
PROGRAML: A Graph-based Program Representation for Data Flow Analysis
and Compiler Optimizations Appendices

A. Data Flow Definitions
This section provides the definitions of the five analysis
tasks used in this paper to evaluate the representational
power of deep learning over programs. We chose a diverse
set of analysis tasks to capture a mixture of both forward
and backward analyses, and control-, data-, and procedure-
sensitive analyses.

(I) REACHABILITY: Reachable Instructions Control
reachability is a fundamental compiler analysis which de-
termines the set of points in a program that can be reached
from a particular starting point. Given succ(n), which re-
turns the control successors of an instruction n, the set of
reachable instructions starting at root n can be found using
forward analysis:

Reachable(n) = {n}
⋃

p∈succ(n)

Reachable(p)

(II) DOMINANCE: Instruction Dominance Instruction
n dominates statement m if every control-flow path the
from the program entry n0 to m passes through n. Like
reachability, this analysis only requires propagation of
control-flow, but unlike reachability, the set of dominator
instructions are typically constructed through analysis of a
program’s reverse control-flow graph (Lengauer & Tarjan,
1979; Blazy et al., 2015):

Dom(n) = {n} ∪

 ⋂
p∈pred(n)

Dom(p)

Where pred(n) returns the control predecessors of instruc-
tion n. We formulate the DOMINANCE problem as: Given
a root instruction vertex n, label all vertices m where
n ∈ Dom(m).

(III) DATADEP: Data Dependencies The data depen-
dencies of a variable v is the set of predecessor instructions
that must be evaluated to produce v. Computing data de-
pendencies requires traversing the reverse data-flow graph:

DataDep(n) = defs(n) ∪

 ⋃
p∈defs(n)

DataDep(p)

Where defs(n) returns the instructions that produce the
operands of n.

(IV) LIVENESS Live-out variables A variable v is live-
out of statement n if there exists some path from n to a
statement that uses v, without redefining it. Given uses(n),
which returns the operand variables of n, and defs(n),
which returns defined variables, the live-out variables can
be computed forwards using:

LiveOut(n) =
⋃

s∈succ(n)

uses(s) ∪
(
LiveOut(s)− defs(s)

)
(V) Global Common Subexpressions The identification
of common subexpressions is an important analysis for
optimization. For compiler IRs we define a subexpres-
sion as an instruction and its operands, ordered by either
their position (for non-commutative operations), or lexico-
graphically (for commutative operations). We thus formu-
late the common subexpression problem as: Given an in-
struction (which forms part of a subexpression), label any
other instructions in the program which compute the same
subexpression. This is an inter-procedural analysis, though
operands must obey their scope. Common subexpressions
are typically identified using available expression analysis:

Avail(n) = uses(n) ∪

 ⋂
p∈pred(n)

Avail(p)

− defs(n)

Where uses(n) return the expressions used by instruction
n, and defs(n) returns the expressions defined by n.

B. DEEPDATAFLOW Dataset
The DEEPDATAFLOW dataset comprises: 461k LLVM-IR
files assembled from a range of sources, PROGRAML rep-
resentations of each of the IRs, and 15.4M sets of labeled
graphs for the five data flow analyses described in the previ-
ous section, totaling 8.5B classification labels. The dataset
is publicly available (Cummins, 2020).

Programs We assembled a 256M-line corpus of real-
world LLVM-IRs from a variety of sources, summarized in
Table 1. We selected popular open source software projects
that cover a diverse range of domains and disciplines, aug-
mented by uncategorized code mined from popular GitHub
projects using the methodology described by Cummins
et al. (2017b). Our corpus comprises five source languages
(C, C++, Fortran, OpenCL, and Swift) covering a range of

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations Appendices

domains from functional to imperative, high-level to accel-
erators. The software covers a broad range of disciplines
from compilers and operating systems to traditional bench-
marks, machine learning systems, and unclassified code
downloaded from popular open source repositories.

PROGRAML Graphs We implemented PROGRAML
construction as an llvm::ModulePass using LLVM
version 10.0.0 and generated a graph representation of each
of the LLVM-IRs. PROGRAML construction takes an av-
erage of 10.72ms per file. Our corpus of unlabeled graphs
totals 268M vertices and 485M edges, with an average of
581 vertices and 1,051 edges per graph. The maximum
edge position is 355 (a large switch statement found in a
TensorFlow compute kernel).

Data Flow Labels We produced labeled graph instances
from the unlabeled corpus by computing ground truth la-
bels for each of the analysis tasks described in Section A
using a traditional analysis implementation. For each of
the five tasks, and for every unlabeled graph in the corpus,
we produce n labeled graphs by selecting unique source
vertices v0 ∈ V , where n is proportional to the size of the
graph:

n = min

(⌈
|V |
10

⌉
, 10

)

Each example in the dataset consists of an input graph in
which the source vertex is indicated using the vertex selec-
tor, and an output graph with the ground truth labels used
for training or for evaluating the accuracy of model predic-
tions. For every example we produce, we also record the
number of steps that the iterative analysis required to com-
pute the labels. We use this value to produce subsets of the
dataset to test problems of different sizes, shown in Table 2.

We divided the datasets randomly using a 3:1:1 ratio for
training, validation, and test instances. The same random
allocation of instances was used for each of the five tasks.
Where multiple examples were derived from a single IR,
examples derived from the same IR were allocated to the
same split.

As binary classification tasks, data flow analyses display
strong class imbalances as only a small fraction of a pro-
gram graph is typically relevant to computing the result set
of an analysis. On the DDF test sets, an accuracy of 86.92%
can be achieved by always predicting the negative class.
For this reason we report only binary precision, recall, and
F1 scores with respect to the positive class when reporting
model performance on DEEPDATAFLOW tasks.

%15 = load i32, i32* %nian, align 4, !tbaa !1
%rem38 = and i32 %15, 3
%rem11 = srem i32 %15, 100

LLVM-IR

Tokenized

Embeddings

…

…

5000 vocabulary indices,
padded & truncated

5000 x 200
inst2vec embeddings

num_segments
1-hot “selector” vector

Auxiliary Inputs

5000 x (200+2)
concatenated vectors

Model inputs

LSTM

num_segments x 2
1-hot outputs
130 params

Model outputs

Fully-connected

⌢

t1 t2 t3 t5000

⌢ ⌢ ⌢

…

LSTM

Figure 1: Extending inst2vec (Ben-Nun et al., 2018) to per-
form per-instruction classification of LLVM-IR. The_ op-
erator denotes vector concatenation.

C. Data Flow Experiments: Supplementary
Details

This section provides additional details for the experiments
presented in Section 5.

C.1. Models

(I) Sequential Model The inst2vec model consists of
619,650 trainable parameters in the configuration outlined
in Figure 1. The model, implemented in TensorFlow, uses
the same parameters as in the original work: 2× 64 dimen-
sional LSTM layers followed by a 64 dimensional dense
layer and the final 2 dimensional output layer. Sequences
are padded and truncated to 5k tokens and processed in
batches of 64.

(II) Graph Models For CDFG and PROGRAML ap-
proaches we use the same model architecture. The model,
implemented in PyTorch, consists of a customized GGNN
with 87,070 trainable parameters. Batches are imple-
mented as disconnected graphs that are constructed to en-
able efficient processing of graphs of differing size in par-
allel without padding. We use a combined batch size of
10, 000 vertices. If a single graph contains more than
10, 000 vertices, it is processed on its own.

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations Appendices

Language Domain IR files IR lines

BLAS 3.8.0 Fortran Scientific Computing 300 345,613
GitHub C Various 38,109 74,230,264

OpenCL 5,224 9,772,858
Swift 4,386 4,586,161

Linux 4.19 C Operating Systems 13,418 41,904,310
NPB (Bailey et al., 1991) C Benchmarks 122 255,626
Cummins et al. (2017a) OpenCL Benchmarks 256 149,779
OpenCV 3.4.0 C++ Computer Vision 432 2,275,466
POJ-104 (Mou et al., 2016) C++ Standard Algorithms 397,032 104,762,024
Tensorflow (Abadi et al., 2016) C++ Machine learning 1,903 18,152,361

Total 461,182 256,434,462

Table 1: The DEEPDATAFLOW LLVM-IR corpus.

DDF-30 DDF-60 DDF-200 DDF

Max. data flow step count 30 60 200 28,727
#. classification labels 6,038,709,880 6,758,353,737 7,638,510,145 8,623,030,254

#. graphs (3:1:1 train/val/test) 10,951,533 12,354,299 13,872,294 15,359,619
Ratio of full test set 71.3% 80.4% 90.3% 100%

Table 2: Characterization of DEEPDATAFLOW subsets.

C.2. Experimental Setup

Training Details and Parameters All models were
trained in an end-to-end fashion with the Adam opti-
mizer (Kingma & Ba, 2015) using the default configuration
and a learning rate of 1 ·10−3 for the LSTMs and 2.5 ·10−4
for the GGNNs. We trained the models on 1M training
graphs, evaluating on a fixed 10k validation set at 10k inter-
vals for the first 50k training graphs, and at 100k intervals
thereafter. The checkpoint with the greatest validation F1

score is used for testing.

Runtimes All experiments were conducted on shared
machines equipped with an NVIDIA GTX 1080 GPU,
32GB of RAM, mechanical hard drives, and server-grade
Intel Xeon processors. Figure 3 provides measurements of
the average runtimes of each approach across the five DDF-
30 tasks. In our implementation, we find training and test-
ing to be I/O bound as programs are processed faster than
loading many small files from disk. In particular, CDFG
performance suffers relative to PROGRAML as the conver-
sion from PROGRAML to CDFG representations is per-
formed on-demand. For validation, inputs are loaded once
into system memory and re-used, so the measured time pro-
vides a more accurate estimate of processing requirements.

D. Downstream Tasks: Supplementary
Details

This section provides additional details for the experiments
present in Section 6.

D.1. Heterogeneous Compute Device Mapping

Datasets The OPENCL DEVMAP dataset comprises 256
OpenCL kernels from two combinations of CPU/GPU
pairs. The AMD set uses an Intel Core i7-3820 CPU and
AMD Tahiti 7970 GPU; the NVIDIA set uses an Intel Core
i7-3820 CPU and an NVIDIA GTX 970 GPU. Each dataset
consists of 680 labeled examples derived from the 256
unique kernels by varying dynamic inputs.

Models We compare PROGRAML with four approaches:
First, with a static baseline that selects the most-frequently
optimal device for each dataset (CPU for AMD, GPU
for NVIDIA). Second, with DeepTune (Cummins et al.,
2017a), which is a sequential LSTM model at the OpenCL
source level. Third, to isolate the impact of transitioning
from OpenCL source to LLVM-IR, we evaluate against a
new DeepTuneIR model, which adapts DeepTune to us-
ing tokenized sequences of LLVM-IR as input instead of
OpenCL tokens. Finally, we compare against the state-of-
the-art approach inst2vec (Ben-Nun et al., 2018), which
replaces the OpenCL tokenizer with a sequence of 200-
dimensional embeddings, pre-trained on a large corpus of
LLVM-IR using a skip-gram model. PROGRAML itself
uses the GGNN adaptation as described in the paper. We
adapted the readout head to produce a single classification
label for each graph, rather than per-vertex classifications,
by aggregating over the final iterated vertex states. We also
included the available auxiliary input features of the DE-
VMAP dataset. The auxiliary features are concatenated to
the features extracted by the GGNN before classification
following the methodology of Cummins et al. (2017a).

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations Appendices

Train time Test time Train time/graph Val time/graph Test time/graph

inst2vec 10h52m 1h33m 45ms 3ms 36ms
CDFG 13h14m 3h27m 64ms 1ms 62ms

PROGRAML 7h21m 1h39m 26ms 3ms 24ms

Table 3: Average training and inference times on DDF-30 tasks

The experimental results in this section come from an ear-
lier development iteration of PROGRAML which deviates
from the method described in the main paper in the way
in which it produces initial vertex embeddings. Instead of
deriving a textual representation of instructions and data
types to produce a vocabulary, the vocabulary used for the
DEVMAP experiment is that of inst2vec (Ben-Nun et al.,
2018), where variables and constants are all represented by
a single additional embedding vector. The poor vocabu-
lary coverage achieved by using inst2vec motivated us to
provide the improved vocabulary implementation that we
describe in the main paper (see Table 1).

Training Details and Parameters All neural networks
are regularized with dropout (Hinton et al., 2012) for gen-
eralization and Batch Normalization (Ioffe & Szegedy,
2015) in order to be uniformly applicable to vastly different
scales of auxiliary input features. We used 10-fold cross-
validation with rotating 80/10/10 splits by training on 80%
of the data and selecting the model with the highest vali-
dation accuracy, setting aside 1/10th of the training data to
use for validation. We trained each model for 300 epochs
and selected the epoch with the greatest validation accuracy
for testing. Baseline models were trained with hyperparam-
eters from the original works. For the PROGRAML results
we used 6 layers in the GGNN corresponding to 6 timesteps
of message propagation, while sharing parameters between
even and odd layers to introduce additional regularization
of the weights. We ran a sweep of basic hyperparame-
ters which led us to use the pre-trained inst2vec statement
embeddings (Ben-Nun et al., 2018) and to exclude the use
of position representations. Both of these hyperparameter
choices help generalization by reducing the complexity of
the model. This is not surprising in light of the fact that the
dataset only contains 680 samples derived from 256 unique
programs. PROGRAML was trained with the Adam opti-
mizer with default parameters, a learning rate of 10−3 and
a batch size of 18,000 nodes (resulting in ca. 12000 itera-
tion steps of the optimizer). For the PROGRAML result, we
repeat the automated sweep for all hyperparameter config-
urations and picked the configuration with the best average
validation performance. Performance on the unseen tenth
of the data is reported.

D.2. Algorithm Classification

Dataset We use the POJ-104 dataset (Mou et al., 2016).
It contains implementations of 104 different algorithms that
were submitted to a judge system. All programs were writ-
ten by students in higher education. The dataset has around
500 samples per algorithm. We compile them with differ-
ent combinations of optimization flags to generate a dataset
of overall 240k samples, as in Ben-Nun et al. (2018). Ap-
proximately 10,000 files are held out each as a development
and test set.

Models We compare with tree-based convolutional
neural networks (TBCNN) (Mou et al., 2016) and
inst2vec (Ben-Nun et al., 2018). We used author-provided
parameters for the baseline models. For PROGRAML we
used 4 layers in the GGNN corresponding to 8 timesteps.
To further test the expressive power of the graph-based
representation against the tree-based (TBCNN) and se-
quential (inst2vec) prior work, we additionally compare
against graph-based baselines based on XFG (Ben-Nun
et al., 2018).

To better understand the qualitative aspects of replacing a
graph-based representation that captures program seman-
tics like Contextual Flow Graphs (XFG) (Ben-Nun et al.,
2018) with the more complete PROGRAML representation,
we adapted a GGNN (Li et al., 2015) to directly predict al-
gorithm classes from XFG representations of the programs.
In contrast to this, Ben-Nun et al. (2018) used XFG only
to generate statement contexts for use in skip-gram pre-
training. Here, we lift this graphical representation and
make it accessible to a deep neural network directly, as op-
posed to the structure-less sequential approach in the orig-
inal work (inst2vec).

Training Details and Parameters All models were
trained with the AdamW (Loshchilov & Hutter, 2019) op-
timizer with learning rate 2.5 · 10−4, β1 = 0.9, β2 =
0.999, ε = 10−8 for 80 epochs. Dropout regularization
is employed on the graph states with a rate of 0.2.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kud-
lur, M., Levenberg, J., Monga, R., Moore, S., Murray,
D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P.,

PROGRAML: A Graph-based Program Representation for Data Flow Analysis and Compiler Optimizations Appendices

Wicke, M., Yu, Y., and Zheng, X. TensorFlow: A Sys-
tem for Large-scale Machine Learning. In OSDI, 2016.

Bailey, D. H., Barszcz, E., Barton, J., Browning, D., Carter,
R., Dagum, L., Fatoohi, R., Fineberg, S., Frederickson,
P., Lasinski, T., Schreiber, R., Simon, H., Venkatakrish-
nan, V., and Weeratunga, S. The NAS Parallel Bench-
marks. IJHPCA, 5(3), 1991.

Ben-Nun, T., Jakobovits, A. S., and Hoefler, T. Neural
Code Comprehension: A Learnable Representation of
Code Semantics. In NeurIPS, 2018.

Blazy, S., Demange, D., and Pichardie, D. Validating Dom-
inator Trees for a Fast, Verified Dominance Test. In ITP,
2015.

Cummins, C. DeepDataFlow. Zenodo, June 2020.
URL https://doi.org/10.5281/zenodo.
4247595.

Cummins, C., Petoumenos, P., Wang, Z., and Leather, H.
End-to-end Deep Learning of Optimization Heuristics.
In PACT. IEEE, 2017a.

Cummins, C., Petoumenos, P., Zang, W., and Leather, H.
Synthesizing Benchmarks for Predictive Modeling. In
CGO. IEEE, 2017b.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. R. Improving Neural Net-
works by Preventing Co-adaptation of Feature Detectors.
arXiv:1207.0580, 2012.

Ioffe, S. and Szegedy, C. Batch Normalization: Acceler-
ating Deep Network Training by Reducing Internal Co-
variate Shift. In ICML. PMLR, 2015.

Kingma, D. P. and Ba, J. L. Adam: a Method for Stochastic
Optimization. ICLR, 2015.

Lengauer, T. and Tarjan, R. E. A Fast Algorithm for Find-
ing Dominators in a Flow Graph. TOPLAS, 1(1), 1979.

Li, Y., Zemel, R., Brockscmidt, M., and Tarlow, D. Gated
Graph Sequence Neural Networks. arXiv:1511.05493,
2015.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In ICLR, 2019.

Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z. Convo-
lutional Neural Networks over Tree Structures for Pro-
gramming Language Processing. In AAAI, 2016.

