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This file consists of supplementaries for both theoretical
analysis and experiments. In Section A, we divide the gen-
eral risk into approximation error and estimation error term
for the underlying density function residing in space C0,α

andC1,α, respectively. The corresponding proofs of Section
A and Section 4 are shown in Section B. In Section C we
show the supplementaries for numerical experiments.

A. Error Analysis
This section provides a more comprehensive error analysis
for the theoretical results in Section 4. To be specific, we
conduct approximation error analysis for the boosted den-
sity estimators fD,λ under the assumption that the density
function f∗L,P lying in the Hölder spaces C0,α and C1,α.

To conduct the theoretical analysis, we also need the infinite
sample version of Definition 1. To this end, we fix a distri-
bution P on X ×Y and let the function space E be as in (5).
Then every fP,λ ∈ E satisfying

Ω(h) +RL,P(fP,λ) = inf
f∈E

Ω(h) +RL,P(f)

is called an infinite sample version of GBHT with respect to
E and L. Moreover, the approximation error function A(λ)
is defined by

A(λ) = inf
f∈E

Ω(h) +RL,P(f)−R∗L,P. (1)

A.1. Error Analysis for f ∈ C0,α

First of all, we introduce some definitions and notations
which will be used in the supplementary material. Recall
that the Lp-distance between g1, g2 ∈ Lp(µ), p ∈ [1,∞),
is defined by

‖g1 − g2‖Lp(µ) :=

(∫
X

(g1(x)− g2(x))p dµ(x)

)1/p

.
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For a given histogram transform H , let the function set FH
be defined by (3). We write

fP,H := arg min
f̂∈FH

‖f̂ − f‖2L2(µ)
. (2)

In other words, fP,H is the function that minimizes the
L2-distance over the function set FH with the bin width
h ∈ [h0, h0]. Then, elementary calculation yields

fP,H(x) = Eµ(f(X)|AH(x))

=
∑
j∈IH

∫
Aj
f(x) dµ(z)

µ(Aj)
· 1Aj (x)

=
∑
j∈IH

P(Aj)

µ(Aj)
· 1Aj (x) (3)

Moreover, we write

fD,H =
∑
j∈IH

∑n
i=1 1Aj (x)

nµ(Aj)
· 1Aj (x) (4)

for the empirical version, which can be further presented as

fD,H =
∑
j∈IH

D(Aj)

µ(Aj)
· 1Aj .

Lemma 1 Let f be the underlying probability density func-
tion and P is the corresponding distribution of f . Moreover,
let L : X × [0,∞) → R be the Negative Log Likelihood
loss defined by (1). Then f is exactly the minimizer of
RL,P(·) among all density functions. For fixed constants
cf , cf ∈ (0,∞), let A0

f denote the set

A0
f :=

{
x ∈ Rd : f(x) ∈ [cf , cf ]

}
. (5)

Then for any x ∈ A0
f , there holds

‖g − f‖2L2(µ)

2cf
−
‖g − f‖3L3(µ)

3c2f
≤

RL,P(g)−RL,P(f) ≤
‖g − f‖2L2(µ)

2cf
.
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A.1.1. BOUNDING THE APPROXIMATION ERROR TERM

The following proposition shows that the L2 distance be-
tween fP,H and f behaves polynomial in the regularization
parameter λ if we choose the bin width h0 appropriately.

Proposition 1 Let the histogram transformH be defined as
in (2) with bin width h satisfies Assumption 1. Furthermore,
suppose that the density function f ∈ C0,α. Then, for any
fixed λ > 0, there holds

λh−2d +RL,P(fP,H)−R∗L,P ≤ c · λ
α
α+d ,

where c is some constant depending on α, d, and c0 as in
Assumption 1.

A.1.2. BOUNDING THE SAMPLE ERROR TERM

To derive bounds on the sample error of regularized empir-
ical risk minimizers, let us briefly recall the definition of
VC dimension measuring the complexity of the underlying
function class.

Definition 1 (VC dimension) Let B be a class of subsets
of X and A ⊂ X be a finite set. The trace of B on A is
defined by {B ∩ A : B ⊂ B}. Its cardinality is denoted
by ∆B(A). We say that B shatters A if ∆B(A) = 2#(A),
that is, if for every Ã ⊂ A, there exists a B ⊂ B such that
Ã = B ∩A. For k ∈ N, let

mB(k) := sup
A⊂X ,#(A)=k

∆B(A). (6)

Then, the set B is a Vapnik-Chervonenkis class if there exists
k <∞ such that mB(k) < 2k and the minimal of such k is
called the VC dimension of B, and abbreviate as VC(B).

To prove Lemma 2, we need the following fundamental
lemma concerning with the VC dimension of purely random
partitions, which follows the idea put forward by (Breiman,
2000) of the construction of purely random forest. To this
end, let p ∈ N be fixed and πp be a partition of X with
number of splits p and π(p) denote the collection of all
partitions πp.

Lemma 2 Let Bp be defined by

Bp :=

{
B : B =

⋃
j∈J

Aj , J ⊂ {0, 1, . . . , p}, Aj ∈ πp
}
.

(7)

Then the VC dimension of Bp can be upper bounded by
dp+ 2.

To investigate the capacity property of continuous-valued
functions, we need to introduce the concept VC-subgraph

class. To this end, the subgraph of a function f : X → R is
defined by

sg(f) := {(x, t) : t < f(x)}.

A class F of functions on X is said to be a VC-subgraph
class, if the collection of all subgraphs of functions in F ,
which is denoted by sg(F) := {sg(f) : f ∈ F} is a VC
class of sets in X × R. Then the VC dimension of F is
defined by the VC dimension of the collection of the sub-
graphs, that is, VC(F) = VC(sg(F)).

Before we proceed, we also need to recall the definitions of
the convex hull and VC-hull class. The symmetric convex
hull Co(F) of a class of functions F is defined as the set
of functions

∑m
i=1 αifi with

∑m
i=1 |αi| ≤ 1 and each fi

contained in F . A set of measurable functions is called a
VC-hull class, if it is in the pointwise sequential closure of
the symmetric convex hull of a VC-class of functions.

We denote the function set F as

F :=
⋃

H∼PH

FH , (8)

which contains all the functions ofFH induced by histogram
transforms H with bin width h0.

The following lemma presents the upper bound for the VC
dimension of the function set F .

Lemma 3 Let F be the function set defined as in (8). Then
F is a VC-subgraph class with

VC(F) ≤ (d+ 1)2d+1
(
b2R
√
d/h0c+ 1

)d
.

To further bound the capacity of the function sets, we need
to introduce the following fundamental descriptions which
enables an approximation of an infinite set by finite subsets.

Definition 2 (Covering Numbers) Let (X , d) be a metric
space, A ⊂ X and ε > 0. We call A′ ⊂ A an ε-net of A if
for all x ∈ A there exists an x′ ∈ A′ such that d(x, x′) ≤ ε.
Moreover, the ε-covering number of A is defined as

N (A, d, ε) = inf

{
n ≥ 1 : ∃x1, . . . , xn ∈ X ,

such that A ⊂
n⋃
i=1

Bd(xi, ε)

}
,

where Bd(x, ε) denotes the closed ball in X centered at x
with radius ε.

The following lemma follows directly from Theorem 2.6.9
in (Van der Vaart & Wellner, 1996). For the sake of com-
pleteness, we present the proof in Section B.1.2.
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Lemma 4 Let Q be a probability measure on X and

F :=
{
f : X → R : f ∈ [−M,M ]

}
.

Assume that for some fixed ε > 0 and v > 0, the covering
number of F satisfies

N (F , L2(Q),Mε) ≤ c (1/ε)v. (9)

Then there exists a universal constant c′ such that

logN (Co(F), L2(Q),Mε) ≤ c′c2/(v+2)ε−2v/(v+2).

The next theorem shows that covering numbers of F grow
at a polynomial rate.

Theorem 1 Let F be a function set defined as in (8). Then
there exists a universal constant c < ∞ such that for any
ε ∈ (0, 1) and any probability measure Q, we have

N (F , L2(Q),Mε) ≤ c0(cd/h0)
d · (16e)(cd/h0)

d

ε2(h0/cd)
d−2,

where the constant cd := 21+4/d · d1/2+1/d.

The following theorem gives an upper bound on the covering
number of the VC-hull class Co(F).

Theorem 2 LetF be the function set defined as in (8). Then
there exists a constant c1 such that for any ε ∈ (0, 1) and
any probability measure Q, there holds

logN (Co(F), L2(Q),Mε) ≤ c1ε2(h0/cd)
d−2. (10)

Next, let us recall the definition of entropy numbers.

Definition 3 (Entropy Numbers) Let (X , d) be a metric
space, A ⊂ X and m ≥ 1 be an integer. The m-th entropy
number of (A, d) is defined as

em(A, d) = inf

{
ε > 0 : ∃x1, . . . , x2m−1 ∈ X

such that A ⊂
2m−1⋃
i=1

Bd(xi, ε)

}
.

Moreover, if (A, d) is a subspace of a normed space (E, ‖·‖)
and the metric d is given by d(x, x′) = ‖x− x′‖, x, x′ ∈ A,
we write em(A, ‖ · ‖) := em(A,E) := em(A, d). Finally,
if S : E → F is a bounded, linear operator between the
normed space E and F , we denote em(S) := em(SBE , ‖ ·
‖F ).

For a finite set D ∈ Xn, we define the norm of an empirical
L2-space by

‖f‖2L2(D) = ED|f |2 :=
1

n

n∑
i=1

|f(xi)|2.

If E is the function space (5) and DX ∈ Xn, then the
entropy number em(id : E → L2(DX)) equals the m-th
entropy number of the symmetric convex hull of the family
{(fi), fi ∈ Fi}, where id : E → L2(DX) denotes the
identity map that assigns to every f ∈ E the corresponding
equivalence class in L2(DX).

Now, we are able to present an oracle inequality for GBHT,
which gives an upper bound for the sample error term.

Theorem 3 Let the histogram transform Hn be defined as
in (2) with bin width hn satisfying Assumption 1. Further-
more, let fD,λ be the GBHT defined by (6) and A(λ) be the
corresponding approximation error defined by (1). Then for
all τ > 0, with probability Pn⊗PH not less than 1− 3e−τ ,
we have

Ω(h) +RL,D(fD,λ)−R∗L,P ≤

12A(λ) + 3456M2τ/n+ 3c′0λ
− 1

1+2δ′ n−
2

1+2δ′ ,

where c′0 is a constant.

A.2. Error Analysis for f ∈ C1,α

A drawback to the analysis in C0,α is that the usual Taylor
expansion involved techniques for error estimation may not
apply directly. As a result, we fail to prove the exact benefits
of the boosting procedure. Therefore, in this subsection,
we turn to the function space C1,α consisting of smoother
functions. To be specific, we study the convergence rates of
fD,λ to the density function f ∈ C1,α. To this end, there is
a point in introducing some notations.

For fixed h0, h0 > 0, let {Ht}Tt=1 be histogram transforms
with bin width ht ∈ [h0, h0], t = 1, . . . , T . Moreover, let
{fP,Ht}Tt=1 and {fD,Ht}Tt=1 be defined as in (2) and (4),
respectively. For x ∈ X , we define

fP,E(x) :=
1

T

T∑
t=1

fP,Ht(x) (11)

and

fD,E(x) :=
1

T

T∑
t=1

fD,Ht(x). (12)

Then we make the error decomposition

Eνn‖fD,E − f‖2L2(µ)
=

Eνn‖fD,E − fP,E‖2L2(µ)
+ Eνn‖fP,E − f‖2L2(µ)

,

(13)

where νn := Pn⊗PH . In particular, in the case that T = 1,
i.e., for the base histogram transform density estimator, we
are concerned with the lower bound for fD,H . We make the
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error decomposition

Eνn‖fD,H − f‖
2
L2(µ) =

Eνn‖fD,H − fP,H‖
2
L2(µ) + Eνn‖fP,H − f‖

2
L2(µ)

(14)

and

Eνn‖fD,H − f‖
3
L3(µ)

= Eνn‖fD,H − fP,H + fP,H − f‖3L3(µ)

= Eνn‖fD,H − fP,H‖
3
L3(µ) + Eνn‖fP,H − f‖

3
L3(µ)

+ 3Eνn
∫
X
(fD,H(x)− fP,H(x))2(fP,H(x)− f(x)) dx.

(15)

It is important to note that both of the two terms on the
right-hand side of (13) and (14) are data- and partition-
independent due to the expectation with respect to D and
H . Loosely speaking, the first error term corresponds to the
expected estimation error of the estimators fD,E or fD,H ,
while the second one demonstrates the expected approxima-
tion error.

A.2.1. UPPER BOUND FOR CONVERGENCE RATE OF
GBHT

The following Lemma presents the explicit representation of
AH(x) which will be used later in the proofs of Proposition
2.

Lemma 5 Let the histogram transform H be defined as in
(2) and A′H , AH be as in Section 3.3. Then for any x ∈ Rd,
the set AH(x) can be represented as

AH(x) =
{
x+ (R · S)−1z : z ∈ [−b′, 1− b′]

}
,

where b′ ∼ Unif(0, 1)d.

The next proposition presents the upper bound of the L2

distance between GBHT fP,E (11) and the density function
f in the Hölder space C1,α.

Proposition 2 Let the histogram transformH be defined as
in (2) with bin width h satisfying Assumption 1 and T be the
number of iterations. Furthermore, let PX be the uniform
distribution and Lh0

(x, y, t) be the restricted negative log-
likelihood loss defined as in (9). Moreover, let the density
function satisfy f ∈ C1,α. For fixed constants cf , cf ∈
(0,∞), let A0

f be as in (5). Then for any x ∈ A0
f , there

holds

RL
h0
,P(fP,E)−R∗L

h0
,P ≤

c2Lµ(BR)

2cf
·
(
h
2(1+α)
0 +

d

T
· h2

0

)
(16)

in expectation with respect to PH .

A.2.2. LOWER BOUND OF L2-CONVERGENCE RATE OF
HT

Theorem 4 Let the histogram transform Hn be defined as
in (2) with bandwidth hn satisfying Assumption 1. Further-
more, let the density function f ∈ C1,α. For fixed constants
c′f , cf , cf ∈ (0,∞), let A1

f denote the set

A1
f :=

{
x ∈ Rd : ‖∇f‖∞ ≥ c′f and f(x) ∈ [cf , cf ]

}
.

(17)

If µ(B+

r,
√
d·h0
∩ A1

f ) > 0, then for all n > N0 with

N0 := min

{
n ∈ N :h0,n ≤ min

{(√
dc′fc0,n

4
√

3cL

) 1
α

,(
d
√
d

2

) 1
α

,
cf

2d
√
dcL

,

(
1

4cf

) 1
d
}}

,

(18)

by choosing

h0,n := n−
1

2+d ,

there holds

‖fD,Hn − f‖2L2(µ)
& n−

2
2+d (19)

in the sense of L2(νn)-norm.

In order to prove Theorem 4, we prove the following two
propositions presenting the lower bound of approximation
error and sample error of HT respectively.

Proposition 3 Let the histogram transformH be defined as
in (2) with bin width h satisfying Assumption 1 and h0 ≤ 1.
Moreover, let the density function f ∈ C1,α(BR). For a
fixed constant cf ∈ (0,∞), let A1

f be the set (17). Let N1

be defined as

N1 := min

{
n ∈ N : h0,n ≤

(√
dc′fc0

4
√

3cL

) 1
α
}
. (20)

Then for all n > N1, there holds∥∥fP,H − f∥∥22 ≥ d

16
µ(A1

f ∩B+

R,
√
dh0

)c20c
′2
f · h

2

0.

in expectation with respect to PH .

Proposition 4 Let the histogram transform Hn be defined
as in (2) with bandwidth hn satisfying Assumption 1. More-
over, let the density function f ∈ C1,α and A1

f be the set
(17). Then for all x ∈ B+

r,
√
d·h0,n

∩A1
f and all n ≥ N ′ with

N ′ := min

{
n ∈ N : h0,n ≤ min

{(
d
√
d

2

) 1
α

,

cf

2d
√
dcL

,

(
1

4cf

) 1
d
}}

, (21)
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there holds

‖fD,H − fP,H‖2L2(µ)
≥ µ(A1

f ∩B+

R,
√
dh0

)
cf
4
· h−d0,n · n−1

(22)

in expectation with respect to Pn.

A.2.3. UPPER BOUND OF L3-CONVERGENCE RATE OF
HT

Proposition 5 Let the histogram transform Hn be defined
as in (2) with bandwidth hn satisfying Assumption 1. Fur-
thermore, let the density function f ∈ C1,α and for fixed
constants c′f , cf , cf ∈ (0,∞), let A1

f be the set (17). Then
for all n > N0 with N0 as in (18), there holds

‖fD,H − f‖3L3(µ)
≤ µ(B+

R,
√
d·h0
∩ A1

f ) ·
(
dc3L
4
· h3+α0

+ c3α · h
3(1+α)

0 +
cf
c20
n−2h

−2d
0

+
3c2L
c20
· n−1 · h−d+1+α

0

)
,

where cα is some constant depending on α.

B. Proofs
It is well-known that entropy numbers are closely related to
the covering numbers. To be specific, entropy and covering
numbers are in some sense inverse to each other. More
precisely, for all constants a > 0 and q > 0, the implication

ei(T, d) ≤ ai−1/q, ∀ i ≥ 1 (23)
=⇒ lnN (T, d, ε) ≤ ln(4)(a/ε)q, ∀ ε > 0 (24)

holds by Lemma 6.21 in (Steinwart & Christmann, 2008).
Additionally, Exercise 6.8 in (Steinwart & Christmann,
2008) yields the opposite implication, namely

lnN (T, d, ε) < (a/ε)q, ∀ ε > 0 =⇒ ei(T, d) ≤ 31/qai−1/q, ∀ i ≥ 1.
(25)

B.1. Proof for f ∈ C0,α

B.1.1. PROOF RELATED TO SECTION A.1.1

Proof 1 (Proof of Lemma 1) For any density function g,
there holds

RL,P(g)−RL,P(f) = −EP log g(X) + EP log f(X)

= −EP log
g(X)

f(X)

= −EP log

(
1 +

g(X)− f(X)

f(X)

)
.

Using x− x2/2 ≤ log(1 + x) ≤ x, x > −1, we get

−EP
g(X)− f(X)

f(X)
≤ RL,P(g)−RL,P(f)

≤ −EP
g(X)− f(X)

f(X)
+ EP

(
g(X)− f(X)

)2
2f(X)2

.

(26)

Since g is a density function, we have

EP
g(X)− f(X)

f(X)
=

∫
X

g(x)− f(x)

f(x)
f(x) dx

=

∫
X
g(x) dx−

∫
X
f(x) dx = 1− 1 = 0. (27)

On the one hand, (27) together with the first inequality in
(26) yields

RL,P(g)−RL,P(f) ≥ 0.

Moreover, the equation holds if and only if g = f . On the
other hand, combining the second inequality (26) and (27),
we obtain

RL,P(g)−RL,P(f)

≤ EP

(
g(X)− f(X)

)2
2f(X)2

=

∫
X

(
g(x)− f(x)

)2
2f(x)

dµ(x).

Thus, for all x satisfying f(x) ≥ cf , we have

RL,P(g)−RL,P(f) ≤
‖f − g‖2L2(µ)

2cf
.

Using log(1 + x) ≤ x− x2/2 + x3/3, x > −1, we get

EP log

(
1 +

g(X)− f(X)

f(X)

)
≤ EP

g(X)− f(X)

f(X)
− 1

2
EP

(
g(X)− f(X)

f(X)

)2

+
1

3
EP

(
g(X)− f(X)

f(X)

)3

. (28)

Combining (28) with (27), we obtain

−EP log

(
1 +

g(X)− f(X)

f(X)

)
≥ 1

2
EP

(
g(X)− f(X)

f(X)

)2

− 1

3
EP

(
g(X)− f(X)

f(X)

)3

.

Consequently, for any x satisfying f(x) ∈ [cf , cf ], there
holds

RL,P(g)−RL,P(f) ≥
‖g − f‖2L2(µ)

2cf
−
‖g − f‖3L3(µ)

3c2f
,

which completes the proof.
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Proof 2 (Proof of Proposition 1) Lemma 1 together with
the definition of fP,H implies

RL,P(fP,H)−R∗L,P ≤
‖fP,H − f‖2L2(µ)

2cf

=
1

2cf

∥∥∥∥∑
j∈IH

1Aj (x)

µ(Aj)

∫
Aj

f(x′)− f(x) dµ(x′)

∥∥∥∥2
2

≤ 1

2cf

∥∥∥∥∑
j∈IH

1Aj (x)

µ(Aj)

∫
Aj

∣∣f(x′)− f(x)
∣∣ dµ(x′)

∥∥∥∥2
2

≤ 1

2cf

∥∥∥∥∑
j∈IH

1Aj (x)

µ(Aj)

∫
Aj

cL‖x′ − x‖α dPX(x′)

∥∥∥∥2
2

≤ 1

2cf

∥∥∥∥∑
j∈IH

1Aj (x)

µ(Aj)
cL(
√
d · h0)α µ(Aj)

∥∥∥∥2
2

≤ c2L
2cf

(
√
d · h0)2αµ(BR)

≤ (2cf )−1µ(BR)dαc−2α0 c2Lh
2α
0

= cα,d,Rh
2α
0 , (29)

where the second last inequality is due to assumption f ∈
C0,α and the last inequality follows from Assumption 1.
Consequently we obtain

λh−2d+RL,P(fP,H)−R∗L,P ≤

λh−2d0 + (2cf )−1µ(BR)dαc−2α0 c2Lh
2α
0

Taking

h0 := c
− 1

2d+2α

α,d,R λ
1

2d+2α ,

we have

λh−2d +RL,P(fP,H)−R∗L,P ≤ 2c
d

d+α

α,d,Rλ
α
d+α := cλ

α
d+α ,

which yields the assertion.

B.1.2. PROOF RELATED TO SECTION A.1.2

Proof 3 (Proof of Lemma 2) This proof is conducted from
the perspective of geometric constructions.

We proceed by induction. Firstly, we concentrate on par-
tition with the number of splits p = 1. Because of the
dimension of the feature space is d, the smallest number of
sample points that cannot be divided by p = 1 split is d+ 2.
Concretely, owing to the fact that d points can be used to
form d−1 independent vectors and hence a hyperplane in a
d-dimensional space, we might take the following case into
consideration: There is a hyperplane consisting of d points
all from one class, say class A, and two points pB1 , pB2 from
the opposite class B located on the opposite sides of this
hyperplane, respectively. We denote this hyperplane by HA

1 .

In this case, points from two classes cannot be separated by
one split (since the positions are pB1 , H

A
1 , p

B
2 ), so that we

have VC(B1) ≤ d+ 2.

Next, when the partition is with the number of splits p = 2,
we analyze in the similar way only by extending the above
case a little bit. Now, we pick either of the two single
sample points located on opposite side of the HA

1 , and add
d − 1 more points from class B to it. Then, they together
can form a hyperplane HB

2 parallel to HA
1 . After that, we

place one more sample point from class A to the side of
this newly constructed hyperplane HB

2 . In this case, the
location of these two single points and two hyperplanes are
pB1 , H

A
1 , H

B
2 , p

A
2 . Apparently, p = 2 splits cannot separate

these 2d+ 2 points. As a result, we have VC(B2) ≤ 2d+ 2.

Inductively, the above analysis can be extended to the gen-
eral case of number of splits p ∈ N. In this manner, we
need to add points continuously to form p mutually parallel
hyperplanes where any two adjacent hyperplanes should be
constructed from different classes. Without loss of gener-
ality, we consider the case for p = 2k + 1, k ∈ N, where
two points (denoted as pB1 , pB2 ) from class B and 2k + 1
alternately appearing hyperplanes form the space locations:
pB1 , H

A
1 , H

B
2 , H

A
3 , H

B
4 , . . . ,H

A
(2k+1), p

B
2 . Accordingly, the

smallest number of points that cannot be divided by p splits
is dp+ 2, leading to VC(Bp) ≤ dp+ 2. This completes the
proof.

Proof 4 (Proof of Lemma 3) Recall that for a histogram
transform H , the set πH = (Aj)j∈IH is a partition of BR
with the index set IH induced by H . The choice k :=
b2R
√
d/h0c + 1 leads to the partition of BR of the form

πk := {Ai1,...,id}ij=1,...,k with

Ai1,...,id :=

d∏
j=1

Aj

:=

d∏
j=1

[
−R+

2R(ij − 1)

k
,−R+

2Rij
k

)
.

(30)

Obviously, we have |Aij | ≤
h0√
d

. Let D be a data set of the
form

D := {(xi, ti) : xi ∈ BR, ti ∈ [−M,M ], i = 1, · · · ,m}

with

m := #(D) = 2d+1(d+ 1)
(
b2R
√
d/h0c+ 1

)d
.

Then there exists at least one cell A with

#(D ∩ (A× [−M,M ])) ≥ 2d+1(d+ 1). (31)

Moreover, for any x, x′ ∈ A, the construction of the par-
tition (30) implies ‖x − x′‖ ≤ h0. Consequently, for any
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p = 1 p = 2 p = 2k

Figure 1. We take one case with d = 3 as an example to illustrate the geometric interpretation of the VC dimension. The yellow balls
represent samples from class A, blue ones are from class B and slices denote the hyper-planes formed by samples.

arbitrary histogram transformH andAj ∈ πH , at most one
vertex of Aj lies in A, since the bin width of Aj is larger
than h0. Therefore,

ΠH|A :=

{⋃
j∈I

(
(Aj ∩A)× [−M, cj ]

)
, I ⊂ IH

}
∪

{⋃
j∈I

(
(Aj ∩A)× (cj ,M ]

)
, I ⊂ IH

}
forms a partition of A× [−M,M ] with #(ΠH|A) ≤ 2d+1.
It is easily seen that this partition can be generated by
2d+1 − 1 splitting hyperplanes on the space A× [−M,M ].
In this way, Lemma 2 implies that ΠH|A can only shatter a
dataset with at most (d+ 1)(2d+1 − 1) + 1 elements. Thus
(31) indicates that ΠH|A fails to shatterD∩(A×[−M,M ]).
Therefore, the subgraphs of F{

{(x, t) : t < f(x)}, f ∈ F
}

cannot shatter the data set D as well. By Definition 1, we
immediately get

VC(F) ≤ 2d+1(d+ 1)
(
b2R
√
d/h0c+ 1

)d
and the assertion is thus proved.

Proof 5 (Proof of Lemma 4) Let Fε be an ε-net over F .
Then, for any f ∈ Co(F), there exists an fε ∈ Co(Fε)
such that ‖f − fε‖L2(Q) ≤ ε. Therefore, we can assume
without loss of generality that F is finite.

Obviously, (9) holds for 1 ≤ ε ≤ c1/v . Let v′ := 1/2 + 1/v
and M ′ := c1/vM . Then (9) implies that for any n ∈ N,
there exists f1, . . . , fn ∈ F such that for any f ∈ F , there
exists an fi such that

‖f − fi‖L2(Q) ≤M ′n−1/v.

Therefore, for each n ∈ N, we can find sets F1 ⊂ F2 ⊂
· · · ⊂ F such that the set Fn is a M ′n−1/v-net over F and
#(Fn) ≤ n.

In the following, we show by induction that for q ≥ 3 + v
and n, k ≥ 1, there holds

logN
(
Co(Fnkq ), L2(Q), ckM

′n−v
′)
≤ c′kn, (32)

where ck and c′k are constants depending only on c and v
such that supk max{ck, c′k} < ∞. The proof of (32) will
be conducted by a nested induction argument.

Let us first consider the case k = 1. For a fixed n0, let
n ≤ n0. Then for c1 satisfying c1M ′n−v

′

0 ≥ M , there
holds

logN
(
Co(Fnkq ), L2(Q), ckM

′n−v
′)

= 0,

which immediately implies (32). For a general n ∈ N, let
m := n/` for large enough ` to be chosen later. Then for
any f ∈ Fn \ Fm, there exists an f (m) ∈ Fm such that

‖f − f (m)‖L2(Q) ≤M ′m−1/v.

Let πm : Fn \ Fm → Fm be the projection operator. Then
for any f ∈ Fn \ Fm, there holds

‖f − πmf‖L2(Q) ≤M ′m−1/v

Therefore, for λi, µj ≥ 0 and
∑n
i=1 λi =

∑m
j=1 µj = 1,

we have
n∑
i=1

λif
(n)
i =

m∑
j=1

µjf
(m)
j +

n∑
k=m+1

λk
(
f
(n)
k − πmf (n)k

)
.

Let Gn be the set

Gn := {0} ∪ {f − πmf : f ∈ Fn \ Fm}.

Then we have #(Gn) ≤ n and for any g ∈ Gn, there holds

‖g‖L2(Q) ≤M ′m−1/v.

Moreover, we have

Co(Fn) ⊂ Co(Fm) + Co(Gn). (33)

Applying Lemma 2.6.11 in (Van der Vaart & Wellner, 1996)
with ε := 1

2c1m
1/vn−v

′
to Gn, we can find a 1

2c1M
′n−v

′
-

net over Co(Gn) consisting of at most

(e+ enε2)2/ε
2

≤
(
e+

ec21
`2/v

)8`2/vc−2
1 n

(34)
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elements.

Suppose that (32) holds for k = 1 and n = m. In other
words, there exists a c1M ′m−v

′
-net over Co(Fm) consist-

ing of at most em elements, which partitions Co(Fm) into
m-dimensional cells of diameter at most 2c1M

′m−v
′
. Each

of these cells can be isometrically identified with a subset
of a ball of radius c1M ′m−v

′
in Rm and can be therefore

further partitioned into(
3c1M

′m−v
′

1
2c1M

′n−v′

)m
= (6`v

′
)n/`

cells of diameter 1
2c1M

′n−v
′
. As a result, we get a

1
2c1M

′n−v
′
-net of Co(Fm) containing at most

em · (6`v
′
)n/` (35)

elements.

Now, (33) together with (34) and (35) yields that there ex-
ists a c1M ′n−v

′
-net of Co(Fn) whose cardinality can be

bounded by

en/`
(
6`v
′)n/`(

e+
ec21
`2/v

)8`2/vc−2
1 n

≤ en,

for suitable choices of c1 and ` depending only on v. This
concludes the proof of (32) for k = 1 and every n ∈ N.

Let us consider a general k ∈ N. Similarly as above, there
holds

Co(Fnkq ) ⊂ Co(Fn(k−1)q ) + Co(Gn,k), (36)

where the set Gn,k contains at most nkq elements with norm
smaller than M ′(n(k − 1)q)−1/v . Applying Lemma 2.6.11
in (Van der Vaart & Wellner, 1996) to Gn,k, we can find an
M ′k−2n−v

′
-net over Co(Gn,k) consisting of at most

(
e+ ek2q/v−4+q

)22q/v+1k4−2q/vn
(37)

elements. Moreover, by the induction hypothesis, we have a
ck−1M

′n−v
′
-net over Co(Fn(k−1)q ) consisting of at most

ec
′
k−1n (38)

elements. Using (36), (37), and (38), we obtain a
ckM

′n−v
′
-net over Co(Fnkq ) consisting of at most ec

′
kn

elements, where

ck = ck−1 +
1

k2
,

c′k = c′k−1 + 22q/v+1 1 + log(1 + k2q/v−4+q)

k2q/v−4
.

Form the elementary analysis we know that if 2q/v− 5 = 2,
then there exist constants c′′1 , c′′2 , and c′′3 such that

lim
k→∞

ck = c−1/vn
(v+2)/2v
0 +

∞∑
i=2

1/i2 ≤ c′′1c−1/v + c′′2 ,

lim
k→∞

c′k = 1 + c

∞∑
i=1

2(2/i)2q/vi5 ≤ c′′3 .

Thus (32) is proved. Taking ε := ckM
′n−v

′
/M in (32), we

get

logN (Co(Fnkq ), L2(Q),Mε) ≤

c′kc
1/v′

k (M ′)1/v
′
M−1/v

′
ε−1/v

′
.

This together with

(M ′)1/v
′

= (c1/vM)1/v
′

= c2/(v+2)M1/v′

yields

logN (Co(F), L2(Q),Mε) ≤ c′c2/(v+2)ε−2v/(v+2),

where the constant c′ depends on the constants c′′1 , c′′2 and
c′′3 . This finishes the proof.

Proof 6 (Proof of Theorem 1) We find the upper bound of
VC(F) satisfies

2d+1(d+ 1)(2R
√
d/h0 + 2)d ≤

d · 2d+2(4R
√
d/h0)d = (cdR/h0)d,

where cd := 21+4/d · d1/2+1/d. Then Theorem 2.6.7 in
(Van der Vaart & Wellner, 1996) yields the assertion.

Proof 7 (Proof of Theorem 2) The assertion follows di-
rectly from Lemma 4 with

c := c0(cd/h0)d · (16e)(cd/h0)
d

, v := 2((cd/h0)d − 1).

Let δ := (h0/cd)
d, then we have

c2/(v+2) = (c0δ
−1(16e)1/δ)δ = 16e(c0δ

−1)δ = 16e(c0δ
−1)δ.

Note that the function f defined by f(δ) := (c0δ
−1)δ is

continuous and

lim
δ→0

f(δ) = 1.

Then there exists a constant Md > 0 such that f(δ) ≤Md

for all 0 < δ ≤ (1/cd)
d if h0 ≤ 1. Consequently, we have

logN (Co(F), L2(Q),Mε) ≤ 16ec′Mdε
2(h0.n/cd)

d−2.

With c1 := 16ec′Md we obtain the assertion.
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Definition 4 Let f be density function and P be the corre-
sponding probability distribution on X . For a loss function
L : X × [0,∞]→ R and denote L ◦ g := L(x, g(x)), Then
L satisfies the supreme bound and variance bound if there
exist constants B > 0, θ ∈ [0, 1] and V ≥ B2−θ such that
for any function g, there holds

‖L ◦ g − L ◦ f‖∞ ≤ B,
EP(L ◦ g − L ◦ f)2 ≤ V · (EP(L ◦ g − L ◦ f))θ.

Lemma 6 Let L be the negative log-likelihood loss defined
in (1). Moreover, let f be the underlying density function
of the probability distribution P on BR satisfying cf ≤
f(x) ≤ cf for all x ∈ BR. Then for any g with cf ≤
g(x) ≤ cf , L satisfies the supreme bound and variance
bound in Definition 4 with B = 2 max{| log cf |, | log cf |}
and V = 2 max{1, | log cf |, | log cf |}, θ = 1.

Proof 8 (Proof of Lemma 6) First any x ∈ BR, there
holds

‖L ◦ g − L ◦ f‖∞ ≤ max
x∈BR

log |f(x)|+ max
x∈BR

log |g(x)|

≤ 2 max{| log cf |, | log cf |} =: B.

Using Taylor’s expansion, we get

EP(L ◦ g − L ◦ f)2 = EP

(
− log g(x) + log f(x)

)2
= EP

(
− log

(
1 +

g(x)− f(x)

f(x)

))2

≤ EP

(
g(x)− f(x)

f(x)
− (g(x)− f(x))2

2f(x)2

)2

= EP

((
g(x)− f(x)

f(x)

)2

−
(
g(x)− f(x)

f(x)

)3

+ o

((
g(x)− f(x)

f(x)

)3))
and

EP(L ◦ g − L ◦ f) = EP

(
− log

(
1 +

g(x)− f(x)

f(x)

))
= EP

(
−g(x)− f(x)

f(x)
+

1

2

(
g(x)− f(x)

f(x)

)2

− 1

3

(
g(x)− f(x)

f(x)

)3

+ o

((
g(x)− f(x)

f(x)

)3))
= EP

(
1

2

(
g(x)− f(x)

f(x)

)2

− 1

3

(
g(x)− f(x)

f(x)

)3

+ o

((
g(x)− f(x)

f(x)

)3))
,

where the last inequality follows from

EP

(
g(x)− f(x)

f(x)

)
=

∫
BR

g(x)− f(x)

f(x)
f(x) dx

=

∫
BR

g(x)− f(x) dx

=

∫
BR

g(x) dx−
∫
BR

f(x) dx = 0.

Consequently we have

EP(L ◦ g − L ◦ f)2 ≤ 2EP(L ◦ g − L ◦ f).

Choosing V := max{2, B} =
2 max{1, | log cf |, | log cf |}, we obtain the assertion.

Proof 9 (Proof of Theorem 3) Denote

r∗ := Ω(h) +RL,P(f)−R∗L,P,

and for r > r∗, we write

Fr := {f ∈ E : Ω(h) +RL,P(f)−R∗L,P ≤ r},
Hr := {L ◦ f − L ◦ f∗L,P : f ∈ Fr}.

Note that for f ∈ Fr, we have f =
∑T
t=1 wtft, where ft ∈

F and
∑T
t=1 wt = 1, Consequently, we have Fr ⊂ co(F).

Since L is Lipschitz continuous with |L|1 ≤ c−1f , we find

ED∼Pnem(Hr, L2(D)) ≤ c−1f ED∼PnXem(Fr, L2(D))

≤ 2c−1f ED∼PnXem(Co(F), L2(D)).

Let δ := (h0/cd)
d, δ′ := 1− δ, and a := c

1/(2δ′)
1 M . Then

(10) together with (25) implies that

em(Co(F), L2(D)) ≤ (3c1)1/(2δ
′)Mi−1/(2δ

′)

Taking expectation with respect to Pn, we get

ED∼PnXem(Co(F), L2(D)) ≤ c2i−1/(2δ
′), (39)

where c2 := (3c1)1/(2δ
′)M . Moreover, we easily find

λh−2d = Ω(h) ≤ Ωλ(f) +RL,P(f)−R∗L,P ≤ r,

which yields

h−10 ≤ (r/λ)1/(2d).

Therefore, if h0 ≤ 1, then we have r ≥ λ ≥ 1 and (39) can
be further estimated by

ED∼PnXem(Co(FH), L2(D)) ≤ c2(r/λ)1/(4δ
′)i−1/(2δ

′),

which leads to

ED∼PnXem(Hr, L2(D)) ≤ 2c2c
−1
f (r/λ)1/(4δ

′)i−1/(2δ
′).
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For the negative log-likelihood loss L, Lemma 6 implies the
supreme bound

L(x, t) ≤ 2max{| log cf |, | log cf |}, ∀x ∈ BR, t ∈ [cf , cf ],

and the variance bound

E(L ◦ g − L ◦ f)2 ≤ V (E(L ◦ g − L ◦ f∗L,P))ϑ

holds for V = 2 max{1, | log cf |, | log cf |} and ϑ = 1.
Therefore, for h ∈ Hr, we have

‖h‖∞ ≤ 4 max{| log cf |, | log cf |},
EPh

2 ≤ 2 max{1, | log cf |, | log cf |} · r.

Then Theorem 7.16 in (Steinwart & Christmann, 2008) with
a := 2c2c

−1
f (r/λ)1/(4δ

′) yields that there exist a constant
c′0 > 0 such that

ED∼PnRadD(Hr, n) ≤ c′0 max
{
r5/4−δ

′
λ−1/4n−1/2,

r1/2(1+δ
′)λ−1/2(1+δ

′)n−1/(1+δ
′)
}

=: ϕn(r).

Simple algebra shows that the condition ϕn(4r) ≤
2
√

2ϕn(r) is satisfied. Since 2
√

2 < 4, similar argu-
ments show that there still hold the statements of the
Peeling Theorem 7.7 in (Steinwart & Christmann, 2008).
Consequently, Theorem 7.20 in (Steinwart & Christmann,
2008) can also be applied, if the assumptions on ϕn
and r are modified to ϕn(4r) ≤ 2

√
2ϕn(r) and r ≥

max{75ϕn(r), 1152M2τ/n, r∗}, respectively. It is easy
to verify that the condition r ≥ 75ϕn(r) is satisfied if

r ≥ c′0λ−1/(1+2δ′)n−2/(1+2δ′),

where c′0 is a constant, which yields the assertion.

B.1.3. PROOF RELATED TO SECTION 4.1

Proof 10 (Proof of Theorem 1) It is easy to see that fP,E
defined by (11) satisfies fP,E ∈ E. Moreover, by Jensen’s
inequality and Proposition 1, we have

RL,P(fP,E)−R∗L,P =

∫
X

(
1

T

T∑
t=1

fP,Ht − f
)2

dPX

≤ 1

T

T∑
t=1

∫
X

(fP,Ht − f)2 dPX

=
1

T

T∑
t=1

RL,P(fP,Ht)−R∗L,P

≤ dαc−2α0 h2α0 .

Consequently we get

A(λ) = inf
f∈E

Ω(h) +RL,P(f)−R∗L,P

≤ Ω(h) +RL,P(fP,E)−R∗L,P ≤ cλ
α
α+d .

Then, Theorem 3 implies that with probability P⊗ PH not
less than 1− 3e−τ , there holds

λΩ(h) +RL,D(fD,λ)−R∗L,P ≤

6cλ
α
α+d + 3c′0λ

− 1
1+2δ′ n−

2
1+2δ′ + 3456M2τ/n,

(40)

where c and c′0 are constants defined as in Proposition 1
and Theorem 3. Minimizing the right hand side of (40), we
get

RL,P(fD,λ)−R∗L,P ≤ c′′n
− 2α

(4−2δ)α+d ,

if we choose

λn := n−
2(α+d)

(4−2δ)α+d , h0,n := n−
1

(4−2δ)α+d ,

where c′′ is a constant depending on c, c′0, d, M , R and T .
Thus, the assertion is proved.

B.2. Proof for f ∈ C1,α

B.2.1. PROOF RELATED TO SECTION A.2.1

Proof 11 (Proof of Lemma 5) For any x ∈ Rd, we de-
fine b′ := H(x) − bH(x)c ∈ Rd. Then we have b′ ∼
Unif(0, 1)d according to the definition of H . For any
x′ ∈ A′H(x), we define

z := H(x′)−H(x) = (R · S)(x′ − x).

Then we have

x′ = x+ (R · S)−1z.

Moreover, since

bH(x′)c = bH(x)c,

we have z ∈ [−b′, 1− b′].

Proof 12 (Proof of Proposition 2) Lemma 1 implies that
the excess risk RL,P(fD,E) − R∗L,P can be controlled by
considering the L2-distance ‖fD,E−f‖L2(µ). According to
the generation process, the histogram transforms {Ht}Tt=1
are i.i.d. Therefore, for any x ∈ BR, the expected approxi-
mation error term can be decomposed as follows:

EP

(
fP,E(x)− f(x)

)2
= EPH

(
(fP,E(x)− EPH (fP,E(x)))

+ (EPH (fP,E(x))− f(x))
)2

= Var(fP,E(x)) + (EPH (fP,E(x))− f(x))2

=
1

T
·VarPH (fP,H1(x)) +

(
EPH (fP,H1(x))− f(x)

)2
.

(41)

In the following, for the simplicity of notations, we drop the
subscript of H1 and write H instead of H1 when there is no
confusion.
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For the first term in (41), the assumption f ∈ C1,α implies

VarPH
(
fP,H(x)

)
= EPH

(
fP,H(x)− EPH (fP,H(x))

)2
≤ EPH

(
fP,H(x)− f(x)

)2
= EPH

(
1

µ(AH(x))

∫
AH(x)

f(x′) dx′ − f(x)

)2

= EPH

(
1

µ(AH(x))

∫
AH(x)

(
f(x′)− f(x)

)
dx′
)2

≤ EPH

(
cLdiam

(
AH(x)

))2
≤ c2Ldh

2

0. (42)

We now consider the second term in (41). Lemma 5 implies
that for any x′ ∈ AH(x), there exist a random vector u ∼
Unif[0, 1]d and a vector v ∈ [0, 1]d such that

x′ = x+ S−1R>(−u+ v). (43)

Therefore, we have

dx′ = det

(
dx′

dv

)
dv

= det

(
d(x+ S−1R>(−u+ v))

dv

)
dv

= det(RS−1) dv

=

( d∏
i=1

hi

)
dv. (44)

Taking the first-order Taylor expansion of f(x′) at x, we get

f(x′)− f(x) =

∫ 1

0

(
∇f(x+ t(x′ − x))

)>
(x′ − x) dt.

(45)

Moreover, we obviously have

∇f(x)>(x′ − x) =

∫ 1

0

∇f(x)>(x′ − x) dt. (46)

Thus, (45) and (46) imply that for any f ∈ C1,α, there holds∣∣f(x′)− f(x)−∇f(x)>(x′ − x)∣∣
=

∣∣∣∣∫ 1

0

(
∇f(x+ t(x′ − x))−∇f(x)

)>
(x′ − x) dt

∣∣∣∣
≤
∫ 1

0

cL(t‖x′ − x‖2)α‖x′ − x‖2 dt

≤ cL‖x′ − x‖1+α.

This together with (43) yields∣∣f(x′)− f(x)−∇f(x)>S−1R>(−u+ v)
∣∣ ≤ cLh1+α0

and consequently there exists a constant cα ∈ [−cL, cL]
such that

f(x′)− f(x) = ∇f(x)>S−1R>(−u+ v) + cαh
1+α

0 .
(47)

The definition (3) of fP,H shows

fP,H(x) =
1

µ(AH(x))

∫
AH(x)

f(x′) dx′.

This together with (47) and (44) yields

fP,H(x)− f(x) = 1

µ(AH(x))

∫
AH (x)

f(x′) dx′ − f(x)

=
1

µ(AH(x))

∫
AH (x)

(
f(x′)− f(x)

)
dx′

=

∏d
i=1 hi

µ(AH(x))
·∫

[0,1]d

(
∇f(x)>S−1R>(−u+ v) + cαh

1+α
0

)
dv

=

(∫
[0,1]d

(−u+ v)> dv

)
RS−1∇f(x) + cαh

1+α
0

=

(
1

2
− u
)>

RS−1∇f(x) + cαh
1+α
0 . (48)

Since the random variables (ui)
d
i=1 are independent and

identically distributed as Unif[0, 1], we have

EPH

(
1

2
− ui

)
= 0, i = 1, . . . , d. (49)

Combining (48) with (49), we obtain

EPH

(
fP,H(x)− f(x)

)
= cαh

1+α

0 (50)

and consequently(
EPH (fP,H1

(x))− f(x)
)2 ≤ c2Lh2(1+α)0 . (51)

Combining (41) with (51) and (42), we obtain

EPH

(
fP,E(x)− f(x)

)2 ≤ c2L · h2(1+α)0 +
1

T
· dc2L · h

2

0.

Taking expectation with respect to µ, we get

EPH‖fP,E − f‖2L2(µ)

≤ c2Lµ(BR) · h2(1+α)0 +
1

T
· dc2Lµ(BR) · h20,

This combines with Lemma 1 implies

EPH

(
RLh0 ,P(fP,E)−R∗Lh0 ,P

)
≤

EPH‖fP,E − f‖2L2(µ)

2cf

=
c2Lµ(BR)

2cf
· h2(1+α)0 +

1

T
· dc

2
Lµ(BR)

2cf
· h20,

which completes the proof.
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B.2.2. PROOF RELATED TO SECTION A.2.2

Proof 13 (Proof of Proposition 3) Lemma 5 implies that
for any x′ ∈ AH(x), there exist a random vector u ∼
Unif[0, 1]d and a vector v ∈ [0, 1]d such that

x′ = x+ S−1R>(−u+ v).

Then (48) yields

(fP,H(x)− f(x))2

=

((
1

2
− u
)>

RS−1∇f(x) + cαh
1+α

0

)2

.

(52)

The orthogonality of the rotation matrix R in Section 3.3
tells us that

d∑
i=1

RijRik =

{
1, if j = k,

0, if j 6= k
(53)

and consequently we have

d∑
i=1

∑
j 6=k

RijRikhjhk ·
∂f(x)

∂xj
· ∂f(x)

∂xk

=
∑
j 6=k

hjhk ·
∂f(x)

∂xj
· ∂f(x)

∂xk

d∑
i=1

RijRik = 0.

(54)

Since the random variables (ui)
d
i=1 are independent and

identically distributed as Unif[0, 1], we have

EPH

(
1

2
− ui

)
= 0 (55)

and

EPH

(
1

2
− ui

)2

=
1

12
. (56)

Then, for all x ∈ B+

R,
√
d·h0
∩ A1

f , (53), (54), (55), and (56)
yield

EPH

((
1

2
− u
)>

RS−1∇f(x)

)2

= EPH

( d∑
i=1

(
1

2
− ui

) d∑
j=1

Rijhj
∂f(x)

∂xj

)2

=

d∑
i=1

EPH

(
1

2
− ui

)2( d∑
j=1

Rijhj
∂f(x)

∂xj

)2

=
1

12
EPH

d∑
i=1

d∑
j=1

R2
ijh

2
j

(
∂f(x)

∂xj

)2

≥ d

12
c′2f h

2
0 ≥

d

12
c′2f c

2
0h

2

0. (57)

Combining (48) with (57) and using (55), we see that for all
x ∈ B+

R,
√
d·h0
∩ A1

f , if

h0 ≤
(√

dc′fc0

4
√

3cL

) 1
α

,

then we have

EPH (fP,H(x)− f(x))2 ≥ d

16
c′2f c

2
0h

2

0, (58)

where the constant c0 is as in Assumption 1. Moreover, we
have

EPH‖fP,H − f‖22 ≥
d

16
µ(A1

f ∩B+

R,
√
dh0

)c′2f c
2
0h

2

0.

This completes the proof.

Proof 14 (Proof of Proposition 4) Recall that for a fixed
histogram transform H , the set πH is defined as the col-
lection of all cells in the partition induced by H , that is,
πH := {Aj}j∈IH . To estimate the first term in (14), we
observe that for any x ∈ BR, there holds

EPn
(
(fD,H(x)− fP,H(x))2|πH

)
= VarPn

(
fD,H(x)|πH

)
= VarPn

(
1

nµ(AH(x))

n∑
i=1

1{xi∈AH(x)}

∣∣∣∣πH)

≥ 1

n2h
2d

0,n

n∑
i=1

P(AH(x))(1− P(AH(x)))

=
1

nh
2d

0,n

P(AH(x))(1− P(AH(x))), (59)

where EPn(·|πH) and VarPn(·|πH) denote the conditional
expectation and conditional variance with respect to Pn on
the partition πH , respectively.

Lemma 5 implies that for any x′ ∈ AH(x), there exist a
random vector u ∼ Unif[0, 1]d and a vector v ∈ [0, 1]d

such that

x′ = x+ S−1R>(−u+ v).
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By (47) and (44), there exists a constant θ ∈ (0, 1) such that

P(AH(x)) =

∫
AH (x)

f(x′) dx′

=

( d∏
i=1

hi

)(∫
[0,1]d

f(x) +∇f(x+ θS−1R>(−u+ v))>·

S−1R>(−u+ v) dv

)
=

( d∏
i=1

hi

)(
f(x) +

∫
[0,1]d

∇f(x+ θS−1R>(−u+ v))>·

S−1R>(−u+ v) dv

)
=

( d∏
i=1

hi

)(
f(x) +

(∫
[0,1]d

(−u+ v)> dv

)
RS−1·

∇f(x+ θS−1R>(−u+ v))

)
=

( d∏
i=1

hi

)(
f(x) +

(
1

2
− u
)>

RS−1·

∇f(x+ θS−1R>(−u+ v))

)
. (60)

Elementary Analysis tells us that for any a1, . . . , ad ∈ R,
there holds

a1 + . . .+ ad
d

≤
√
a21 + . . .+ a2d

d
,

which implies that∣∣∣∣(1

2
− u
)>

RS−1∇f(x+θS−1R>(−u+ v))

∣∣∣∣
≤ d · 3

2
· h0 · cL =

3dcL
2
· h0.

This together with (60) yields that for all x ∈ B+

r,
√
d·h0
∩A1

f ,
there hold

P(AH(x)) ≤ hd0
(
cf +

3dcL
2
· h0
)

(61)

and

P(AH(x)) ≥ hd0
(
cf −

3dcL
2
· h0
)
. (62)

Then for any n > N ′ with N ′ as in (21), we have

1

2
cfh

d

0 ≤ P(AH(x)) ≤ 2cfh
d

0 ≤
1

2
. (63)

Combining (59) with (63), we obtain

EPn
(
(fD,H(x)− fP,H(x))2|πH

)
≥ P(AH(x))(1− P(AH(x)))

nh
2d

0,n

≥ P(AH(x))

2nh
2d

0,n

≥
cfh

d

0,n

4nh
2d

0,n

=
cf

4nh
d

0,n

.

Consequently, for all x ∈ B+

r,
√
d·h0
∩ A1

f and all n ≥ N ′,
there holds

EPn
(
(fD,H(x)− fP,H(x))2

)
≥

cf

4nh
d

0,n

. (64)

Moreover

EPn
∥∥fD,H − fP,H∥∥2 ≥ µ(A1

f ∩B+

R,
√
dh0

)
cf

4nh
d

0,n

.

Thus, we proved the assertion.

Proof 15 (Proof of Theorem 4) Recall the error decom-
position (14) of single random histogram transform den-
sity estimator. Then (58) and (64) yield that for all x ∈
B+

R,
√
d·h0
∩ A1

f and all n > N0, there holds

EPH⊗Pn‖fD,H − f‖2 ≥

µ(B+

R,
√
d·h0
∩ A1

f ) ·
(
d

16
c′2f c

2
0 · h

2

0,n +
cf

4nh
d

0,n

)
.

By choosing

h0,n := n−
1

2+d ,

we obtain

Eνn(fD,H(x)− f(x))2 & n−
2

2+d ,

which proves the assertion.

B.2.3. PROOF RELATED TO SECTION A.2.3

Proof 16 (Proof of Theorem 2) Proposition 3 together
with Proposition 2 implies

RLh0 ,P(fD,B)−R∗Lh0 ,P

. λh−2d0 + h
2(1+α)

0 + T−1h
2

0 + λ−
1

1+2δ′ n−
2

1+2δ′ ,

where δ′ := 1− δ and δ := (h0/cd)
d. Choosing

λn := n−
2(α+d+1)

2(1+α)(2−δ)+d ,

h0,n := n−
1

2(1+α)(2−δ)+d ,

Tn ≥ n
2α

2(1+α)(2−δ)+d ,

we obtain

RLh0 ,P(fD,λ)−R∗Lh0 ,P . n−
2(1+α)

2(1+α)(2−δ)+d .

This completes the proof.
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Proof 17 (Proof of Proposition 5) By (48), we have

|fP,H(x)− f(x)|3

=

∣∣∣∣(1

2
− u
)>

RS−1∇f(x) + cαh
1+α

0

∣∣∣∣3
=

((
1

2
− u
)>

RS−1∇f(x)

)3

+ 3

((
1

2
− u
)>

RS−1∇f(x)

)2

cαh
1+α

0

+ 3

(
1

2
− u
)>

RS−1∇f(x) · c2αh
2(1+α)

0 + c3αh
3(1+α)

0 .

(65)

Since the random variables (ui)
d
i=1 are independent and

identically distributed as Unif[0, 1], we have

EPH

(
1

2
− ui

)3

= EPH

(
1

2
− ui

)
= 0.

Consequently we have

EPH

((
1

2
− u
)>

RS−1∇f(x)

)3

= EPH

( d∑
i=1

(
1

2
− ui

) d∑
j=1

Rijhj
∂f(x)

∂xj

)3

= 0,

EPH

((
1

2
− u
)>

RS−1∇f(x)

)
= EPH

( d∑
i=1

(
1

2
− ui

) d∑
j=1

Rijhj
∂f(x)

∂xj

)
= 0.

Moreover, (57) implies

EPH

((
1

2
− u
)>

RS−1∇f(x)

)2

=
1

12
EPH

d∑
i=1

d∑
j=1

R2
ijh

2
j

(
∂f(x)

∂xj

)2

≤ d

12
c2Lh

2

0.

Therefore, for any x ∈ B+

R,
√
d·h0
∩ A1

f , we have

EPH |fP,H(x)− f(x)|3 ≤ d

4
c3Lh

3+α

0 + c3αh
3(1+α)

0 . (66)

To bound the estimation error, let Y :=
∑n
i=1 1{Xi∈AH(x)}

and πH denote the partition of BR induced by H . Then we
have Y ∼ Bin

(
n,P(AH(x))

)
and

EPn
(
(fD,H(x)− fP,H(x))3

∣∣πH)
=

1

n3µ(AH(x))3
·

EPn

(( n∑
i=1

1Xi∈AH(x) − nP(AH(x))

)3∣∣∣∣πH)
= EPY

(
(Y − EY )3

)
.

Then the skewness of a binomial random variable implies
that for any x ∈ B+

R,
√
d·h0
∩ A1

f , we have

EPn
(
(fD,H(x)− fP,H(x))3

∣∣πH)
=

P(AH(x))
(
1− P(AH(x))

)(
1− 2P(AH(x))

)
n2µ(AH(x))3

≤ cf

n2h2d0
≤ cf
c20
· h−2d0 · n−2. (67)

Analogously, for any x ∈ B+

R,
√
d·h0
∩ A1

f , there holds

EPn⊗PH
(
(fD,H(x)− fP,H(x))2 · |fP,H(x)− f(x)|

)
= EPn(fD,H(x)− fP,H(x))2 · EPH |fP,H(x)− f(x)|

≤ P(AH(x))(1− P(AH(x)))

nµ(AH(x)))2
· cLh

1+α

0 (68)

≤ c2L
c20
n−1h

−d+1+α

0 . (69)

Combining (15) with (66), (67) and (68), we obtain

‖fD,H − f‖3L3(µ)

≤ µ(B+

R,
√
d·h0
∩ A1

f ) ·
(
d

4
c3Lh

3+α

0 + c3αh
3(1+α)

0

+
cf
c20
n−2h

−2d
0 +

3c2L
c20

n−1h
−d+1+α

0

)
,

which completes the proof.

Proof 18 (Proof of Theorem 3) Lemma 1 together with
Theorem 4 and Proposition 5 yields

RL,P(fD,H)−R∗L,P

≥
‖fD,H − f‖2L2(µ)

2cf
−
‖fD,H − f‖3L3(µ)

3c2f

& h
2

0,n + n−1h
−d
0,n − h

3+α

0

− h3(1+α)0 − n−2h−2d0 − n−1h−d+1+α

0 .

By choosing

h0,n := n−
1

2+d ,

we obtain

RL,P(fD,H)−R∗L,P & n−
2

2+d ,

which yields the assertion.

C. Supplementary for Experiments
C.1. Descriptions of Synthetic Datasets

The detailed descriptions are shown in Table 1.
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Table 1. Descriptions of synthetic datasets.

Type True (Marginal) Distribution

I 0.4 · N (ed, 0.25 · Id) + 0.6 · N (−ed, 0.25 · Id)
II fi := 0.7 · Beta(2, 10) + 0.3 ·Unif(0.6, 1.0)
III fi := 0.5 · Laplace(0, 0.5) + 0.5 ·Unif(2, 4)
IV fi := Exp(0.5) for 1 = 1, . . . , d− 1 and fd := Unif(0, 5)

* For notational simplicity, we denote ed := (1, 1, . . .), e′d := (1,−1, . . .), Id as the identity matrix, and fi as the marginal
distribution of the i-th dimension. For Types II, III, IV, the marginal distributions of the true density are independent, and the marginal
distributions are identical for Types II and III.

In order to give clear visualization of the distributions, we
take d = 2 for instance, and give the 3D visualization of the
above four types of distributions in Figure 2, where x-axis
and y-axis represent the 2-dimensional feature space and
z-axis represents the value of the density function.

(a) Type I (b) Type II

(c) Type III (d) Type IV

Figure 2. 3D plots of the synthetic distributions with d = 2.

C.2. Descriptions of Real Datasets

As follows are the datasets alphabetically listed, with the
number of instances and features reported after preprocess-
ing.

• Adult is also known as "Census Income" dataset.
It contains 48, 842 instances with 6 countinuous and
8 discrete attributes. Prediction task is to determine
whether a person makes over 50K a year.

• Australian is an interesting dataset with a good
mix of attributes, which contains continuous, nominal
with both small and large numbers of values. The
dataset contains 690 instances with 6 numerical and 9
categorical attributes, mainly concerning credit card
applications.

• Breast-cancer is originally for predicting whether
a cancer is recurrence event. It contains 675 instances
of dimension 11, describing the status of the tumors
and the patients.

• Diabetes dataset comprises 768 samples and 9 fea-
tures. The attributes concern about the medical records
of patients, consisting of 8 numerical features and 1
categorical feature.

• Ionosphere is a multivariate dataset for binary clas-
sification tasks, attribute to predict is either “good” or
“bad”. This radar data was collected by a system in
Goose Bay, Labrador. It contains 351 instances of
dimension 34.

• Parkinsons dataset is composed of a range of
biomedical voice measurements from 31 people, 23
with Parkinson’s disease (PD). It contains 197 in-
stances of dimension 23.

For anomaly detection, we select 20 real datasets from the
ODDS library, with various sample sizes and dimension-
alities. Details of real-world datasets are shown in Table
2.

C.3. Gradient Boosted Histogram Transform (GBHT)
for Anomaly Detection

We conduct numerical experiments to make a comparison
between our GBHT and several popular anomaly detection
algorithms such as the forest-based Isolation Forest (iForest)
(Liu et al., 2008), the distance-based k-Nearest Neighbor
(k-NN) (Ramaswamy et al., 2000) and Local Outlier Factor
(LOF) (Breunig et al., 2000), and the kernel-based one-class
SVM (OCSVM) (Schölkopf et al., 2001), on 20 real-world
benchmark outlier detection datasets from the ODDS library.
The detailed descriptions of these datasets can be found in
Table 2 in Section C.2 of the supplement. The measure
for the performance evaluation is the area under the ROC
curve (AUC). For each method, we choose the best AUC
performance when parameters go though their parameter
grids.
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Table 2. Descriptions of Benchmark Datasets

Datasets n d #outliers(%) Datasets n d #outliers(%)

arrhythmia 452 274 66(15%) breastw 683 9 239(34.99%)
cardio 1, 831 21 176(9.61%) forestcover 286, 048 10 2747(0.96%)
heart 267 44 55(20.60%) http 567, 498 3 2211(0.39%)
ionosphere 351 33 126(35.90%) letter 1, 600 32 100(6.25%)
mammo. 11, 183 6 260(2.32%) mnist 7, 602 100 700(9.2%)
mulcross 262, 144 4 26214(10.00%) musk 3, 062 166 97(3.2%)
optdigits 5, 216 64 150(3%) pendigits 6, 870 16 156(2.27%)
pima 768 8 268(34.90%) satellite 6, 435 36 2036(32%)
shuttle 49, 097 9 3511(7.15%) vertebral 240 6 30(12.5%)
vowels 1, 456 12 50(3.43%) wbc 129 13 10(7.7%)

Table 3. AUC performance on benchmark datasets
Datasets GBHT (Ours) k-NN iForest LOF OCSVM

arrhythmia 0.7952 0.8165 0.8073 0.8130 0.7948
breastw 0.9872 0.9881 0.9884 0.4676 0.9789
cardio 0.8921 0.8744 0.9297 0.6790 0.9473
forestcover 0.9360 0.8950 0.8792 0.5778 0.6565
heart 0.6228 0.1908 0.2683 0.2941 0.5000
http 0.9970 0.2309 0.9999 0.3675 0.9953
ionosphere 0.9313 0.9294 0.8520 0.9023 0.9382
letter 0.8222 0.9071 0.6258 0.9120 0.6860
mammo. 0.8786 0.8527 0.8631 0.7568 0.8721
mnist 0.8385 0.8591 0.8117 0.7406 0.8216
mulcross 1.0000 0.0013 0.9642 0.5848 0.9778
musk 0.9893 0.9367 1.0000 0.5476 0.5281
optdigits 0.6381 0.4292 0.7116 0.6682 0.8966
pendigits 0.8991 0.8607 0.9538 0.5437 0.9607
pima 0.6990 0.6437 0.6796 0.6162 0.5842
satellite 0.7223 0.7374 0.7041 0.5701 0.7064
shuttle 0.9842 0.8004 0.9974 0.6035 0.9918
vertebral 0.5523 0.3253 0.3585 0.5310 0.5374
vowels 0.9237 0.9749 0.7588 0.9467 0.9153
wbc 0.9524 0.9501 0.9412 0.9460 0.9469
Rank Sum 43 62 60 78 57

* The best results are marked in bold, the second best results are marked in underline.
** The last row shows the summation of ranks for each method, which is the lower the better.

The implementation details are below: For our method,
the grid of smin and smax − smin are {−3,−2,−1, 0} and
{0.5, 1, 2, 3}, respectively. The number of iterations T is
chosen from {100, 500}. Moreover, we incorporate Nes-
terov’s descent method (Biau et al., 2019) into our boost-
ing algorithm for accelerating and set shrinkage parame-
ter grid to be {0.1, 0.5}. For iForest, LOF and OCSVM,
we utilized the implementation of scikit-learn. For k-NN
and LOF, the parameter grid of number of neighbors k is
{5, 10, 15, · · · , 45, 50}. As for iForest, we set the grid of
the number of trees to be {100, 500} and sub-sampling size
to be 256. For OCSVM, we use RBF kernel with gamma
grid {0.001, 0.01, · · · , 1, 10}. The experimental results are
reported in Table 3.
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