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A. Relevant Definitions and Results
Lemma 1 (Adapted from Corollary 1 in Curi et al. (2020a)). Based on Assumptions 1 and 3, for every s, s′ ∈ S, it holds:

‖f(s, π(s), π̄(s))− f(s′, π(s′), π̄(s′))‖2 ≤ Lf
√

1 + L2
π + L2

π̄‖s− s′‖2. (14)

Proof.

‖f(s, π(s), π̄(s))− f(s′, π(s′), π̄(s′))‖2 ≤ Lf
√
‖s− s′‖22 + ‖π(s)− π(s′)‖22 + ‖π̄(s′)− π̄(s)‖22 (15a)

≤
√
‖s− s′‖22 + L2

π‖s− s′‖22 + L2
π̄‖s− s′‖22 (15b)

= Lf

√
1 + L2

π + L2
π̄‖s− s′‖2. (15c)

Eq. (15a) holds due to Lipschitz continuity of f and Eq. (15b) is due to Lipschitz continuity of π and π̄, which we assume in
Assumptions 1 and 3.

Lemma 2 (Adapted from Lemma 3 in Curi et al. (2020a)). Based on Assumptions 1 and 3, it holds:

|J(f, π, π̄)− J(f̃ , π, π̄)| ≤ Lr
√

1 + L2
π + L2

π̄

H∑
h=0

E[‖sh − s̃h‖2], (16)

where s̃h for h = 0, . . . ,H is the trajectory generated by the dynamics f̃ , starting from s̃0 = s0 with ωh = ω̃h.

Proof.

|J(f, π, π̄)− J(f̃ , π, π̄)| =

∣∣∣∣∣E
[
H∑
h=0

r(s,a, ā)−
H∑
h=0

r(s̃, ã, ˜̄a)

]∣∣∣∣∣ (17a)

=

∣∣∣∣∣
H∑
h=0

E
[
r(s,a, ā)− r(s̃, ã, ˜̄a)

]∣∣∣∣∣ (17b)

≤ Lr
√

1 + L2
π + L2

π̄

H∑
h=0

E[‖sh − s̃h‖2]. (17c)

Eq. (17a) follows by definition of J , Eq. (17b) from linearity of expectation, and Eq. (17c) from Lipschitzness of the policy
and the reward function, which we assume in Assumption 1.

The following lemma bounds the deviation between the optimistic/pessimistic and the true trajectory in a single episode.
Lemma 3 (Adapted from Lemma 4 in (Curi et al., 2020a)). Under Assumptions 1 to 3, for all episodes t ≥ 1, any
η ∈ [−1, 1], h ∈ {1, . . . ,H}, π ∈ Π and π̄ ∈ Π̄ it holds:

‖sh,t − s̃h,t‖2 ≤ 2βt−1

(
1 + (Lf + 2βt−1Lσ)

√
1 + L2

π + L2
π̄

)h−1 h−1∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2, (18)

where s̃h,t is generated by any system f̃ ∈Mt :=
{
f̃ s.t. |f̃(s,a, ā)− µt−1(s,a, ā)| ≤ βtσt−1(s,a, ā)

}
. We refer toMt

as the set of plausible models at the beginning of episode t.
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Proof. To avoid notational clutter, we denote the closed-loop dynamics as fπ,π̄(s) = f(s, π(s), π̄(s)) and the closed-loop
epistemic uncertainty as σπ,π̄(s) = σ(s, π(s), π̄(s)). Likewise, we use the following Lipschitz constants shorthands
Lf,π ≡ Lf

√
1 + L2

π + L2
π̄ and Lσ,π ≡ Lσ

√
1 + L2

π + L2
π̄ .

We first prove by induction that

‖sh,t − s̃h,t‖2 ≤ 2βt−1

h−1∑
h′=0

(Lf,π + 2βt−1Lσ,π)
h−1−h′

‖σπt,π̄tt−1 (sh′,t)‖ (19a)

For h = 0, clearly s0,t = s̃0,t, while the right-hand-side of Eq. (19a) is always non-negative. We assume that for h the
inductive hypothesis (19a) holds. For h+ 1 we have:

‖sh+1,t − s̃h+1,t‖2 = ‖fπt,π̄t(sh,t)− f̃πt,π̄t(s̃h,t)‖2 (19b)

= ‖fπt,π̄t(sh,t)− f̃πt,π̄t(s̃h,t) + fπt,π̄t(s̃h,t)− fπt,π̄t(s̃h,t)‖2 (19c)

≤ ‖fπt,π̄t(sh,t)− fπt,π̄t(s̃h,t)‖2 + ‖fπt,π̄t(s̃h,t)− f̃πt,π̄t(s̃h,t)‖2 (19d)

≤ Lf,π‖sh,t − s̃h,t‖2 + ‖fπt,π̄t(s̃h,t)− f̃πt,π̄t(s̃h,t)‖2 (19e)

≤ Lf,π‖sh,t − s̃h,t‖2 + 2βt−1‖σπt,π̄tt−1 (s̃h,t)‖2 (19f)

= Lf,π‖sh,t − s̃h,t‖2 + 2βt−1‖σπt,π̄tt−1 (s̃h,t) + σπt,π̄tt−1 (sh,t)− σπt,π̄tt−1 (sh,t)‖2 (19g)

≤ Lf,π‖sh,t − s̃h,t‖2 + 2βt−1

(
‖σπt,π̄tt−1 (s̃h,t)− σπt,π̄tt−1 (sh,t)‖2 + ‖σπt,π̄tt−1 (sh,t)‖2

)
(19h)

≤ (Lf,π + 2βt−1Lσ,π) ‖sh,t − s̃h,t‖2 + 2βt−1‖σπt,π̄tt−1 (sh,t)‖2 (19i)

≤ 2βt−1

(h+1)−1∑
h′=0

(Lf,π + 2βt−1Lσ,π)
(h+1)−1−h′

‖σπt,π̄tt−1 (sh′,t)‖2 (19j)

Here, Eq. (19b) holds by applying the transition dynamics fπt,π̄t and f̃πt,π̄t with the same noise realization ωh = ω̃h;
Eq. (19c) holds by adding and subtracting fπt,π̄t(s̃h,t); Eq. (19d) follows from the triangular inequality; Eq. (19e) comes
from Lemma 1; Eq. (19f) holds due to both f and f̃ belonging to the set of plausible modelsMt (see Lemma 3 for its
definition); Eq. (19g) holds by adding and substracting σπt,π̄t(sh,t); Eq. (19h) is by applying the triangular inequality once
more; Eq. (19i) is due to the Lipschitz continuity of σ as per assumption 3; and (19j) holds by replacing the inductive
hypothesis from (19a).

Finally, we notice that (Lf,π + 2βt−1Lσ,π)
h−1−h′

< (1 + Lf,π + 2βt−1Lσ,π)
h−1−h′

≤ (1 + Lf,π + 2βt−1Lσ,π)
h−1 and

the main result follows by combining this with Eq. (19j).

B. Proofs from Section 4.4
We start the analysis of the performance of RH-UCRL, by first bounding its instantaneous robust-regret by the difference
between optimistic and pessimistic performance estimates.

Lemma 4. Let π? be the benchmark policy from Eq. (3), and let πt and π̄t be the policies selected by RH-UCRL at time t.
Under the callibrated model Assumption 2, the following holds with probability at least 1− δ:

min
π̄∈Π̄

J(f, π?, π̄)−min
π̄∈Π̄

J(f, πt, π̄) ≤ J (o)
t (πt, π̄t)− J (p)(πt, π̄t). (20)

Proof. We refer to the considered quantity minπ̄∈Π̄ J(f, π?, π̄)−minπ̄∈Π̄ J(f, πt, π̄) as the robust instantaneous regret of
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the selected policy πt, and we proceed by providing its upper bound:

min
π̄∈Π̄

J(f, π?, π̄)−min
π̄∈Π̄

J(f, πt, π̄) ≤ min
π̄∈Π̄

J
(o)
t (π?, π̄)−min

π̄∈Π̄
J(f, πt, π̄) (21a)

≤ min
π̄∈Π̄

J
(o)
t (πt, π̄)−min

π̄∈Π̄
J(f, πt, π̄) (21b)

≤ J (o)
t (πt, π̄t)−min

π̄∈Π̄
J(f, πt, π̄) (21c)

≤ J (o)
t (πt, π̄t)−min

π̄∈Π̄
J (p)(πt, π̄) (21d)

= J
(o)
t (πt, π̄t)− J (p)(πt, π̄t). (21e)

Here, inequality (21a) holds by definition of the optimistic estimate in Eq. (5a); inequality (21b) holds by definition of
protagonist policy in the RH-UCRL algorithm (7a); and inequality (21d) holds by definition of the pessimistic estimate in
Eq. (6a); finally, equality (21e) holds by definition of the antagonist policy in the RH-UCRL algorithm (7b).

Lemma 5. Under Assumptions 1 to 3, let πt and π̄t be the policies selected by RH-UCRL at episode t. Then, the following
holds for the difference between its optimistic and pessimistic performance:

J
(o)
t (πt, π̄t)− J (p)(πt, π̄t) ≤ 4Lrβ

H
T C

H
H∑
h=0

E

[
h−1∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

]
, (22)

where C = (1 + Lf + Lσ)(1 + L2
π + L2

π̄)1/2.

Proof.

J
(o)
t (πt, π̄t)− J (p)(πt, π̄t) ≤

∣∣∣J (o)
t (πt, π̄t)− J(f, πt, π̄t)

∣∣∣+
∣∣∣J (p)
t (πt, π̄t)− J(f, πt, π̄t)

∣∣∣ (23a)

≤ Lr
√

1 + L2
π + L2

π̄

H∑
h=0

(
E
[
‖sh,t − s

(o)
h,t‖2

]
+ E

[
‖sh,t − s

(p)
h,t‖2

])
(23b)

Here, Eq. (23a) holds by the triangle inequality and Eq. (23b) follows from Lemma 2.

We proceed to upper bound terms ‖sh,t − s
(o)
h,t‖2 and ‖sh,t − s

(p)
h,t‖2. From Lemma 3, it follows that both terms can be

bounded in the same way as follows:

‖sh,t − s
(o)
h,t‖2 ≤ 2βt−1

(
(1 + Lf + 2βt−1Lσ)

√
1 + L2

π + L2
π̄

)h−1 h−1∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2, (23c)

as f (o) and f (p) belong to the set of plausible modelsMt (from Lemma 3).

By applying the previous bound twice in Eq. (23b), and by denoting

C := (1 + Lf + 2Lσ)(1 + L2
π + L2

π̄)1/2,

we arrive at:

J
(o)
t (πt, π̄t)− J (p)(πt, π̄t) ≤ 4Lrβ

H
T C

H
H∑
h=0

E

[
h−1∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

]
, (23d)

where we used t ≤ T and 1 ≤ βt is non-decreasing in t.

Theorem 1. Under Assumptions 1 to 3, let C = (1 + Lf + 2Lσ)(1 + L2
π + L2

π̄)1/2 and let st,h ∈ S, at,h ∈ A, āt,h ∈ Ā
for all t, h > 0. Then, for any fixed H ≥ 1, with probability at least 1 − δ, the robust cumulative regret of RH-UCRL is
upper bounded by:

RT = O
(
LrC

HβHT H
3/2
√
T ΓT

)
.
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Proof of Theorem 1. We bound the robust cumulative regret as follows:

RT =

T∑
t=1

min
π̄∈Π̄

J(f, π?, π̄)−min
π̄∈Π̄

J(f, πt, π̄t)︸ ︷︷ ︸
:=rt

(24a)

≤

√√√√T

T∑
t=1

r2
t (24b)

≤

√√√√T

T∑
t=1

(4LrβHT C
H)2

(
H∑
h=0

E

[
h−1∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

])2

(24c)

= 4Lrβ
H
T C

H
√
T

√√√√ T∑
t=1

(
H∑
h=0

E

[
h−1∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

])2

(24d)

≤ 4Lrβ
H
T C

HH
√
T

√√√√ T∑
t=1

(
E

[
H∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

])2

(24e)

≤ 4Lrβ
H
T C

HH
√
T

√√√√√ T∑
t=1

E

( H∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

)2
 (24f)

≤ 4Lrβ
H
T C

HH3/2
√
T

√√√√ T∑
t=1

E

[
H∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖22

]
(24g)

≤ 4Lrβ
H
T C

HH3/2
√
TΓT , (24h)

where Eq. (24b) is due to the Cauchy-Schwarz’s inequality; Eq. (24c) is due to Lemma 4 and Lemma 5. Finally, Eq. (24f)
follows from Jensen’s inequality, Eq. (24g) follows from Cauchy-Schwarz’s inequality, and Eq. (24h) follows from the
definition of ΓT .

Corollary 1. Consider the assumptions and setup of Theorem 1, and suppose that

T

β2H
T ΓT

≥ 16L2
rH

3C2H

ε2
, (10)

for some fixed ε > 0 and H ≥ 1. Then, with probability at least 1− δ after T episodes, RH-UCRL achieves:

min
π̄∈Π̄

J(f, π̂T , π̄) ≥ min
π̄∈Π̄

J(f, π?, π̄)− ε, (11)

where π̂T is the output of RH-UCRL, reported according to Eq. (8), and π? is the optimal robust policy given in Eq. (3).

Proof of Corollary 1. We start the proof by recalling some of the previously obtained results. The instantaneous regret
rt(πt) of a policy πt selected at episode t in Eq. (7a) is given by:

rt(πt) = min
π̄∈Π̄

J(f, π?, π̄)−min
π̄∈Π̄

J(f, πt, π̄). (25)

From Lemma 4 and Lemma 5, it follows that

rt(πt) ≤ 4Lrβ
H
T C

H
H∑
h=0

E

[
h−1∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

]
. (26)
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We also define
r̄(πt) := min

π̄∈Π̄
J(f, π?, π̄)−min

π̄∈Π̄
J (p)(πt, π̄), (27)

and note that r(πt) ≤ r̄(πt) for every πt, since minπ̄∈Π̄ J
(p)(πt, π̄) ≤ minπ̄∈Π̄ J(f, πt, π̄). Another useful observation is

that the same bound obtained in Equation (26) also holds in case of r̄(πt), i.e.,

r(πt) ≤ r̄(πt) ≤ 4Lrβ
H
T C

H
H∑
h=0

E

[
h−1∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

]
. (28)

Recall that the reported policy π̂T from Eq. (8) is chosen among the previously selected episodic policies {π1, . . . , πT },
such that

π̂T = arg min
π∈{π1,...,πT }

r̄(π). (29)

It follows that:

r(π̂T ) ≤ r̄(π̂T ) (30a)

≤ 1

T

T∑
t=1

r̄(πt) (30b)

≤ 1

T

T∑
t=1

4Lrβ
H
T C

H
H∑
h=0

E

[
h−1∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

]
(30c)

≤ 1

T
4Lrβ

H
T C

HH

T∑
t=1

E

[
H∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

]
(30d)

≤ 1

T
4Lrβ

H
T C

HH
√
T

√√√√√ T∑
t=1

E

( H∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖2

)2
 (30e)

≤ 1

T
4Lrβ

H
T C

HH
√
T

√√√√ T∑
t=1

E

[
H∑
h′=0

‖σt−1(sh′,t, πt(sh′,t), π̄t(sh′,t))‖22

]
(30f)

≤ 4Lrβ
H
T C

HH3/2
√
TΓT

T
(30g)

where Eq. (30a) follows from Eq. (28), and Eq. (30b) follows from the policy reporting rule in Eq. (29) and by upper
bounding minimum with average. Finally, Eq. (30c) is due to Eq. (28), and Eqs. (30d) to (30g) follow the same argument as
in the proof of Theorem 1.

To achieve r(π̂T ) ≤ ε for some given ε > 0, we require that

4Lrβ
H
T C

HH3/2
√
TΓT

T
≤ ε.

By simple inversion it follows that we require the following number of episodes T :

T

β2H
T ΓT

≥ 16L2
rH

3C2H

ε2

to achieve r(π̂T ) ≤ ε.
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C. Gaussian Process Dynamical Models
In this section, we formalize the setting in which the true dynamics f in Eq. (1) has bounded norm in an RKHS induced by
a continuous, symmetric positive definite kernel function k : Z × Z → R, with Z = S × A × Ā. We denote by K the
corresponding RKHS. Having a norm ‖f‖K ≤ Bf for some finite Bf > 0 means that the RKHS is well-suited for capturing
f (Durand et al., 2018).

Due to the episodic nature of the problem, we follow the batch analysis from Desautels et al. (2014) and generalize it to
the MDP setting with multiple outputs. In particular, we observe H transitions per episode and at the beginning of each
episode we use the model to make decisions for other H steps. To extend to multiple outputs we build p copies of the
dataset such that D1:t,i = {(st′,h,at′,h, āt′,h), st′,h+1,i}H−1,t

h=0,t′=1, each with tH transitions. I.e., the i-th dataset has as
covariates the state-action-adversarial action and as target the i-th coordinate of the next-state. We denote the covariates
zt,h ≡ (st,h,at,h, āt,h) and the targets as yt,h,i ≡ st′,h+1,i. Finally, we build p models as

µt(z, i) = kt(z)
>(Kt + λI)−1y1:Ht,i, (31a)

kt(z, z
′, i) = k(z, z′)− kt(z)>(Kt + λI)−1kt(z

′), (31b)

σ2
t (z, i) = kt(z, z), (31c)

where s′1:Ht,i is the column vector of the i-th coordinate of all the next-states in the dataset, Kt is the kernel matrix, I is the
identity matrix of appropriate dimensions and we use λ = pH as the same data is used in all the p models.

Stacking together the posterior mean and variance into column vectors we get:

µt(z) = [µt(z, 1), . . . , µt(z, p)]
>
, (31d)

σt(z) =
[
σ2
t (z, 1), . . . , σ2

t (z, p)
]>
. (31e)

A key quantity that we consider in this work is the (maximum) information gain that measures the information about the true
dynamics f by observing n transitions.
Definition 1 (Information Gain (Cover & Thomas, 1991; Srinivas et al., 2010; Durand et al., 2018)). The information gain
is the mutual information between the true function f and a set of observations at locations Z and is the difference between
the entropy of such observations and the conditional entropy of the observations given function values i.e.,

I(fZ ; yZ) = H(yZ)−H(yZ |fZ), (32a)

where fZ is the noise-free evaluation of f at Z and yZ is the noisy observation. In the case of GP models as in Eq. (31), the
information gain is:

I(fZ ; yZ) =
1

2

n∑
k=1

ln(1 + λ−1σ2
k−1(zk)). (32b)

Next, we introduce the maximum information gain, which is a parameter that quantifies how hard the learning problem is
and tightly upper bounds the effective-dimensionality of the problem (Valko et al., 2013).
Definition 2 (Maximum Information Gain (Srinivas et al., 2010)). The maximum information gain is the maximum of the
information gain, taken over all datasets with a fixed size n, i.e.,

γn(k;Z) := max
Z⊂Z,|Z|=n

I(fz; yz). (33a)

In the particular case of GP models, this reduces to:

γn(f ;Z) = max
{z1,...,zn}⊂Z

1

2

n∑
k=1

ln(1 + λ−1σ2
k−1(zk)). (33b)

(Srinivas et al., 2010) show that the Maximum Information Gain (MIG) is sub-linear in the number of observations for
commonly used kernels. The main idea now is to bound the complexity measure ΓT defined in Equation (9) in terms of the
MIG and, for commonly used kernels, we achieve no-regret algorithms. Towards this end, we recall two results related to
GP-models in Lemma 6.
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Lemma 6. Posterior variance bound (Chowdhury & Gopalan, 2019) Let k : Z × Z → R be a symmetric positive
semi-definite kernel with bounded variance, i.e., k(z, z) ≤ 1,∀z ∈ Z and f ∼ GPZ(0, k) be a sample from the associated
Gaussian process, then for all n ≥ 1 and z ∈ Z:

σ2
n−1(z) ≤ (1 + λ−1)σ2

n(z), (34a)
n∑
k=1

σ2
k−1(zk) ≤ (1 + 2λ)

n∑
k=1

1

2
ln
[
1 + λ−1σk−1(zk)

]
= (1 + 2λ)I(fZ ; yZ). (34b)

Proof. See (Chowdhury & Gopalan, 2019, Lemma 2)

Although the left-hand-side in Eq. (34b) has the flavor of the complexity measure ΓT defined in Equation (9) it is not
exactly the same as we only update the posterior once every Hp observations. This is related to the batch setting analyzed in
Desautels et al. (2014). The next lemma bounds the sum of posterior variances in terms of the information gain.

Lemma 7. Complexity measure ΓT is upper bounded by MIG Let k : Z ×Z → R be a symmetric positive semi-definite
kernel with bounded variance, i.e., k(z, z) ≤ 1,∀z ∈ Z and f ∼ GPZ(0, k) be a sample from the associated Gaussian
process, then for all t ≥ 1 and z ∈ Z for the GP-model given in Eq. (31) with λ = Hp we have that:

Γt ≤ 2epHγpHt(k,Z) (35)

Proof. The proof is based on Chowdhury & Gopalan (2019, Lemma 11) and adapted to our setting.

T∑
t=1

∑
(s,a,ā)∈D̃t

‖σt−1(s,a, ā)‖22 =

t∑
t′=1

H−1∑
h=0

p∑
i=1

σ2
(t′−1)Hp(zt′,h,i) (36a)

≤
t∑

t′=1

H−1∑
h=0

p∑
i=1

(1 + λ−1)ph+i−1σ2
(t′−1)Hp+hp+i(zt′,h,i) (36b)

≤ (1 + λ−1)p(H−1)+p−1
t∑

t′=1

H−1∑
h=0

p∑
i=1

σ2
(t′−1)Hp+hp+i(zt′,h,i) (36c)

≤ (1 + λ−1)pH−1(2λ+ 1)I(fZ ; yZ) (36d)
≤ 2epHI(fZ ; yZ) (36e)

Here, equality (36a) is the definition of the 2-norm; inequality (36b) is due to Eq. (34a) in Lemma 6; inequality (36c) is due
to 1 + λ−1 ≥ 1; inequality (36d) is due to Eq. (34b) in Lemma 6; finally the last inequality (36e) is due to (1 + λ−1)λ ≤ e
and (1 + λ−1)−1(2λ+ 1) ≤ 2λ. The statement follows by taking the maximum over data sets.

Next, we will show that GP models are calibrated and satisfy Assumption 2.

Lemma 8. Concentration of an RKHS member (Durand et al., 2018, Theorem 1) Given Assumption 1, ‖f‖K ≤ Bf , and
k(·, ·) ≤ 1, then, for all δ ∈ [0, 1], which probability at least 1− δ, it holds simultaneously over all z ∈ Z and t ≥ 0,

|f(z)− µt(z)| ≤
(
Bf +

σ

λ

√
2 ln(1/δ) + 2γt

)
σt(z), (37)

where µt(z) and σt(z) are given by Eq. (31a) and Eq. (31c).

Thus we know that, using βt =
(
Bf + σ

λ

√
2 ln(1/δ) + 2γt

)
, Assumption 1 holds for a single dimension. The extension to

multiple dimensions is straightforward and has been done by (Chowdhury & Gopalan, 2019, Lemma 10) and (Curi et al.,
2020a, Lemma 11), using λ← Hp and t← tHp.

Putting together results of the previous sections, we know by Lemma 8 that, under Assumption 1 and ‖f‖K, GP models
satisfy Assumption 2. Furthermore, by Lemma 13 in Appendix G of Curi et al. (2020a), we know that such models also
satisfy Assumption 3. The remaining condition is that the results in previous sections assume that the domain is bounded.
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However, under Assumption 1 this is not true. Fortunately, Curi et al. (2020a) prove in Appendix I that the domain is
bounded with high-probability. Furthermore, they prove that the MIG of kernels only increases poly-logarithmically, which
does not affect the regret bounds in this paper.

D. Extended Experimental Results
In this section, we detail the experimental procedures for completeness. We first detail how we learn the dynamical model
using an ensemble of neural networks in Appendix D.1 as it is common to all experiments. We then detail the inverted
pendulum experiment from Section 1 in Appendix D.2. We describe the adversarial-robust experiment in Appendix D.3, the
action-robust experiment in Appendix D.4, and the parameter-robust experiment in Appendix D.5. All experiments where
run with 18-core Intel Xeon E5-2697v4 processors.

D.1. Model Learning and Calibration

To learn the dynamics, we use a probabilistic ensemble with five heads as in Chua et al. (2018). The model predicts the
change in state, i.e, δh = sh+1 − sh and we normalize the states, actions and change in next-states, with the running mean
and standard deviation, similar in nature to van Hasselt et al. (2016). After each episode, we split the data into a train and
validation set with a 0.9/0.1 ratio. For each ensemble member, we also sample a weight to simulate bootstrapping as in
Osband et al. (2016). Finally, each model is trained minimizing the negative log-likelihood of a Gaussian distribution. We
train for 20 epochs and early stop if the prediction mean-squared-error when the epoch-loss on a validation set is 10%
larger than the minimum epoch-loss in the same validation set. After training, we recalibrate on the validation set using
temperature scaling. In particular, we use binary search to find the best parameter in the interval [0.01, 100] that minimizes
the expected calibration error (Malik et al., 2019).

D.2. Inverted Pendulum Swing-Up Task

The pendulum swing up task has a reward function given by r(s,a) = −(θ2 + 0.1 ∗ θ̇2), where θ is the angle and θ̇ is
the angular velocity. The Pendulum always starts from θ = π in the bottom down position and the goal is to swing the
pendulum to the top-up position at θ = 0. Crucially, the initial distribution is a dirac-distribution located at θ = π, i.e., it
does not have enough coverage for algorithms to explore with it.

Adversarial-Robust. In this setting, the adversary can change the relative gravity and the relative mass of the environment
at every episode between [1− α, 1 + α], for varying α. We train RH-UCRL for 200 episodes, H-UCRL with the nominal
gravity and mass for 200 episodes, and the baseline in this setting is RARL, which we train for 1000 episodes. To evaluate
the robust performance, we train SAC for 200 episodes, fixing the agent policy of the algorithms.

Action-Robust. In this setting, the action is a mixture sampled with probability α of the learner and the adversary, i.e.,
the adversary only affects the input torque to the pendulum. The training and evaluation procedure is the same as in the
adversarial robust setting. The baseline in this setting is AR-DDPG, which we train for 200 episodes.

Parameter-Robust. In this setting, we consider robustness to mass change. Compared to the adversarial-robust setting,
here the adversary is only allowed to change the mass once per episode. In this setting, H-UCRL is trained for 200 episodes
with the nominal mass, and then it is evaluated for varying masses. RH-UCRL and the baseline, EP-Opt are allowed to
change the mass also during training. In this setting, there is no worst-case adversary during evaluation.

D.3. Adversarial-Robust RL

Next we detail the environments, the training and evaluation procedure, and the hyper-parameters in different paragraphs.

Environments. For the Half-Cheetah environment, the adversary acts on the torso, the front foot and the back foot. For
the Hopper environment, the adversary acts on the torso. For the Inverted Pendulum, the adversary acts on the pole. The
Inverted Pendulum task is different here as it starts from a perturbation of the top-up position and the task is to stabilize the
pendulum. For the Reacher2d environment, the adversary acts on the body0 link. For the Swimmer, the adversary acts on
the torso. For the Walker, the adversary acts on the torso. For all environments, we use the adversarial input magnitude
Ā = [−10, 10]q̄ , where q̄ is environment dependent.
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Training and Evaluation. We train RH-UCRL, BestResponse, MaxiMin-MB, MaxiMin-MF with in an adversarial
environment for 200 episodes. We train RARL and RAP for 1000 episodes in an adversarial environment. Finally, we train
H-UCRL for 200 episodes in a standard environment.To evaluate the robust performance of each algorithm, we freeze the
output policy of the training step and train an adversary using SAC for 200 episodes. We perform five independent runs and
report the mean and standard deviation over the runs.

Algorithm Hyper-Parameters. For RH-UCRL and its variants, we fix β = 1.0, we train every time step and do two
gradient steps with Adam (Kingma & Ba, 2014) with learning rate = 3 × 10−4. To compute a policy gradient, we take
pathwise derivatives of a learned critic using the learned model for 3 time steps and weight each estimates using td-λ, with
λ = 0.1 (Sutton & Barto, 2018). We also add entropy regularization with parameter 0.2. We did not do hyper parameter
search, but rather use the software default values. For RARL and RAP, we use the PPO algorithm from Schulman et al.
(2017) as this performed better than TRPO from Schulman et al. (2015). We train PPO after collecting a batch of 4 episodes,
for 80 gradient steps, using early stopping once the KL divergence between the initial and the current policy is more than
0.0075.

D.4. Action-Robust RL

We use the noisy robust setting from Tessler et al. (2019) with mixture parameter α = 0.3. The training and evaluation
procedures, as well as the hyperparameters, are identical to the adversarial-robust experiment. The baseline is AR-DDPG
that Tessler et al. (2019) propose.

D.5. Parameter-Robust

In this setting, we are robust to a relative mass change, i.e., when the relative mass equals one, then the environment has the
nominal mass. For all environments except for the Swimmer, the relative mass is bounded in the interval [0.001, 2]. For the
Swimmer, there were numerical errors due to ill-conditioned mass in the simulator, so we limit the range to [0.5, 1.5].

We train RH-UCRL, BestResponse, MaxiMin-MB, MaxiMin-MF with in an adversary that is allowed to select the
worst-case mass from within the range for 200 episodes. We train the baselines, DomainRandomization and EPOpt
for 1000 episodes as they were also based on PPO. Finally, we train H-UCRL for 200 episodes in a standard environment. To
evaluate the performance of each algorithm, we evaluate the different relative masses in the interval and do five independent
runs. We report the mean and standard deviation over the runs.


