof. Let Gi = [∪i∈[`]\{i}(O
i+
j ∪O

i−
j ∪ Ô

i+
j ∪ Ô

i−
j)]∪O−i ∪ [O∩Di] for all i ∈ [`]. It is not hard to see that Gi ⊆ O \Si

and ∀u ∈ O \ (Si ∪Gi) : f(u | Si) ≤ 0. Therefore, we can get∑
i∈[`]

(
f(O ∪ Si)− f(Si)

)

≤
∑
i∈[`]

(∑
j∈[`]\{i}

(∑
u∈Oi+j ∪Ô

i+
j

f(u | Si) +
∑

u∈Oi−j ∪Ô
i−
j

f(u | Si)
)

+
∑
u∈O−i

f(u | Si) +
∑

u∈O∩Di

f(u | Si)

)
(20)

≤
∑
i∈[`]

(∑
j∈[`]\{i}

(∑
u∈Oi+j ∪Ô

i+
j

δ(u) +
∑

u∈Oi−j ∪Ô
i−
j

δ(πi(u))

)
+
∑
u∈O−i

δ(πi(u)) +
∑

u∈O∩Di

δ(u)

)
(21)

=
∑
i∈[`]

(∑
j∈[`]\{i}

(∑
u∈Oi+j

δ(u) +
∑

u∈Oi−j ∪Ô
i−
j

δ(πi(u))

)
+
∑
u∈O−i

δ(πi(u))

)

+
∑
i∈[`]

(∑
j∈[`]\{i}

∑
u∈Ôi+j

δ(u) +
∑

u∈O∩Di

δ(u)

)

≤ `(k + `− 2)f(S∗) +
∑
i∈[`]

(∑
j∈[`]\{i}

∑
u∈Ôi+j

δ(u) +
∑

u∈O∩Di

δ(u)

)
(22)

where Eqn. (20) is due to submodularity of f(·); Eqn. (21) is due to Lemma 2 and submodularity; and Eqn. (22) is due to
Lemma 9. Moreover, we can get∑

i∈[`]

(∑
j∈[`]\{i}

∑
u∈Ôi+j

δ(u) +
∑

u∈O∩Di

δ(u)

)
≤
∑
i∈[`]

(∑
j∈[`]\{i}

∑
u∈O∩Dj

δ(u) +
∑

u∈O∩Di

δ(u)

)
(23)

=
∑
i∈[`]

∑
j∈[`]

∑
u∈O∩Dj

δ(u) = `
∑
u∈N

Xu· δ(u) (24)

where Eqn. (23) is due to Ôi+j ⊆ O ∩Dj and ∀u ∈ Dj : δ(u) > 0. Combining Eqn. (22) and Eqn. (24) finishes the proof
of Lemma 3.

A.4. Proof of Lemma 4

We first quote the following lemma presented in (Buchbinder et al., 2014):

Lemma 10. (Buchbinder et al., 2014) Given a ground setN and any non-negative submodular function g(·) defined on 2N ,
we have E[g(Y)] ≥ (1− p)g(∅) if Y is a random subset ofN such that each element inN appears in Y with probability of
at most p (not necessarily independently).

With the above lemma, Lemma 4 can be proved as follows:

Proof. We first prove Eqn. (6). Note that S1, S2, · · · , S` are disjoint sets. Using submodularity, we have

∑̀
i=1

f(Si ∪O) ≥ f(O) + f(S1 ∪ S2 ∪O) +
∑̀
i=3

f(Si ∪O)

≥ 2f(O) + f(S1 ∪ S2 ∪ S3 ∪O) +
∑̀
i=4

f(Si ∪O) ≥ · · · ≥ (`− 1)f(O) + f(∪`i=1Si ∪O) (25)

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Let g : 2N 7→ R≥0 be a non-negative submodular function defined as: ∀S ⊆ N : g(S) = f(S ∪O). As each element in N
appears in ∪`i=1Si with probability of no more than p, We can use Lemma 10 to get

E[f(∪`i=1Si ∪O)] = E[g(∪`i=1Si)] ≥ (1− p)g(∅) = (1− p)f(O) (26)

Combining Eqn. (25) and Eqn. (26) finishes the proof of Eqn. (6).

Next, we prove Eqn. (7). For any u ∈ N , let Yu = 1 if u ∈ ∪`i=1Si and Yu = 0 otherwise; let Eu be an arbitrary event
denoting all the random choices of RANDOMMULTIGREEDY up until the time that u is considered to be added into a
candidate solution, or denoting all the randomness of RANDOMMULTIGREEDY if u is never considered. Note that we have∑
u∈N Yu · δ(u) ≤

∑`
i=1 f(Si). Therefore, by the law of total probability, we only need to prove

∀u ∈ N :
1− p
p

E[Yu · δ(u) | Eu] ≥ E[Xu · δ(u) | Eu] (27)

for any event Eu defined above. Note that we have Xu = 0 and hence Eqn. (27) clearly holds if u /∈ O or u is never
considered by the algorithm. Otherwise we have E[Yu · δ(u) | Eu] = p · δ(u) and E[Xu · δ(u) | Eu] = (1− p) · δ(u) due
to the reason that u is accepted with probability of p and discarded with probability of 1− p. Combining all these results
completes the proof of Eqn. (7).

A.5. Proof of Theorem 2

For clarity, we first provide the detailed design of the accelerated version of RANDOMMULTIGREEDY, as shown by
Algorithm 5. In the t-th iteration, Algorithm 5 calls a procedure CHOOSE to greedily find an candidate element vi for Si
satisfying f(vi | Si) > 0 and Si ∪ {vi} ∈ I for each i ∈ [`]. The CHOOSE procedure also returns an index it same to that
in Algorithm 1. After that, Algorithm 5 runs similarly as Algorithm 1, i.e., it inserts vit into Sit with probability p, and
then enters the (t + 1)-th iteration. Note that the elements v1, · · · , v` and vit found in the t-th iteration are also used to
call CHOOSE in the (t+ 1)-th iteration, so that CHOOSE need not to identify a new vi for all i ∈ [`] : vi 6= vit (as Si does
not change for these i’s) and hence time efficiency can be improved. Finally, Algorithm 5 returns the optimal set among
S1, · · · , S` and S0, where S0 is the singleton set with the maximum utility.

Next, we provide a brief description on the CHOOSE procedure. As explained in Sec. 4.1, CHOOSE maintains ` sets
A1, A2, · · · , A` such that vi can be selected from Ai. At the first time that CHOOSE is called, CHOOSE assigns each element
u ∈ Ai a weight wi(u) = f(u | ∅) and an integer τi(u) indicating how many times wi(u) has been updated (Lines 3–7).
Afterwards, CHOOSE runs as that described in Sec. 4.1 and finds vi for each i ∈ [`]. Finally, CHOOSE identifies vi∗ from
{vi : i ∈ [`]} which has the maximum marginal gain, and it also removes vi∗ from all Ai : i ∈ [`] because vi∗ will used as
vit by Algorithm 5.

Note that Algorithm 5 differs from Algorithm 1 in two points: (1) the element ut found in the t-th iteration is only an
(1

1+ε)-approximate solution; (2) there are elements removed from Ai due to “too many updates”. Based on this observation,
we can slightly modify the proofs for Algorithm 1 to prove Theorem 2, as presented below:

Proof. Let Li denote the set of all elements removed from Ai due to Line 25 of Algorithm 4. We can slightly modify
Definition 5 to re-define the sets Oi+j , Oi−j , Ôi+j , Ôi−j , O−i as follows:

Oi+j =
{
u ∈ O ∩ Sj : S<i (u) ∪ {u} ∈ I

}
\ Li;

Oi−j =
{
u ∈ O ∩ Sj : S<i (u) ∪ {u} /∈ I

}
\ Li;

Ôi+j =
{
u ∈ O ∩Dj : S<i (u) ∪ {u} ∈ I

}
\ Li;

Ôi−j =
{
u ∈ O ∩Dj : S<i (u) ∪ {u} /∈ I

}
\ Li;

O−i = {u ∈ O \ U : Si ∪ {u} /∈ I ∧ f(u | Si) > 0} \ Li;

With this new definition, it can be easily verified that each element u in Oi+j ∪ O
i−
j ∪ Ô

i+
j ∪ Ô

i−
j is still a candidate

considered for Si in the CHOOSE procedure when the algorithm tries to insert u into Sj . Therefore, according to the greedy
rule of RANDOMMULTIGREEDY and the (1 + ε)−1-approximation ratio of CHOOSE, we can use similar reasoning as that

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Algorithm 4 CHOOSE(S1, S2, · · · , S`, v1, · · · , v`, v∗)
1: if ∪`i=1Si = ∅ then
2: Let Ai ← {u ∈ N : {u} ∈ I ∧ f(u | ∅) > 0} for all i ∈ [`];
3: for all i ∈ [`] do
4: Let wi(u)← f(u | ∅) and τi(u)← 0 for all u ∈ Ai;
5: Store Ai as a priority list according to the non-increasing order of wi(u) : u ∈ Ai for all i ∈ [`];
6: Let vi ← arg maxu∈Ai wi(u);
7: end for
8: else
9: C ← [`]\{j ∈ [`] : (vj 6= v∗) ∨ (vj = NULL)}

10: for all i ∈ C do
11: Let vi ← NULL and remove all elements in Ai with non-positive weights;
12: while Ai 6= ∅ do
13: pop out the top element u from Ai;
14: if f(u | Si) has been computed then
15: vi ← u; exit while;
16: end if
17: if Si ∪ {u} /∈ I then
18: continue;
19: end if
20: old ← wi(u); τi(u)← τi(u) + 1;
21: Compute f(u | Si) and let wi(u)← f(u | Si);
22: if wi(u) ≥ old

1+ε then
23: vi ← u; exit while;
24: else
25: if τi(u) ≤ dlog1+ε

`r
ε e then

26: re-insert u into Ai and resort the elements in Ai;
27: end if
28: end if
29: end while
30: end for
31: end if
32: Let i∗ ← arg maxi∈[`]:vi 6=NULL f(vi | Si) and remove vi∗ from Ai for all i ∈ [`]
33: Output: v1, v2, · · · , v`, i∗

for Lemma 2 to prove

∀u ∈ Oi+j ∪ Ô
i+
j : f(u | Si) ≤ (1 + ε)δ(u); (28)

∀u ∈ ∪j∈[`]\{i}(O
i−
j ∪ Ô

i−
j) ∪ (O ∩ Si) ∪O−i : f(u | Si) ≤ (1 + ε)δ(πi(u)); (29)

With the above results, we can use similar reasoning as that in Lemma 3 to prove:

1

1 + ε

∑
i∈[`]

f(O | Si) ≤ `(k + `− 2)f(S∗) + `
∑
u∈N

Xu · δ(u) +
∑
i∈[`]

∑
u∈Li∩O

f(u | Si) (30)

Moreover, we have∑
u∈Li∩O

f(u | Si) ≤
∑

u∈Li∩O
f(u | ∅)(1 + ε)−dlog1+ε

`r
ε e ≤

∑
u∈Li∩O

ε

`r
f(u) ≤ εf(S∗)/` (31)

where the first inequality is due the reason that the weight of each element u ∈ Li have been updated in CHOOSE procedure
for more than dlog1+ε

`r
ε e times and it diminishes by a factor of 1

1+ε for each update. Combining Eqn. (30), Eqn. (31) and
Lemma 4, we can prove

f(O) ≤
[
(1 + ε)

`(k + `
p − 1)

`− p
− (`− 1)ε− ε2

`− p

]
E[f(S∗)] (32)

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Algorithm 5 RANDOMMULTIGREEDY(`, p) /*with acceleration*/
Initialize: ∀i ∈ [`] : Si ← ∅; vi ← NULL; t← 1;u0 ← NULL;

1: repeat
2: (v1, v2, · · · , v`, it)← CHOOSE(S1, · · · , S`, v1, · · · , v`, ut−1)
3: if ∃j ∈ [`] : vj 6= NULL then
4: ut ← vit ;
5: With probability p do Sit ← Sit ∪ {ut}
6: t← t+ 1
7: end if
8: until (∀i ∈ [`] : vi = NULL)
9: u∗ ← arg maxu∈N∧{u}∈I f(u); S0 ← {u∗}

10: S∗ ← arg maxS∈{S0,S1,S2,··· ,S`} f(S); T ← t− 1
11: Output: S∗, T

Therefore, the approximation ratio of the accelerated RANDOMMULTIGREEDY algorithm is at most (1 + ε)(1 +
√
k)2

when ` = 2, p = 2
1+
√
k

(for a randomized algorithm), or at most (1 + ε)(k +
√
k + d

√
ke+ 1) when ` = d

√
ke+ 1, p = 1

(for a deterministic algorithm). Finally, it can be seen that the CHOOSE procedure incurs at most O(log1+ε
`r
ε) value

and independence oracle queries for each element in each Ai : i ∈ [`]. So the total time complexity of the accelerated
RANDOMMULTIGREEDY algorithm is at most O(`n log1+ε

`r
ε) = O(`nε log `r

ε), which completes the proof.

B. Missing Proofs from Section 5
B.1. Proof of Lemma 5

Proof. Given any element set Y ⊆ N and any realization φ, let g(Y, φ) := f(Y ∪N (πopt, φ), φ). It is easy to verify that
the non-negative function g(·, φ) is submodular. Thus, given a fixed realization φ, by Lemma 10, we know that

EπA [g(N (πA, φ), φ)] ≥ (1− p)g(∅, φ) (33)

Therefore, we have

favg(πopt@πA) = EΦ[EπA [g(N (πA,Φ),Φ)]] ≥ EΦ[(1− p)g(∅,Φ)] = (1− p)favg(πopt), (34)

which completes the proof.

B.2. Proof of Lemma 6

Proof. We first give an equivalent expression of the expected utility by a function of conditional expected marginal gains.
Given a deterministic policy π and a realization φ, for each u ∈ N , let Yu(φ) be a boolean random variable such that
Yu(φ) = 1 if u ∈ N (π, φ) and Yu(φ) = 0 otherwise. Further, denote by ψπu(φ) the partial realization observed by π right
before considering u under realization φ, and denote by Ψπ

u a random partial realization right before considering u by π. We
also use Yu(ψπu(φ)) to represent Yu(φ), since the partial realization ψπu(φ) suffices to determine whether u is added to the
solution under realization φ. Thus,

EΦ[f(N (π,Φ),Φ)]

= EΦ

[∑
u∈N

(
Yu(Φ) ·

(
f(dom(ψπu(Φ)) ∪ {u},Φ)− f(dom(ψπu(Φ)),Φ)

))]
=

∑
u∈N

EΨπu

[
EΦ

[
Yu(Φ) ·

(
f(dom(Ψπ

u) ∪ {u},Φ)− f(dom(Ψπ
u),Φ)

) ∣∣ Φ ∼ Ψπ
u

]]
=

∑
u∈N

EΨπu

[
Yu(Ψπ

u) ·∆(u | Ψπ
u)
]

=
∑
u∈N

EΦ

[
EΨπu

[
Yu(Ψπ

u) ·∆(u | Ψπ
u)
∣∣ Φ ∼ Ψπ

u

]]
=

∑
u∈N

EΦ

[
Yu(Φ) ·∆(u | ψπu(Φ))

]
= EΦ

[∑
u∈N (π,Φ)

∆(u | ψπu(Φ))
]
. (35)

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Denote by ψ(πA, φ) the observed partial realization at the end of πA under realization φ. Then, similar to the above analysis,
we have

favg(πA@πopt) = EΦ,πA@πopt
[f(N (πA@πopt,Φ),Φ)]

= EπA@πopt

[∑
u∈N (πA,Φ)

∆(u | ψu(Φ)) +
∑

u∈N (πopt,Φ)\N (πA,Φ)

∆(u | ψ(πA,Φ) ∪ ψπopt
u (Φ))

]
= favg(πA) + EπA@πopt

[∑
u∈N (πopt,Φ)\N (πA,Φ)

∆(u | ψ(πA,Φ) ∪ ψπopt
u (Φ))

]
≤ favg(πA) + EπA

[∑
u∈N (πopt,Φ)\N (πA,Φ)

∆(u | ψu(Φ))
]
,

where the inequality is due to adaptive submodularity and ψu(Φ) ⊆ ψ(πA,Φ) ⊆ ψ(πA,Φ) ∪ ψπopt
u (Φ).

B.3. Proof of Lemma 7

Proof. Since favg(πA) = EπA
[
EΦ

[∑
u∈N (πA,Φ) ∆(u | ψu(Φ))

]]
, it suffices to prove∑

u∈O1(φ)
∆(u | ψu(φ)) ≤ k ·

∑
u∈N (πA,φ)

∆(u | ψu(φ)) (36)

for any given realization φ ∈ ZN and fixed randomness of πA. Given a realization φ, let ûi be the i-th element selected by
πA and let Ŝi be the first i elements picked, i.e., Ŝi = {û1, . . . , ûi}, for i = 1, 2, . . . , h where h := |N (πA, φ)|. Suppose
that there exists a partition O1,1, O1,2, . . . , O1,h of O1(φ) such that for all i = 1, 2, . . . , h,∑

u∈O1,i

∆(u | ψu(φ)) ≤ k ·∆(ûi | ψûi(φ)), (37)

then Eqn. (36) must hold due to∑
u∈O1(φ)

∆(u | ψu(φ)) =

h∑
i=1

∑
u∈O1,i

∆(u | ψu(φ)) ≤ k ·
h∑
i=1

∆(ûi | ψûi(φ)) = k ·
∑

u∈N (πA,φ)

∆(u | ψu(φ)). (38)

Therefore, we just need to show the existence of such a desired partition of O1, as proved below.

We use the following iterative algorithm to find the partition, which is inspired by (Calinescu et al., 2011). Define
Nh := O1(φ). For i = h, h − 1, . . . , 2, let Bi := {u ∈ Ni | Ŝi−1 ∪ {u} ∈ I}. If |Bi| ≤ k, set O1,i = Bi. Otherwise,
pick an arbitrary O1,i ⊆ Bi with |O1,i| = k. Then, set Ni−1 = Ni \ O1,i. Finally, set O1,1 = N1. Clearly, |O1,i| ≤ k
for i = 2, . . . , h. We further show that |O1,1| ≤ k. We prove it by contradiction and assume |O1,1| > k. If |B2| ≤ k,
then we have Ŝ1 ∪ {u} /∈ I for every u ∈ N1 according to the above process. So Ŝ1 is a base of Ŝ1 ∪ N1, which
implies that |N1| ≤ k · |Ŝ1|, contradicting the assumption that |N1| = |O1,1| > k. Consequently, it must hold that
|B2| > k and hence |O1,2| = k and |N2| > 2k. Using a similar argument, we can recursively get that |Bi| > k and hence
|O1,i| = k and |Ni| > ik for any i = 3, . . . , h, e.g., |Nh| > hk. However, as Ŝh is a base of Ŝh ∪O1(φ), we should have
|Nh| = |O1(φ)| ≤ hk, which shows a contradiction. Therefore, we can conclude that |O1,i| ≤ k for all i = 1, 2, . . . , h.

According to the partition O1,i : i ∈ [h] constructed above, it is obvious that for every u ∈ O1,i, Ŝi−1 ∪ {u} ∈ I. This
implies that for every u ∈ O1,i, u cannot be considered before ûi is added by πA, i.e., ψûi(φ) ⊆ ψu(φ). Meanwhile, due to
the greedy rule of ADAPTRANDOMGREEDY, it follows that ∆(ûi | ψûi(φ)) ≥ ∆(u | ψûi(φ)) for each u ∈ O1,i. Hence,∑

u∈O1,i

∆(u | ψu(φ)) ≤
∑

u∈O1,i

∆(u | ψûi(φ)) ≤
∑

u∈O1,i

∆(ûi | ψûi(φ)) ≤ k ·∆(ûi | ψûi(φ)) (39)

holds for any i ∈ [h]. Combining the above results completes the proof.

B.4. Proof of Lemma 8

Proof. Again, since favg(πA) = EπA
[
EΦ

[∑
u∈N (πA,Φ) ∆(u | ψu(Φ))

]]
, we only need to prove that, for any φ ∈ ZN ,

EπA
[∑

u∈O2(φ)
∆(u | ψu(φ))

]
≤ 1− p

p
· EπA

[∑
u∈N (πA,φ)

∆(u | ψu(φ))
]
. (40)

Randomized Algorithms for Submodular Function Maximization with a k-System Constraint

Given a realization φ ∈ ZN , for each u ∈ N , let Xu be a random variable such that Xu = 1 if u ∈ O2(φ) and Xu = 0
otherwise. So we have ∑

u∈O2(φ)

∆(u | ψu(φ)) =
∑
u∈N

(
Xu ·∆(u | ψu(φ))

)
. (41)

Similarly, for each u ∈ N , let Yu be a random variable such that Yu = 1 if u ∈ N (πA, φ) and Yu = 0 otherwise. Thus,∑
u∈N (πA,φ)

∆(u | ψu(φ)) =
∑
u∈N

(
Yu ·∆(u | ψu(φ))

)
. (42)

Therefore, it is sufficient to prove:

∀u ∈ N : EπA
[
Xu ·∆(u | ψu(φ))

]
≤ 1− p

p
· EπA

[
Yu ·∆(u | ψu(φ))

]
(43)

Observe that, for any given u ∈ N , if ∆(u | ψu(φ)) ≤ 0 or dom(ψu(φ)) ∪ {u} /∈ I, then we have u /∈ N (πA, φ) and u /∈
O2(φ) by definition, which indicatesXu = Yu = 0. Consider the event that ∆(u | ψu(φ)) > 0 and dom(ψu(φ))∪{u} ∈ I ,
and denote such an event as Eu. Since Pr[u ∈ N (πA, φ) | Eu] = p, it is trivial to see that

EπA
[
Yu ·∆(u | ψu(φ))

]
= p · Eψu(φ)[∆(u | ψu(φ)) | Eu] · Pr[Eu], (44)

where the expectation is taken over the randomness of ψu(φ) (i.e., ψu(φ) ∼ Eu) due to the internal randomness of algorithm.
On the other hand, if u ∈ O(φ), then we have Pr[u ∈ O2(φ) | Eu] = 1 − p as u is discarded with probability of 1 − p,
while we also have Pr[u ∈ O2(φ) | Eu] = 0 if u /∈ O(φ). Thus, we know Pr[u ∈ O2(φ) | Eu] ≤ (1− p) and hence we can
immediately get

EπA
[
Xu ·∆(u | ψu)

]
≤ (1− p) · Eψu(φ)[∆(u | ψu(φ)) | Eu] · Pr[Eu]. (45)

The lemma then follows by combining all the above reasoning.

B.5. Proof of Theorem 3

Proof. According to Lemmas 6–8, we have

favg(πA@πopt)− favg(πA) ≤ EπA,Φ
[∑
u∈N (πopt,Φ)\N (πA,Φ)

∆(u | ψu(Φ))
]

≤ EπA,Φ
[∑
u∈O1(Φ)

∆(u | ψu(Φ)) +
∑

u∈O2(Φ)

∆(u | ψu(Φ))
]

≤
(
k +

1− p
p

)
· favg(πA)

where the second inequality is due to the definition of O3(Φ), i.e., ∆(u | ψu(Φ)) ≤ 0 for every u ∈ O3(Φ). Combining the
above result with Lemma 5 gives

f(πopt) ≤
kp+ 1

p(1− p)
· favg(πA). (46)

Moreover, kp+1
p(1−p) achieves its minimum value of (1+

√
k + 1)2 at p = (1+

√
k + 1)−1. Finally, theO(nr) time complexity

is evident, as the algorithm incurs O(n) oracle queries for each selected element.

