A. Missing Proofs from Section 4

A.1. Proof of Lemma 1

Proof. The proof is constructive and is inspired by (Calinescu et al., 2011; Han et al., 2020). For clarity, we provide a procedure to construct $\sigma_{i}(\cdot)$, as shown by Algorithm 3. Suppose that the elements in S_{i} are $\left\{z_{1}, \cdots, z_{q}\right\}$ (listed according to the order that they are added into S_{i}). Algorithm 3 finds a series of sets $J_{0} \subseteq J_{1} \subseteq \cdots \subseteq J_{q}=Q_{i}$ such that all the elements in $M_{t}=J_{t} \backslash J_{t-1}$ is mapped to z_{t} by $\sigma_{i}(\cdot)$ for any $t \in\{1,2, \cdots, q\}$. From Algorithm 3, it can be easily seen that $\sigma_{i}(\cdot)$ satisfies the conditions required by the lemma. The only problem left is to prove that all the elements in Q_{i} is mapped by $\sigma_{i}(\cdot)$, i.e., to prove $J_{0}=\emptyset$. Indeed, we can prove a stronger result $\forall t \in\{0,1, \cdots, q\}:\left|J_{t}\right| \leq k t$ by induction:

- When $t=q$, we will prove $\left|J_{q}\right| \leq k q$ by showing that S_{i} is a base of $Q_{i} \cup S_{i}$. It is obvious that each element $u \in O_{i}^{-}$ satisfies $S_{i} \cup\{u\} \notin \mathcal{I}$ according to the definition of O_{i}^{-}. Moreover, for any element $u \in \cup_{j \in[\ell] \backslash\{i\}}\left(O_{j}^{i-} \cup \widehat{O}_{j}^{i-}\right)$, we must have $S_{i} \cup\{u\} \notin \mathcal{I}$, because otherwise we have $S_{i}^{<}(u) \cup\{u\} \in \mathcal{I}$ due to $S_{i}^{<}(u) \subseteq S_{i}$ and the down-closed property of independence systems, contradicting the definition of O_{j}^{i-} and \widehat{O}_{j}^{i-}. These reasoning implies that S_{i} is a base of $Q_{i} \cup S_{i}$. Note that $Q_{i} \subseteq O$. So we can get $\left|J_{q}\right|=\left|Q_{i}\right| \leq k\left|S_{i}\right|=k q$ according to the definition of k-systems.
- Suppose that $\left|J_{t}\right| \leq k t$ holds, we will prove $\left|J_{t-1}\right| \leq k(t-1)$. If the set C_{t} determined in Line 3 of Algorithm 3 has a cardinality larger than k, then we have $\left|M_{t}\right|=k$ according to Algorithm 3 and hence $\left|J_{t-1}\right|=\left|J_{t}\right|-k \leq$ $k(t-1)$. If $\left|C_{t}\right| \leq k$, then $\left\{z_{1}, \cdots, z_{t-1}\right\}$ must be a base of $\left\{z_{1}, \cdots, z_{t-1}\right\} \cup J_{t-1}$, because there does not exist $u \in J_{t-1} \backslash\left\{z_{1}, \cdots, z_{t-1}\right\}$ such that $\left\{z_{1}, \cdots, z_{t-1}\right\} \cup\{u\} \in \mathcal{I}$ according to Algorithm 3. So we also have $\left|J_{t-1}\right| \leq k(t-1)$ according to $J_{t-1} \in \mathcal{I}$ and the definition of k-systems.

From the above reasoning we know $J_{0}=\emptyset$. So the lemma follows.

```
Algorithm 3 Constructing The MApping \(\sigma_{i}(\cdot)\)
    Initialize: Denote the elements in \(S_{i}\) as \(\left\{z_{1}, \cdots, z_{q}\right\}\), where elements are listed according to the order that they are
    added into \(S_{i} ; J_{q} \leftarrow Q_{i}\)
        for \(t=q\) to 0 do
        \(C_{t} \leftarrow\left\{e \in J_{t} \backslash\left\{z_{1}, \cdots, z_{t-1}\right\}:\left\{z_{1}, \cdots, z_{t-1}, e\right\} \in \mathcal{I}\right\}\)
        if \(\left|C_{t}\right| \leq k\) then
            \(M_{t} \leftarrow C_{t}\)
        end if
        if \(\left|C_{t}\right|>k\) then
            if \(z_{t} \in C_{t}\) then
                Find a subset \(M_{t} \subseteq C_{t}\) satisfying \(\left|M_{t}\right|=k\) and \(z_{t} \in M_{t}\)
            else
                Find a subset \(M_{t} \subseteq C_{t}\) satisfying \(\left|M_{t}\right|=k\)
            end if
        end if
        Let \(\sigma_{i}(z)=z_{t}\) for all \(z \in M_{t} ; J_{t-1} \leftarrow J_{t} \backslash M_{t}\)
    end for
```


A.2. Proof of Lemma 2

Proof. We first prove Eqn. (3). According to the definitions of O_{j}^{i+} and \widehat{O}_{j}^{i+}, any element $u \in O_{j}^{i+} \cup \widehat{O}_{j}^{i+}$ can also be added into S_{i} without violating the feasibility of \mathcal{I} when u is inserted into S_{j}. Therefore, according to the greedy rule of RANDOMMULTIGREEDY and the submodularity of $f(\cdot)$, we must have

$$
\begin{equation*}
\left.\left.\forall u \in O_{j}^{i+} \cup \widehat{O}_{j}^{i+}: f\left(u \mid S_{i}\right) \leq f\left(u \mid S_{i}^{<}(u)\right)\right) \leq f\left(u \mid S_{j}^{<}(u)\right)\right)=\delta(u) \tag{11}
\end{equation*}
$$

Now we prove Eqn. (4). Recall that $Q_{i}=\cup_{j \in[\ell] \backslash\{i\}}\left(O_{j}^{i-} \cup \widehat{O}_{j}^{i-}\right) \cup\left(O \cap S_{i}\right) \cup O_{i}^{-}$. According to Lemma 1, any element $u \in O_{j}^{i-} \cup \widehat{O}_{j}^{i-}(j \neq i)$ can be added into $S_{i}^{<}\left(\pi_{i}(u)\right)$ without violating the feasibility of \mathcal{I}. Moreover, u must have not been
considered by the algorithm at the moment that $\pi_{i}(u)$ is added into S_{i}, because otherwise we have $S_{i}^{<}(u) \subseteq S_{i}^{<}\left(\pi_{i}(u)\right)$ and hence $S_{i}^{<}(u) \cup\{u\} \in \mathcal{I}$ due to the definition of independence systems, which contradicts the definitions of O_{j}^{i-} and \widehat{O}_{j}^{i-}. Therefore, according to the greedy rule of RANDOMMULTIGREEDY and submodularity, we can get

$$
\begin{equation*}
\left.\forall u \in O_{j}^{i-} \cup \widehat{O}_{j}^{i-}: f\left(u \mid S_{i}\right) \leq f\left(u \mid S_{i}^{<}(u)\right)\right) \leq f\left(u \mid S_{i}^{<}\left(\pi_{i}(u)\right)\right) \leq f\left(\pi_{i}(u) \mid S_{i}^{<}\left(\pi_{i}(u)\right)\right)=\delta\left(\pi_{i}(u)\right) \tag{12}
\end{equation*}
$$

By similar reasoning, we can also prove $\forall u \in O_{i}^{-}: f\left(u \mid S_{i}\right) \leq f\left(u \mid S_{i}^{<}\left(\pi_{i}(u)\right)\right) \leq \delta\left(\pi_{i}(u)\right)$. Finally, $f\left(u \mid S_{i}\right) \leq$ $\delta\left(\pi_{i}(u)\right)$ trivially holds for all $u \in O \cap S_{i}$ as $\pi_{i}(u)=u$ due to Lemma 1 . So the lemma follows.

A.3. Proof of Lemma 3

As the proof of Lemma 3 is a bit involved, we first introduce Lemma 9, and then use Lemma 9 to prove Lemma 3.
Lemma 9. We have

$$
\begin{equation*}
\sum_{i \in[\ell]}\left(\sum_{j \in[\ell] \backslash\{i\}}\left(\sum_{u \in O_{j}^{i+}} \delta(u)+\sum_{u \in O_{j}^{i-} \cup \widehat{O}_{j}^{i-}} \delta\left(\pi_{i}(u)\right)\right)+\sum_{u \in O_{i}^{-}} \delta\left(\pi_{i}(u)\right)\right) \leq \ell(k+\ell-2) f\left(S^{*}\right) \tag{13}
\end{equation*}
$$

Proof. For any $i \in[\ell]$, let $\lambda(i)=(i \bmod \ell)+1$. So we have

$$
\begin{equation*}
\sum_{i \in[\ell]} \sum_{u \in O_{\lambda(i)}^{i+}} \delta(u)=\sum_{j \in[\ell]} \sum_{u \in O_{j}^{\lambda-1}(j)+} \delta(u) \leq \sum_{j \in[\ell]} \sum_{u \in O \cap S_{j}} \delta(u)=\sum_{i \in[\ell]} \sum_{u \in O \cap S_{i}} \delta(u) \tag{14}
\end{equation*}
$$

where the inequality is due to $O_{j}^{\lambda^{-1}(j)+} \subseteq O \cap S_{j}$ and $\forall u \in S_{j}: \delta(u)>0$. So we can get

$$
\begin{align*}
\sum_{i \in[\ell]} \sum_{j \in[\ell \backslash \backslash\{i\}} \sum_{u \in O_{j}^{i+}} \delta(u) & =\sum_{i \in[\ell]}\left(\sum_{j \in[\ell] \backslash\{i, \lambda(i)\}} \sum_{u \in O_{j}^{i+}} \delta(u)+\sum_{u \in O_{\lambda(i)}^{i+}} \delta(u)\right) \\
& \leq \sum_{i \in[\ell]} \sum_{j \in[\ell] \backslash\{i, \lambda(i)\}} \sum_{u \in O \cap S_{j}} \delta(u)+\sum_{i \in[\ell]} \sum_{u \in O \cap S_{i}} \delta(u) \tag{15}\\
& \leq \ell(\ell-2) f\left(S^{*}\right)+\sum_{i \in[\ell]} \sum_{u \in O \cap S_{i}} \delta(u) \tag{16}
\end{align*}
$$

where we leverage Eqn. (14) to derive Eqn. (15), and Eqn. (16) is due to $\sum_{u \in O \cap S_{j}} \delta(u) \leq \sum_{u \in S_{j}} \delta(u) \leq f\left(S_{j}\right) \leq f\left(S^{*}\right)$. Moreover, we can get

$$
\begin{align*}
& \sum_{i \in[\ell]}\left(\sum_{j \in[\ell] \backslash\{i\}}\left(\sum_{u \in O_{j}^{i+}} \delta(u)+\sum_{u \in O_{j}^{i-} \cup \widehat{O}_{j}^{i-}} \delta\left(\pi_{i}(u)\right)\right)+\sum_{u \in O_{i}^{-}} \delta\left(\pi_{i}(u)\right)\right) \\
= & \sum_{i \in[\ell]} \sum_{j \in[\ell] \backslash\{i\}} \sum_{u \in O_{j}^{i+}} \delta(u)+\sum_{i \in[\ell]}\left(\sum_{j \in[\ell] \backslash\{i\}} \sum_{u \in O_{j}^{i-} \cup \widehat{O}_{j}^{i-}} \delta\left(\pi_{i}(u)\right)+\sum_{u \in O_{i}^{-}} \delta\left(\pi_{i}(u)\right)\right) \\
\leq & \ell(\ell-2) f\left(S^{*}\right)+\sum_{i \in[\ell]}\left(\sum_{u \in O \cap S_{i}} \delta(u)+\sum_{j \in[\ell] \backslash\{i\}} \sum_{u \in O_{j}^{i-} \cup \widehat{O}_{j}^{i-}} \delta\left(\pi_{i}(u)\right)+\sum_{u \in O_{i}^{-}} \delta\left(\pi_{i}(u)\right)\right) \tag{17}\\
= & \ell(\ell-2) f\left(S^{*}\right)+\sum_{i \in[\ell]} \sum_{u \in Q_{i}} \delta\left(\pi_{i}(u)\right) \\
\leq & \ell(\ell-2) f\left(S^{*}\right)+k \sum_{i \in[\ell]} \sum_{u \in S_{i}} \delta(u) \tag{18}\\
\leq & \ell(\ell-2) f\left(S^{*}\right)+k \sum_{i \in[\ell]} f\left(S_{i}\right) \leq \ell(k+\ell-2) f\left(S^{*}\right) \tag{19}
\end{align*}
$$

where $Q_{i}=\cup_{j \in[\ell] \backslash\{i\}}\left(O_{j}^{i-} \cup \widehat{O}_{j}^{i-}\right) \cup\left(O \cap S_{i}\right) \cup O_{i}^{-}$is defined in Lemma 1; Eqn. (17) is due to Eqn. (16); and Eqn. (18) is due to Lemma 1. So the lemma follows.

Now we provide the proof of Lemma 3:
Proof. Let $G_{i}=\left[\cup_{i \in[\ell] \backslash\{i\}}\left(O_{j}^{i+} \cup O_{j}^{i-} \cup \widehat{O}_{j}^{i+} \cup \widehat{O}_{j}^{i-}\right)\right] \cup O_{i}^{-} \cup\left[O \cap D_{i}\right]$ for all $i \in[\ell]$. It is not hard to see that $G_{i} \subseteq O \backslash S_{i}$ and $\forall u \in O \backslash\left(S_{i} \cup G_{i}\right): f\left(u \mid S_{i}\right) \leq 0$. Therefore, we can get

$$
\begin{align*}
& \sum_{i \in[\ell]}\left(f\left(O \cup S_{i}\right)-f\left(S_{i}\right)\right) \\
\leq & \sum_{i \in[\ell]}\left(\sum_{j \in[\ell] \backslash\{i\}}\left(\sum_{u \in O_{j}^{i+} \cup \widehat{O}_{j}^{i+}} f\left(u \mid S_{i}\right)+\sum_{u \in O_{j}^{i-} \cup \widehat{O}_{j}^{i-}} f\left(u \mid S_{i}\right)\right)+\sum_{u \in O_{i}^{-}} f\left(u \mid S_{i}\right)+\sum_{u \in O \cap D_{i}} f\left(u \mid S_{i}\right)\right) \tag{20}\\
\leq & \sum_{i \in[\ell]}\left(\sum_{j \in[\ell] \backslash\{i\}}\left(\sum_{u \in O_{j}^{i+} \cup \widehat{O}_{j}^{i+}} \delta(u)+\sum_{u \in O_{j}^{i-} \cup \widehat{O}_{j}^{i-}} \delta\left(\pi_{i}(u)\right)\right)+\sum_{u \in O_{i}^{-}} \delta\left(\pi_{i}(u)\right)+\sum_{u \in O \cap D_{i}} \delta(u)\right) \tag{21}\\
= & \sum_{i \in[\ell]}\left(\sum_{j \in[\ell \backslash \backslash\{i\}}\left(\sum_{u \in O_{j}^{i+}} \delta(u)+\sum_{u \in O_{j}^{i-} \cup \widehat{O}_{j}^{i-}} \delta\left(\pi_{i}(u)\right)\right)+\sum_{u \in O_{i}^{-}} \delta\left(\pi_{i}(u)\right)\right) \\
& +\sum_{i \in[\ell]}\left(\sum_{j \in[\ell] \backslash\{i\}} \sum_{u \in \widehat{O}_{j}^{i+}} \delta(u)+\sum_{u \in O \cap D_{i}} \delta(u)\right) \\
\leq & \ell(k+\ell-2) f\left(S^{*}\right)+\sum_{i \in[\ell]}\left(\sum_{j \in[\ell \backslash \backslash\{i\}} \sum_{u \in \widehat{O}_{j}^{i+}} \delta(u)+\sum_{u \in O \cap D_{i}} \delta(u)\right) \tag{22}
\end{align*}
$$

where Eqn. (20) is due to submodularity of $f(\cdot)$; Eqn. (21) is due to Lemma 2 and submodularity; and Eqn. (22) is due to Lemma 9. Moreover, we can get

$$
\begin{align*}
& \sum_{i \in[\ell]}\left(\sum_{j \in[\ell] \backslash\{i\}} \sum_{u \in \widehat{O}_{j}^{i+}} \delta(u)+\sum_{u \in O \cap D_{i}} \delta(u)\right) \leq \sum_{i \in[\ell]}\left(\sum_{j \in[\ell] \backslash\{i\}} \sum_{u \in O \cap D_{j}} \delta(u)+\sum_{u \in O \cap D_{i}} \delta(u)\right) \tag{23}\\
= & \sum_{i \in[\ell]} \sum_{j \in[\ell]} \sum_{u \in O \cap D_{j}} \delta(u)=\ell \sum_{u \in \mathcal{N}} X_{u} \cdot \delta(u) \tag{24}
\end{align*}
$$

where Eqn. (23) is due to $\widehat{O}_{j}^{i+} \subseteq O \cap D_{j}$ and $\forall u \in D_{j}: \delta(u)>0$. Combining Eqn. (22) and Eqn. (24) finishes the proof of Lemma 3.

A.4. Proof of Lemma 4

We first quote the following lemma presented in (Buchbinder et al., 2014):
Lemma 10. (Buchbinder et al., 2014) Given a ground set \mathcal{N} and any non-negative submodular function $g(\cdot)$ defined on $2^{\mathcal{N}}$, we have $\mathbb{E}[g(Y)] \geq(1-p) g(\emptyset)$ if Y is a random subset of \mathcal{N} such that each element in \mathcal{N} appears in Y with probability of at most p (not necessarily independently).

With the above lemma, Lemma 4 can be proved as follows:
Proof. We first prove Eqn. (6). Note that $S_{1}, S_{2}, \cdots, S_{\ell}$ are disjoint sets. Using submodularity, we have

$$
\begin{align*}
& \sum_{i=1}^{\ell} f\left(S_{i} \cup O\right) \geq f(O)+f\left(S_{1} \cup S_{2} \cup O\right)+\sum_{i=3}^{\ell} f\left(S_{i} \cup O\right) \\
\geq & 2 f(O)+f\left(S_{1} \cup S_{2} \cup S_{3} \cup O\right)+\sum_{i=4}^{\ell} f\left(S_{i} \cup O\right) \geq \cdots \geq(\ell-1) f(O)+f\left(\cup_{i=1}^{\ell} S_{i} \cup O\right) \tag{25}
\end{align*}
$$

Let $g: 2^{\mathcal{N}} \mapsto \mathbb{R}_{\geq 0}$ be a non-negative submodular function defined as: $\forall S \subseteq \mathcal{N}: g(S)=f(S \cup O)$. As each element in \mathcal{N} appears in $\cup_{i=1}^{\ell} \bar{S}_{i}$ with probability of no more than p, We can use Lemma 10 to get

$$
\begin{equation*}
\mathbb{E}\left[f\left(\cup_{i=1}^{\ell} S_{i} \cup O\right)\right]=\mathbb{E}\left[g\left(\cup_{i=1}^{\ell} S_{i}\right)\right] \geq(1-p) g(\emptyset)=(1-p) f(O) \tag{26}
\end{equation*}
$$

Combining Eqn. (25) and Eqn. (26) finishes the proof of Eqn. (6).
Next, we prove Eqn. (7). For any $u \in \mathcal{N}$, let $Y_{u}=1$ if $u \in \cup_{i=1}^{\ell} S_{i}$ and $Y_{u}=0$ otherwise; let \mathcal{E}_{u} be an arbitrary event denoting all the random choices of RANDOMMULTIGREEDY up until the time that u is considered to be added into a candidate solution, or denoting all the randomness of RANDOMMULTIGREEDY if u is never considered. Note that we have $\sum_{u \in \mathcal{N}} Y_{u} \cdot \delta(u) \leq \sum_{i=1}^{\ell} f\left(S_{i}\right)$. Therefore, by the law of total probability, we only need to prove

$$
\begin{equation*}
\forall u \in \mathcal{N}: \frac{1-p}{p} \mathbb{E}\left[Y_{u} \cdot \delta(u) \mid \mathcal{E}_{u}\right] \geq \mathbb{E}\left[X_{u} \cdot \delta(u) \mid \mathcal{E}_{u}\right] \tag{27}
\end{equation*}
$$

for any event \mathcal{E}_{u} defined above. Note that we have $X_{u}=0$ and hence Eqn. (27) clearly holds if $u \notin O$ or u is never considered by the algorithm. Otherwise we have $\mathbb{E}\left[Y_{u} \cdot \delta(u) \mid \mathcal{E}_{u}\right]=p \cdot \delta(u)$ and $\mathbb{E}\left[X_{u} \cdot \delta(u) \mid \mathcal{E}_{u}\right]=(1-p) \cdot \delta(u)$ due to the reason that u is accepted with probability of p and discarded with probability of $1-p$. Combining all these results completes the proof of Eqn. (7).

A.5. Proof of Theorem 2

For clarity, we first provide the detailed design of the accelerated version of RANDOMMULTIGREEDY, as shown by Algorithm 5. In the t-th iteration, Algorithm 5 calls a procedure Choose to greedily find an candidate element v_{i} for S_{i} satisfying $f\left(v_{i} \mid S_{i}\right)>0$ and $S_{i} \cup\left\{v_{i}\right\} \in \mathcal{I}$ for each $i \in[\ell]$. The Choose procedure also returns an index i_{t} same to that in Algorithm 1. After that, Algorithm 5 runs similarly as Algorithm 1, i.e., it inserts $v_{i_{t}}$ into $S_{i_{t}}$ with probability p, and then enters the $(t+1)$-th iteration. Note that the elements v_{1}, \cdots, v_{ℓ} and $v_{i_{t}}$ found in the t-th iteration are also used to call Choose in the $(t+1)$-th iteration, so that Choose need not to identify a new v_{i} for all $i \in[\ell]: v_{i} \neq v_{i_{t}}$ (as S_{i} does not change for these i 's) and hence time efficiency can be improved. Finally, Algorithm 5 returns the optimal set among S_{1}, \cdots, S_{ℓ} and S_{0}, where S_{0} is the singleton set with the maximum utility.
Next, we provide a brief description on the Choose procedure. As explained in Sec. 4.1, Choose maintains ℓ sets $A_{1}, A_{2}, \cdots, A_{\ell}$ such that v_{i} can be selected from A_{i}. At the first time that Choose is called, Choose assigns each element $u \in A_{i}$ a weight $w_{i}(u)=f(u \mid \emptyset)$ and an integer $\tau_{i}(u)$ indicating how many times $w_{i}(u)$ has been updated (Lines 3-7). Afterwards, Choose runs as that described in Sec. 4.1 and finds v_{i} for each $i \in[\ell]$. Finally, Choose identifies $v_{i^{*}}$ from $\left\{v_{i}: i \in[\ell]\right\}$ which has the maximum marginal gain, and it also removes $v_{i^{*}}$ from all $A_{i}: i \in[\ell]$ because $v_{i^{*}}$ will used as $v_{i_{t}}$ by Algorithm 5.
Note that Algorithm 5 differs from Algorithm 1 in two points: (1) the element u_{t} found in the t-th iteration is only an $\left(\frac{1}{1+\epsilon}\right)$-approximate solution; (2) there are elements removed from A_{i} due to "too many updates". Based on this observation, we can slightly modify the proofs for Algorithm 1 to prove Theorem 2, as presented below:

Proof. Let L_{i} denote the set of all elements removed from A_{i} due to Line 25 of Algorithm 4. We can slightly modify Definition 5 to re-define the sets $O_{j}^{i+}, O_{j}^{i-}, \widehat{O}_{j}^{i+}, \widehat{O}_{j}^{i-}, O_{i}^{-}$as follows:

$$
\begin{aligned}
& O_{j}^{i+}=\left\{u \in O \cap S_{j}: S_{i}^{<}(u) \cup\{u\} \in \mathcal{I}\right\} \backslash L_{i} \\
& O_{j}^{i-}=\left\{u \in O \cap S_{j}: S_{i}^{<}(u) \cup\{u\} \notin \mathcal{I}\right\} \backslash L_{i} \\
& \widehat{O}_{j}^{i+}=\left\{u \in O \cap D_{j}: S_{i}^{<}(u) \cup\{u\} \in \mathcal{I}\right\} \backslash L_{i} \\
& \widehat{O}_{j}^{i-}=\left\{u \in O \cap D_{j}: S_{i}^{<}(u) \cup\{u\} \notin \mathcal{I}\right\} \backslash L_{i} \\
& O_{i}^{-}=\left\{u \in O \backslash U: S_{i} \cup\{u\} \notin \mathcal{I} \wedge f\left(u \mid S_{i}\right)>0\right\} \backslash L_{i}
\end{aligned}
$$

With this new definition, it can be easily verified that each element u in $O_{j}^{i+} \cup O_{j}^{i-} \cup \widehat{O}_{j}^{i+} \cup \widehat{O}_{j}^{i-}$ is still a candidate considered for S_{i} in the Choose procedure when the algorithm tries to insert u into S_{j}. Therefore, according to the greedy rule of RANDOMMULTIGREEDY and the $(1+\epsilon)^{-1}$-approximation ratio of CHOOSE, we can use similar reasoning as that

```
Algorithm \(4 \operatorname{Choose}\left(S_{1}, S_{2}, \cdots, S_{\ell}, v_{1}, \cdots, v_{\ell}, v^{*}\right)\)
    if \(\cup_{i=1}^{\ell} S_{i}=\emptyset\) then
        Let \(A_{i} \leftarrow\{u \in \mathcal{N}:\{u\} \in \mathcal{I} \wedge f(u \mid \emptyset)>0\}\) for all \(i \in[\ell]\);
        for all \(i \in[\ell]\) do
            Let \(w_{i}(u) \leftarrow f(u \mid \emptyset)\) and \(\tau_{i}(u) \leftarrow 0\) for all \(u \in A_{i}\);
            Store \(A_{i}\) as a priority list according to the non-increasing order of \(w_{i}(u): u \in A_{i}\) for all \(i \in[\ell]\);
            Let \(v_{i} \leftarrow \arg \max _{u \in A_{i}} w_{i}(u)\);
        end for
    else
        \(C \leftarrow[\ell] \backslash\left\{j \in[\ell]:\left(v_{j} \neq v^{*}\right) \vee\left(v_{j}=\right.\right.\) NULL \(\left.)\right\}\)
        for all \(i \in C\) do
            Let \(v_{i} \leftarrow\) NULL and remove all elements in \(A_{i}\) with non-positive weights;
            while \(A_{i} \neq \emptyset\) do
            pop out the top element \(u\) from \(A_{i}\);
            if \(f\left(u \mid S_{i}\right)\) has been computed then
                \(v_{i} \leftarrow u\); exit while;
            end if
            if \(S_{i} \cup\{u\} \notin \mathcal{I}\) then
                    continue;
            end if
            old \(\leftarrow w_{i}(u) ; \tau_{i}(u) \leftarrow \tau_{i}(u)+1\);
            Compute \(f\left(u \mid S_{i}\right)\) and let \(w_{i}(u) \leftarrow f\left(u \mid S_{i}\right)\);
            if \(w_{i}(u) \geq \frac{o l d}{1+\epsilon}\) then
                    \(v_{i} \leftarrow u\); exit while;
            else
                    if \(\tau_{i}(u) \leq\left\lceil\log _{1+\epsilon} \frac{\ell r}{\epsilon}\right\rceil\) then
                        re-insert \(u\) into \(A_{i}\) and resort the elements in \(A_{i}\);
                    end if
            end if
            end while
        end for
    end if
    Let \(i^{*} \leftarrow \arg \max _{i \in[\ell]: v_{i} \neq \text { NULL }} f\left(v_{i} \mid S_{i}\right)\) and remove \(v_{i^{*}}\) from \(A_{i}\) for all \(i \in[\ell]\)
    Output: \(v_{1}, v_{2}, \cdots, v_{\ell}, i^{*}\)
```

for Lemma 2 to prove

$$
\begin{align*}
& \forall u \in O_{j}^{i+} \cup \widehat{O}_{j}^{i+}: f\left(u \mid S_{i}\right) \leq(1+\epsilon) \delta(u) \tag{28}\\
& \forall u \in \cup_{j \in[\ell] \backslash\{i\}}\left(O_{j}^{i-} \cup \widehat{O}_{j}^{i-}\right) \cup\left(O \cap S_{i}\right) \cup O_{i}^{-}: f\left(u \mid S_{i}\right) \leq(1+\epsilon) \delta\left(\pi_{i}(u)\right) \tag{29}
\end{align*}
$$

With the above results, we can use similar reasoning as that in Lemma 3 to prove:

$$
\begin{equation*}
\frac{1}{1+\epsilon} \sum_{i \in[\ell]} f\left(O \mid S_{i}\right) \leq \ell(k+\ell-2) f\left(S^{*}\right)+\ell \sum_{u \in \mathcal{N}} X_{u} \cdot \delta(u)+\sum_{i \in[\ell]} \sum_{u \in L_{i} \cap O} f\left(u \mid S_{i}\right) \tag{30}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\sum_{u \in L_{i} \cap O} f\left(u \mid S_{i}\right) \leq \sum_{u \in L_{i} \cap O} f(u \mid \emptyset)(1+\epsilon)^{-\left\lceil\log _{1+\epsilon} \frac{\ell r}{\epsilon}\right\rceil} \leq \sum_{u \in L_{i} \cap O} \frac{\epsilon}{\ell r} f(u) \leq \epsilon f\left(S^{*}\right) / \ell \tag{31}
\end{equation*}
$$

where the first inequality is due the reason that the weight of each element $u \in L_{i}$ have been updated in Choose procedure for more than $\left\lceil\log _{1+\epsilon} \frac{\ell r}{\epsilon}\right\rceil$ times and it diminishes by a factor of $\frac{1}{1+\epsilon}$ for each update. Combining Eqn. (30), Eqn. (31) and Lemma 4, we can prove

$$
\begin{equation*}
f(O) \leq\left[(1+\epsilon) \frac{\ell\left(k+\frac{\ell}{p}-1\right)}{\ell-p}-\frac{(\ell-1) \epsilon-\epsilon^{2}}{\ell-p}\right] \mathbb{E}\left[f\left(S^{*}\right)\right] \tag{32}
\end{equation*}
$$

```
Algorithm 5 RandomMultiGreedy \((\ell, p) / *\) with acceleration*/
    Initialize: \(\forall i \in[\ell]: S_{i} \leftarrow \emptyset ; v_{i} \leftarrow\) NULL; \(t \leftarrow 1 ; u_{0} \leftarrow\) NULL;
    repeat
        \(\left(v_{1}, v_{2}, \cdots, v_{\ell}, i_{t}\right) \leftarrow \operatorname{Choose}\left(S_{1}, \cdots, S_{\ell}, v_{1}, \cdots, v_{\ell}, u_{t-1}\right)\)
        if \(\exists j \in[\ell]: v_{j} \neq\) NULL then
            \(u_{t} \leftarrow v_{i_{t}}\);
            With probability \(p\) do \(S_{i_{t}} \leftarrow S_{i_{t}} \cup\left\{u_{t}\right\}\)
            \(t \leftarrow t+1\)
        end if
    until \(\left(\forall i \in[\ell]: v_{i}=\right.\) NULL \()\)
    \(u^{*} \leftarrow \arg \max _{u \in \mathcal{N} \wedge\{u\} \in \mathcal{I}} f(u) ; S_{0} \leftarrow\left\{u^{*}\right\}\)
    \(S^{*} \leftarrow \arg \max _{S \in\left\{S_{0}, S_{1}, S_{2}, \cdots, S_{\ell}\right\}} f(S) ; T \leftarrow t-1\)
    Output: \(S^{*}, T\)
```

Therefore, the approximation ratio of the accelerated RANDOMMULTIGREEDY algorithm is at most $(1+\epsilon)(1+\sqrt{k})^{2}$ when $\ell=2, p=\frac{2}{1+\sqrt{k}}$ (for a randomized algorithm), or at most $(1+\epsilon)(k+\sqrt{k}+\lceil\sqrt{k}\rceil+1)$ when $\ell=\lceil\sqrt{k}\rceil+1, p=1$ (for a deterministic algorithm). Finally, it can be seen that the Choose procedure incurs at most $\mathcal{O}\left(\log _{1+\epsilon} \frac{\ell r}{\epsilon}\right)$ value and independence oracle queries for each element in each $A_{i}: i \in[\ell]$. So the total time complexity of the accelerated Randommultigreedy algorithm is at most $\mathcal{O}\left(\ell n \log _{1+\epsilon} \frac{\ell r}{\epsilon}\right)=\mathcal{O}\left(\frac{\ell n}{\epsilon} \log \frac{\ell r}{\epsilon}\right)$, which completes the proof.

B. Missing Proofs from Section 5

B.1. Proof of Lemma 5

Proof. Given any element set $Y \subseteq \mathcal{N}$ and any realization ϕ, let $g(Y, \phi):=f\left(Y \cup \mathcal{N}\left(\pi_{\text {opt }}, \phi\right), \phi\right)$. It is easy to verify that the non-negative function $g(\cdot, \phi)$ is submodular. Thus, given a fixed realization ϕ, by Lemma 10 , we know that

$$
\begin{equation*}
\mathbb{E}_{\pi_{\mathcal{A}}}\left[g\left(\mathcal{N}\left(\pi_{\mathcal{A}}, \phi\right), \phi\right)\right] \geq(1-p) g(\emptyset, \phi) \tag{33}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
f_{\mathrm{avg}}\left(\pi_{\mathrm{opt}} @ \pi_{\mathcal{A}}\right)=\mathbb{E}_{\Phi}\left[\mathbb{E}_{\pi_{\mathcal{A}}}\left[g\left(\mathcal{N}\left(\pi_{\mathcal{A}}, \Phi\right), \Phi\right)\right]\right] \geq \mathbb{E}_{\Phi}[(1-p) g(\emptyset, \Phi)]=(1-p) f_{\mathrm{avg}}\left(\pi_{\mathrm{opt}}\right) \tag{34}
\end{equation*}
$$

which completes the proof.

B.2. Proof of Lemma 6

Proof. We first give an equivalent expression of the expected utility by a function of conditional expected marginal gains. Given a deterministic policy π and a realization ϕ, for each $u \in \mathcal{N}$, let $Y_{u}(\phi)$ be a boolean random variable such that $Y_{u}(\phi)=1$ if $u \in \mathcal{N}(\pi, \phi)$ and $Y_{u}(\phi)=0$ otherwise. Further, denote by $\psi_{u}^{\pi}(\phi)$ the partial realization observed by π right before considering u under realization ϕ, and denote by Ψ_{u}^{π} a random partial realization right before considering u by π. We also use $Y_{u}\left(\psi_{u}^{\pi}(\phi)\right)$ to represent $Y_{u}(\phi)$, since the partial realization $\psi_{u}^{\pi}(\phi)$ suffices to determine whether u is added to the solution under realization ϕ. Thus,

$$
\begin{align*}
& \mathbb{E}_{\Phi}[f(\mathcal{N}(\pi, \Phi), \Phi)] \\
= & \mathbb{E}_{\Phi}\left[\sum_{u \in \mathcal{N}}\left(Y_{u}(\Phi) \cdot\left(f\left(\operatorname{dom}\left(\psi_{u}^{\pi}(\Phi)\right) \cup\{u\}, \Phi\right)-f\left(\operatorname{dom}\left(\psi_{u}^{\pi}(\Phi)\right), \Phi\right)\right)\right)\right] \\
= & \sum_{u \in \mathcal{N}} \mathbb{E}_{\Psi_{u}^{\pi}}\left[\mathbb{E}_{\Phi}\left[Y_{u}(\Phi) \cdot\left(f\left(\operatorname{dom}\left(\Psi_{u}^{\pi}\right) \cup\{u\}, \Phi\right)-f\left(\operatorname{dom}\left(\Psi_{u}^{\pi}\right), \Phi\right)\right) \mid \Phi \sim \Psi_{u}^{\pi}\right]\right] \\
= & \sum_{u \in \mathcal{N}} \mathbb{E}_{\Psi_{u}^{\pi}}\left[Y_{u}\left(\Psi_{u}^{\pi}\right) \cdot \Delta\left(u \mid \Psi_{u}^{\pi}\right)\right]=\sum_{u \in \mathcal{N}} \mathbb{E}_{\Phi}\left[\mathbb{E}_{\Psi_{u}^{\pi}}\left[Y_{u}\left(\Psi_{u}^{\pi}\right) \cdot \Delta\left(u \mid \Psi_{u}^{\pi}\right) \mid \Phi \sim \Psi_{u}^{\pi}\right]\right] \\
= & \sum_{u \in \mathcal{N}} \mathbb{E}_{\Phi}\left[Y_{u}(\Phi) \cdot \Delta\left(u \mid \psi_{u}^{\pi}(\Phi)\right)\right]=\mathbb{E}_{\Phi}\left[\sum_{u \in \mathcal{N}(\pi, \Phi)} \Delta\left(u \mid \psi_{u}^{\pi}(\Phi)\right)\right] . \tag{35}
\end{align*}
$$

Denote by $\psi\left(\pi_{\mathcal{A}}, \phi\right)$ the observed partial realization at the end of $\pi_{\mathcal{A}}$ under realization ϕ. Then, similar to the above analysis, we have

$$
\begin{aligned}
f_{\mathrm{avg}}\left(\pi_{\mathcal{A}} @ \pi_{\mathrm{opt}}\right) & =\mathbb{E}_{\Phi, \pi_{\mathcal{A}} @ \pi_{\mathrm{opt}}}\left[f\left(\mathcal{N}\left(\pi_{\mathcal{A}} @ \pi_{\mathrm{opt}}, \Phi\right), \Phi\right)\right] \\
& =\mathbb{E}_{\pi_{\mathcal{A}} @ \pi_{\mathrm{opt}}}\left[\sum_{u \in \mathcal{N}\left(\pi_{\mathcal{A}}, \Phi\right)} \Delta\left(u \mid \psi_{u}(\Phi)\right)+\sum_{u \in \mathcal{N}\left(\pi_{\mathrm{opt}}, \Phi\right) \backslash \mathcal{N}\left(\pi_{\mathcal{A}}, \Phi\right)} \Delta\left(u \mid \psi\left(\pi_{\mathcal{A}}, \Phi\right) \cup \psi_{u}^{\pi_{\mathrm{opt}}}(\Phi)\right)\right] \\
& =f_{\mathrm{avg}}\left(\pi_{\mathcal{A}}\right)+\mathbb{E}_{\pi_{\mathcal{A}} @ \pi_{\mathrm{opt}}}\left[\sum_{u \in \mathcal{N}\left(\pi_{\mathrm{opt}}, \Phi\right) \backslash \mathcal{N}\left(\pi_{\mathcal{A}}, \Phi\right)} \Delta\left(u \mid \psi\left(\pi_{\mathcal{A}}, \Phi\right) \cup \psi_{u}^{\pi_{\mathrm{opt}}}(\Phi)\right)\right] \\
& \leq f_{\mathrm{avg}}\left(\pi_{\mathcal{A}}\right)+\mathbb{E}_{\pi_{\mathcal{A}}}\left[\sum_{u \in \mathcal{N}\left(\pi_{\mathrm{opt}}, \Phi\right) \backslash \mathcal{N}\left(\pi_{\mathcal{A}}, \Phi\right)} \Delta\left(u \mid \psi_{u}(\Phi)\right)\right],
\end{aligned}
$$

where the inequality is due to adaptive submodularity and $\psi_{u}(\Phi) \subseteq \psi\left(\pi_{\mathcal{A}}, \Phi\right) \subseteq \psi\left(\pi_{\mathcal{A}}, \Phi\right) \cup \psi_{u}^{\pi_{\text {opt }}}(\Phi)$.

B.3. Proof of Lemma 7

Proof. Since $f_{\text {avg }}\left(\pi_{\mathcal{A}}\right)=\mathbb{E}_{\pi_{\mathcal{A}}}\left[\mathbb{E}_{\Phi}\left[\sum_{u \in \mathcal{N}\left(\pi_{\mathcal{A}}, \Phi\right)} \Delta\left(u \mid \psi_{u}(\Phi)\right)\right]\right]$, it suffices to prove

$$
\begin{equation*}
\sum_{u \in O_{1}(\phi)} \Delta\left(u \mid \psi_{u}(\phi)\right) \leq k \cdot \sum_{u \in \mathcal{N}\left(\pi_{\mathcal{A}}, \phi\right)} \Delta\left(u \mid \psi_{u}(\phi)\right) \tag{36}
\end{equation*}
$$

for any given realization $\phi \in Z^{\mathcal{N}}$ and fixed randomness of $\pi_{\mathcal{A}}$. Given a realization ϕ, let \hat{u}_{i} be the i-th element selected by $\pi_{\mathcal{A}}$ and let \hat{S}_{i} be the first i elements picked, i.e., $\hat{S}_{i}=\left\{\hat{u}_{1}, \ldots, \hat{u}_{i}\right\}$, for $i=1,2, \ldots, h$ where $h:=\left|\mathcal{N}\left(\pi_{\mathcal{A}}, \phi\right)\right|$. Suppose that there exists a partition $O_{1,1}, O_{1,2}, \ldots, O_{1, h}$ of $O_{1}(\phi)$ such that for all $i=1,2, \ldots, h$,

$$
\begin{equation*}
\sum_{u \in O_{1, i}} \Delta\left(u \mid \psi_{u}(\phi)\right) \leq k \cdot \Delta\left(\hat{u}_{i} \mid \psi_{\hat{u}_{i}}(\phi)\right) \tag{37}
\end{equation*}
$$

then Eqn. (36) must hold due to

$$
\begin{equation*}
\sum_{u \in O_{1}(\phi)} \Delta\left(u \mid \psi_{u}(\phi)\right)=\sum_{i=1}^{h} \sum_{u \in O_{1, i}} \Delta\left(u \mid \psi_{u}(\phi)\right) \leq k \cdot \sum_{i=1}^{h} \Delta\left(\hat{u}_{i} \mid \psi_{\hat{u}_{i}}(\phi)\right)=k \cdot \sum_{u \in \mathcal{N}\left(\pi_{\mathcal{A}}, \phi\right)} \Delta\left(u \mid \psi_{u}(\phi)\right) \tag{38}
\end{equation*}
$$

Therefore, we just need to show the existence of such a desired partition of O_{1}, as proved below.
We use the following iterative algorithm to find the partition, which is inspired by (Calinescu et al., 2011). Define $\mathcal{N}_{h}:=O_{1}(\phi)$. For $i=h, h-1, \ldots, 2$, let $B_{i}:=\left\{u \in \mathcal{N}_{i} \mid \hat{S}_{i-1} \cup\{u\} \in \mathcal{I}\right\}$. If $\left|B_{i}\right| \leq k$, set $O_{1, i}=B_{i}$. Otherwise, pick an arbitrary $O_{1, i} \subseteq B_{i}$ with $\left|O_{1, i}\right|=k$. Then, set $\mathcal{N}_{i-1}=\mathcal{N}_{i} \backslash O_{1, i}$. Finally, set $O_{1,1}=\mathcal{N}_{1}$. Clearly, $\left|O_{1, i}\right| \leq k$ for $i=2, \ldots, h$. We further show that $\left|O_{1,1}\right| \leq k$. We prove it by contradiction and assume $\left|O_{1,1}\right|>k$. If $\left|B_{2}\right| \leq k$, then we have $\hat{S}_{1} \cup\{u\} \notin \mathcal{I}$ for every $u \in \mathcal{N}_{1}$ according to the above process. So \hat{S}_{1} is a base of $\hat{S}_{1} \cup \mathcal{N}_{1}$, which implies that $\left|\mathcal{N}_{1}\right| \leq k \cdot\left|\hat{S}_{1}\right|$, contradicting the assumption that $\left|\mathcal{N}_{1}\right|=\left|O_{1,1}\right|>k$. Consequently, it must hold that $\left|B_{2}\right|>k$ and hence $\left|O_{1,2}\right|=k$ and $\left|\mathcal{N}_{2}\right|>2 k$. Using a similar argument, we can recursively get that $\left|B_{i}\right|>k$ and hence $\left|O_{1, i}\right|=k$ and $\left|\mathcal{N}_{i}\right|>i k$ for any $i=3, \ldots, h$, e.g., $\left|\mathcal{N}_{h}\right|>h k$. However, as \hat{S}_{h} is a base of $\hat{S}_{h} \cup O_{1}(\phi)$, we should have $\left|\mathcal{N}_{h}\right|=\left|O_{1}(\phi)\right| \leq h k$, which shows a contradiction. Therefore, we can conclude that $\left|O_{1, i}\right| \leq k$ for all $i=1,2, \ldots, h$.
According to the partition $O_{1, i}: i \in[h]$ constructed above, it is obvious that for every $u \in O_{1, i}, \hat{S}_{i-1} \cup\{u\} \in \mathcal{I}$. This implies that for every $u \in O_{1, i}, u$ cannot be considered before \hat{u}_{i} is added by $\pi_{\mathcal{A}}$, i.e., $\psi_{\hat{u}_{i}}(\phi) \subseteq \psi_{u}(\phi)$. Meanwhile, due to the greedy rule of ADAPTRANDOMGREEDY, it follows that $\Delta\left(\hat{u}_{i} \mid \psi_{\hat{u}_{i}}(\phi)\right) \geq \Delta\left(u \mid \psi_{\hat{u}_{i}}(\phi)\right)$ for each $u \in O_{1, i}$. Hence,

$$
\begin{equation*}
\sum_{u \in O_{1, i}} \Delta\left(u \mid \psi_{u}(\phi)\right) \leq \sum_{u \in O_{1, i}} \Delta\left(u \mid \psi_{\hat{u}_{i}}(\phi)\right) \leq \sum_{u \in O_{1, i}} \Delta\left(\hat{u}_{i} \mid \psi_{\hat{u}_{i}}(\phi)\right) \leq k \cdot \Delta\left(\hat{u}_{i} \mid \psi_{\hat{u}_{i}}(\phi)\right) \tag{39}
\end{equation*}
$$

holds for any $i \in[h]$. Combining the above results completes the proof.

B.4. Proof of Lemma 8

Proof. Again, since $f_{\text {avg }}\left(\pi_{\mathcal{A}}\right)=\mathbb{E}_{\pi_{\mathcal{A}}}\left[\mathbb{E}_{\Phi}\left[\sum_{u \in \mathcal{N}\left(\pi_{\mathcal{A}}, \Phi\right)} \Delta\left(u \mid \psi_{u}(\Phi)\right)\right]\right]$, we only need to prove that, for any $\phi \in Z^{\mathcal{N}}$,

$$
\begin{equation*}
\mathbb{E}_{\pi_{\mathcal{A}}}\left[\sum_{u \in O_{2}(\phi)} \Delta\left(u \mid \psi_{u}(\phi)\right)\right] \leq \frac{1-p}{p} \cdot \mathbb{E}_{\pi_{\mathcal{A}}}\left[\sum_{u \in \mathcal{N}\left(\pi_{\mathcal{A}}, \phi\right)} \Delta\left(u \mid \psi_{u}(\phi)\right)\right] \tag{40}
\end{equation*}
$$

Given a realization $\phi \in Z^{\mathcal{N}}$, for each $u \in \mathcal{N}$, let X_{u} be a random variable such that $X_{u}=1$ if $u \in O_{2}(\phi)$ and $X_{u}=0$ otherwise. So we have

$$
\begin{equation*}
\sum_{u \in O_{2}(\phi)} \Delta\left(u \mid \psi_{u}(\phi)\right)=\sum_{u \in \mathcal{N}}\left(X_{u} \cdot \Delta\left(u \mid \psi_{u}(\phi)\right)\right) \tag{41}
\end{equation*}
$$

Similarly, for each $u \in \mathcal{N}$, let Y_{u} be a random variable such that $Y_{u}=1$ if $u \in \mathcal{N}\left(\pi_{\mathcal{A}}, \phi\right)$ and $Y_{u}=0$ otherwise. Thus,

$$
\begin{equation*}
\sum_{u \in \mathcal{N}\left(\pi_{\mathcal{A}}, \phi\right)} \Delta\left(u \mid \psi_{u}(\phi)\right)=\sum_{u \in \mathcal{N}}\left(Y_{u} \cdot \Delta\left(u \mid \psi_{u}(\phi)\right)\right) \tag{42}
\end{equation*}
$$

Therefore, it is sufficient to prove:

$$
\begin{equation*}
\forall u \in \mathcal{N}: \mathbb{E}_{\pi_{\mathcal{A}}}\left[X_{u} \cdot \Delta\left(u \mid \psi_{u}(\phi)\right)\right] \leq \frac{1-p}{p} \cdot \mathbb{E}_{\pi_{\mathcal{A}}}\left[Y_{u} \cdot \Delta\left(u \mid \psi_{u}(\phi)\right)\right] \tag{43}
\end{equation*}
$$

Observe that, for any given $u \in \mathcal{N}$, if $\Delta\left(u \mid \psi_{u}(\phi)\right) \leq 0$ or $\operatorname{dom}\left(\psi_{u}(\phi)\right) \cup\{u\} \notin \mathcal{I}$, then we have $u \notin \mathcal{N}\left(\pi_{\mathcal{A}}, \phi\right)$ and $u \notin$ $O_{2}(\phi)$ by definition, which indicates $X_{u}=Y_{u}=0$. Consider the event that $\Delta\left(u \mid \psi_{u}(\phi)\right)>0$ and $\operatorname{dom}\left(\psi_{u}(\phi)\right) \cup\{u\} \in \mathcal{I}$, and denote such an event as \mathcal{E}_{u}. Since $\operatorname{Pr}\left[u \in \mathcal{N}\left(\pi_{\mathcal{A}}, \phi\right) \mid \mathcal{E}_{u}\right]=p$, it is trivial to see that

$$
\begin{equation*}
\mathbb{E}_{\pi_{\mathcal{A}}}\left[Y_{u} \cdot \Delta\left(u \mid \psi_{u}(\phi)\right)\right]=p \cdot \mathbb{E}_{\psi_{u}(\phi)}\left[\Delta\left(u \mid \psi_{u}(\phi)\right) \mid \mathcal{E}_{u}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{u}\right] \tag{44}
\end{equation*}
$$

where the expectation is taken over the randomness of $\psi_{u}(\phi)$ (i.e., $\psi_{u}(\phi) \sim \mathcal{E}_{u}$) due to the internal randomness of algorithm. On the other hand, if $u \in O(\phi)$, then we have $\operatorname{Pr}\left[u \in O_{2}(\phi) \mid \mathcal{E}_{u}\right]=1-p$ as u is discarded with probability of $1-p$, while we also have $\operatorname{Pr}\left[u \in O_{2}(\phi) \mid \mathcal{E}_{u}\right]=0$ if $u \notin O(\phi)$. Thus, we know $\operatorname{Pr}\left[u \in O_{2}(\phi) \mid \mathcal{E}_{u}\right] \leq(1-p)$ and hence we can immediately get

$$
\begin{equation*}
\mathbb{E}_{\pi_{\mathcal{A}}}\left[X_{u} \cdot \Delta\left(u \mid \psi_{u}\right)\right] \leq(1-p) \cdot \mathbb{E}_{\psi_{u}(\phi)}\left[\Delta\left(u \mid \psi_{u}(\phi)\right) \mid \mathcal{E}_{u}\right] \cdot \operatorname{Pr}\left[\mathcal{E}_{u}\right] \tag{45}
\end{equation*}
$$

The lemma then follows by combining all the above reasoning.

B.5. Proof of Theorem 3

Proof. According to Lemmas 6-8, we have

$$
\begin{aligned}
f_{\mathrm{avg}}\left(\pi_{\mathcal{A}} @ \pi_{\mathrm{opt}}\right)-f_{\mathrm{avg}}\left(\pi_{\mathcal{A}}\right) & \leq \mathbb{E}_{\pi_{\mathcal{A}}, \Phi}\left[\sum_{u \in \mathcal{N}\left(\pi_{\mathrm{opt}}, \Phi\right) \backslash \mathcal{N}\left(\pi_{\mathcal{A}}, \Phi\right)} \Delta\left(u \mid \psi_{u}(\Phi)\right)\right] \\
& \leq \mathbb{E}_{\pi_{\mathcal{A}}, \Phi}\left[\sum_{u \in O_{1}(\Phi)} \Delta\left(u \mid \psi_{u}(\Phi)\right)+\sum_{u \in O_{2}(\Phi)} \Delta\left(u \mid \psi_{u}(\Phi)\right)\right] \\
& \leq\left(k+\frac{1-p}{p}\right) \cdot f_{\mathrm{avg}}\left(\pi_{\mathcal{A}}\right)
\end{aligned}
$$

where the second inequality is due to the definition of $O_{3}(\Phi)$, i.e., $\Delta\left(u \mid \psi_{u}(\Phi)\right) \leq 0$ for every $u \in O_{3}(\Phi)$. Combining the above result with Lemma 5 gives

$$
\begin{equation*}
f\left(\pi_{\mathrm{opt}}\right) \leq \frac{k p+1}{p(1-p)} \cdot f_{\mathrm{avg}}\left(\pi_{\mathcal{A}}\right) \tag{46}
\end{equation*}
$$

Moreover, $\frac{k p+1}{p(1-p)}$ achieves its minimum value of $(1+\sqrt{k+1})^{2}$ at $p=(1+\sqrt{k+1})^{-1}$. Finally, the $\mathcal{O}(n r)$ time complexity is evident, as the algorithm incurs $\mathcal{O}(n)$ oracle queries for each selected element.

