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Abstract
In real-world tasks, reinforcement learning (RL)
agents frequently encounter situations that are not
present during training time. To ensure reliable
performance, the RL agents need to exhibit
robustness against worst-case situations. The
robust RL framework addresses this challenge
via a worst-case optimization between an agent
and an adversary. Previous robust RL algorithms
are either sample inefficient, lack robustness
guarantees, or do not scale to large problems.
We propose the Robust Hallucinated Upper-
Confidence RL (RH-UCRL) algorithm to provably
solve this problem while attaining near-optimal
sample complexity guarantees. RH-UCRL is a
model-based reinforcement learning (MBRL)
algorithm that effectively distinguishes between
epistemic and aleatoric uncertainty, and effi-
ciently explores both the agent and adversary
decision spaces during policy learning. We scale
RH-UCRL to complex tasks via neural networks
ensemble models as well as neural network
policies. Experimentally, we demonstrate that
RH-UCRL outperforms other robust deep RL al-
gorithms in a variety of adversarial environments.

1. Introduction
A central challenge when deploying Reinforcement Learn-
ing (RL) agents in real environments is their robustness
(Dulac-Arnold et al., 2019). As a motivating example,
consider designing a braking system on an autonomous
car. As this is a highly complex task, we want to learn
a policy that performs this maneuver. Even if various
real-world conditions can be simulated during the training
time, it is infeasible to consider all possible ones such as
road conditions, brightness, tire pressure, laden weight, or
actuator wear, as these can all vary over time in potentially
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unpredictable ways. The main goal is then to learn a policy
that provably brakes in a robust fashion so that, even if
faced with new conditions, it performs reliably. Borrowing
from the robust control perspective (e.g, as considered
in H∞ control Başar & Bernhard (2008)), we model
robustness with an adversary that is allowed to perform the
worst-case disturbance for the given policy.

While there are theoretical approaches for robust RL that
offer sample complexity guarantees (see Section 2), the
existing algorithms are highly impractical. On the other
hand, there are empirically motivated heuristic approaches
that lack provable robustness. We bridge this gap by
proposing an algorithm that simultaneously enjoys rigorous
theoretical guarantees, yet can be applied to complex tasks.

We develop the Robust Hallucinated Upper-Confidence
Reinforcement Learning (RH-UCRL) algorithm for obtain-
ing robust RL policies. It relies on a probabilistic model
that can distinguish between epistemic uncertainty (that
arises from the lack of data) and aleatoric uncertainty
(stochastic noise) (Der Kiureghian & Ditlevsen, 2009).
A key algorithmic principle behind RH-UCRL is halluci-
nation: In particular, the agent hallucinates an additional
control input to maximize an optimistic estimate of the
robust performance whereas the adversary hallucinates an
additional control input to minimize a pessimistic estimate
of the robust performance. The amount of “hallucination”
is limited by the epistemic uncertainty of the model and
it decreases as the learning algorithm collects more data.
In a number of experiments, we show that our algorithm
exhibits robust performance and outperforms previous
approaches on various popular RL benchmarks. In Figure 1,
we demonstrate how RH-UCRL outperforms baselines in
a pendulum swing-up control task. In particular, our main
observations are: (i) Robust baselines specifically designed
for different settings do not explore sufficiently and fail to
find a swing-up maneuver; (ii) Non-robust algorithm finds
the swing-up strategy, but as adversarial power increases its
performance significantly deteriorates, whereas RH-UCRL
exhibits higher robustness to worst-case perturbations.

Main contributions. We design RH-UCRL, the first practi-
cal provably robust RL algorithm that is: (i) sample-efficient,
(ii) compatible with deep models, and (iii) simulator-free as
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Figure 1. Performance of RH-UCRL (this work), H-UCRL (Curi et al., 2020a), and a baseline with no exploration in adversarial-, action-,
and parameter-robust settings on a pendulum swing-up task. The baseline never learns a successful swing-up strategy due to insufficient
exploration. RH-UCRL and H-UCRL learn a swing-up strategy but RH-UCRL outperforms H-UCRL as the perturbation increases.

it addresses exploration on a real system. We establish rig-
orous general sample-complexity and regret guarantees for
our algorithm, and we specialize them to Gaussian Process
models, hence obtaining sublinear robust regret guarantees.
While previous robust RL works have focused on different
individual settings, we gather and summarize them all for
the first time, and show particular instantiations of our
algorithm in each of them: (i) Adversarial-robust RL, (ii)
Action-robust RL, and (iii) Parameter-robust RL. Finally, we
provide experiments that include different environments and
settings, and we empirically demonstrate that RH-UCRL
outperforms or successfully competes with the state-of-the-
art deep robust RL algorithms and other baselines.

2. Related Work
Robust RL. Robust Reinforcement Learning (Iyengar,
2005; Nilim & El Ghaoui, 2005; Wiesemann et al., 2013)
typically uses the Zero-Sum Markov Games formalism in-
troduced by Littman (1994); Littman & Szepesvári (1996).
From a control engineering perspective, this is known as
H∞ control (Başar & Bernhard, 2008), and Bemporad et al.
(2003) solve this problem for known linear systems where
the optimal robust policy is an affine function of the state.
For Markov Games with unknown systems, Lagoudakis &
Parr (2002) introduce approximate value iteration whereas
Tamar et al. (2014) and Perolat et al. (2015) present an ap-
proximate policy iteration scheme. Although these works
present error propagation schemes restricted to the linear
setting, they do not address the problem of exploration ex-
plicitly, and instead assume access to a sampling distribution
that has sufficient state coverage. Zhang et al. (2020) pro-
pose a model-based algorithm for finding robust policies
assuming access to a simulator that is able to sample at arbi-
trary state-action pairs. Finally, Bai & Jin (2020) recently
introduce an algorithm that provably and efficiently outputs
a policy, but it is limited to the tabular setting. Instead, our
approach does not require a generative model and considers
the full exploration problem in a finite horizon scenario.

Furthermore, our algorithm does not require tabular nor lin-
ear function approximation and it is compatible with deep
neural networks dynamical models.

Minimax Optimization Algorithms. Pinto et al. (2017)
propose to solve the minimax optimization via a stochastic
gradient descent approach for both players for adversarial-
robust RL algorithms. Tessler et al. (2019) introduce
action-robust RL and policy and value iteration algorithms
to solve these problems. Rajeswaran et al. (2017) introduce
the EPOpt to solve parameter-robust problems. Finally, Ka-
malaruban et al. (2020) propose to use a Stochastic-Gradient
Langevin Dynamics algorithm to solve such problems via
sampling instead of optimization. These algorithms are
generally sample-inefficient as they do not explicitly explore
but, given a model, they could be used to optimize a policy.

Provable Model-Based RL. Model-Based RL has bet-
ter empirical sample-efficiency than model-free variants
(Deisenroth & Rasmussen, 2011; Chua et al., 2018). Fur-
thermore, the celebrated UCRL algorithm by Auer et al.
(2009) has provable sample-efficiency guarantees, albeit be-
ing intractable for non-tabular environments. Recently, Curi
et al. (2020a) instantiate the UCRL algorithm in continuous
control problems using hallucinated control to explore. We
build upon their H-UCRL algorithm and strictly general-
ize it to the robust RL setting. Our robust policy search
strategy is inspired by the work in the related bandit setting
with Gaussian Processes, where Stable-OPT (Bogunovic
et al., 2018) combines pessimism with optimism to similarly
generalize the non-robust GP-UCB (Srinivas et al., 2010)
algorithm and provably discover robust designs.

3. Problem Statement
We consider a stochastic environment with states s ∈ S ⊆
Rp, agent actions a ∈ A ⊂ Rq , adversary actions ā ∈ Ā ⊂
Rq̄ , and i.i.d. additive transition noise vectorωh ∈ Rp. Both
action sets are assumed to be compact, and the dynamics
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are given by:

sh+1 = f(sh,ah, āh) + ωh (1)

with f : S ×A× Ā → S . We assume the true dynamics f
are unknown and consider the episodic setting over a finite
time horizon H . After every episode (i.e., every H time
steps), the system is reset to a known state s0. In this work,
we make the following assumptions regarding the stochastic
environment and unknown dynamics:

Assumption 1. The dynamics f in Eq. (1) are Lf -Lipschitz
continuous and, for all h ∈ {0, . . . ,H − 1}, the individual
entries of the noise vector ωh are i.i.d. σ-sub-Gaussian.

At every time-step, the system returns a deterministic
reward r(sh,ah, āh), where r : S×A×Ā → R is assumed
to be known to the agent. We consider time-homogeneous
agent policies π ∈ Π, π : S → A, that select actions
according to ah = π(sh). Similarly, we consider adversary
policies π ∈ Π̄ on the common state space, i.e., π̄ : S → Ā,
that select actions as āh = π̄(sh). For the sake of simplicity,
we omit straightforward extensions such as initial-state
distributions, unknown reward functions, or time-indexed
policies that can be adressed using standard techniques
(Chowdhury & Gopalan, 2019). For now, we leave both Π
and Π̄ unspecified, but in Section 5, we parameterize them
via neural networks.

The performance of a pair of policies (π, π̄) on a given
dynamical system f̃ is the episodic expected sum of returns:

J(f̃ , π, π̄) := Eτf̃,π,π̄

[
H∑
h=0

r(sh,ah, āh)

∣∣∣∣ s0

]
, (2)

s.t. sh+1 = f̃(sh,ah, āh) + ωh,

where τf̃ ,π,π̄ = {(sh−1,ah−1, āh−1), sh}Hh=0 is a random
trajectory induced by the stochastic noise ω, the dynamics
f̃ , and the policies π and π̄.

We use π? to denote the optimal deterministic robust policy
from set Π in case of true dynamics f , i.e.,

π? ∈ arg max
π∈Π

min
π̄∈Π̄

J(f, π, π̄). (3)

Even when the true system dynamics are known, finding a
robust policy is generally a challenging task for arbitrary
policy sets, reward and transition functions. In the rest,
we make an assumption that Eq. (3) can be solved for a
given dynamics, and in Section 4.3, we propose a concrete
problem instantiation and algorithmic solution.

Learning protocol. We consider the episodic setting in
which, at every episode t, the learning algorithm selects
both the agent’s πt and a fictitious adversary’s π̄t policies.
The pair of policies (πt, π̄t) is then deployed on the true

Algorithm 1 Robust Model-based Reinforcement Learning
1: Require: Calibrated dynamical model, reward function
r(sh,ah, āh), horizon H , initial state s0

2: for t = 1, 2, . . . do
3: Select (πt,π̄t) using the current dynamical model
4: for h = 1, . . . ,H − 1 do
5: sh,t = f(sh−1,t, πt(sh−1,t), π̄t(sh−1,t)) + ωh,t
6: end for
7: Update statistical dynamical model with the H ob-

servations {(sh−1,t,ah−1,t, āh−1,t), sh,t}Hh=0
8: Reset the system to s0,t+1 = s0

9: end for

system f , and a single realization of the trajectory τf,πt,π̄t is
observed and used to update the underlying statistical model.
We summarize the general learning protocol in Algorithm 1.
In the braking system example, this learning protocol im-
plies that during training we are allowed to execute brak-
ing maneuvers as well as possible adversarial policies, e.g.,
changing the braking surface. The execution of both policies
during training is crucial to guarantee robust performance:
The learner can actively look for the worst-case adversarial
policies that it might encounter during deployment and learn
what to do when faced upon them.

Performance metric. For a small fixed ε > 0, the goal is
to output a robust policy πT after T episodes such that:

min
π̄∈Π̄

J(f, πT , π̄) ≥ min
π̄∈Π̄

J(f, π?, π̄)− ε, (4)

where π? is defined as in Eq. (3). Hence, we consider the
task of near-optimal robust policy identification, but we note
that one can also measure the performance in terms of the
robust cumulative regret as discussed in Section 4.4. Thus,
the goal is to output the agent’s policy with near-optimal
robust performance when facing its own worst-case
adversary, and the adversary selects π̄ after the agent selects
πT . Note that this is a stronger robustness notion than just
considering the worst-case adversary of the optimal policy,
since, by letting π̄∗ ∈ arg minπ̄∈Π̄ J(f, π?, π̄), we have
J(f, πT , π̄

∗) ≥ minπ̄∈Π̄ J(f, πT , π̄).

Statistical Model. In this work, we take a model-based
reinforcement learning (MBRL) approach. That is, to learn
the dynamics and discover a near-optimal robust policy,
we consider algorithms that model and sequentially learn
about f from noisy state observations. The agent makes
use of the observed data (collected within an episode) to
simultaneously improve its estimate of the true dynamics f .

We use statistical estimation to probabilistically reason
about dynamical models f̃ that are compatible with the ob-
served data D1:t =

{
τf,πt′ ,π̄t′

}t
t′=1

. This can be done, e.g.,
by frequentist estimation of mean µt(s,a, ā) and confidence
Σ2
t (s,a, ā) estimators, or by taking a Bayesian perspec-
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tive and considering the posterior distribution p(f̃ | D1:t)
over dynamical models that leads to µt(s,a, ā) =
Ef̃∼p(f̃ | D1:t)

[f̃(s,a, ā)] and Σ2
t (s,a, ā) = Var[f̃(s,a, ā)].

In any case, we require the model to be calibrated:

Assumption 2 (Calibrated model). The statistical model
is calibrated w.r.t. f in Eq. (1), so that with σt(·) =
diag(Σt(·)) and a non-decreasing sequence of parame-
ters {βt}t≥1 ∈ R>0, each depending on δ ∈ (0, 1), it
holds jointly for all t ≥ 1 and s,a, ā ∈ S × A × Ā
that |f(s,a, ā)−µt−1(s,a, ā)| ≤ βtΣt−1(s,a, ā) element-
wise, with probability at least 1− δ.

This assumption is important for exploration: if the model is
not calibrated, then using the epistemic uncertainty of such
a model will not provably guide exploration. For dynamics
with finite norm in a known RKHS space, Assumption 2
is satisfied (Srinivas et al., 2010; Chowdhury & Gopalan,
2017). In case of neural network models, we can recalibrate
one-step ahead predictions (Malik et al., 2019). Finally, we
construct the set of plausible models at time t as Mt ={
f̃ | |f̃(·)− µt−1(·)| ≤ βtΣt−1(·)

}
. By Assumption 2, we

can guarantee that, with high probability, the true dynamics
f ∈Mt, for all time t.

4. The Robust H-UCRL Algorithm (RH-UCRL)
We now develop our RH-UCRL algorithm that can be used
in Algorithm 1 (at Line 3), for selecting policies πt and
π̄t. RH-UCRL takes the sequence of confidence parameters
{βt}t≥1 from Assumption 2 as input. The main idea is to
use our probabilistic model of f to optimistically select πt
and pessimistically select π̄t w.r.t. all plausible dynamics.

4.1. Optimistic and Pessimistic Policy Evaluation

For any two policies π and π̄, we provide the (o)ptimistic
and (p)essimistic estimate of J(f, π, π̄) at time t, and we
denote them with J (o)

t (π, π̄) and J (p)
t (π, π̄), respectively.

Such estimates are constructed considering the epistemic
uncertainty in the dynamical model. For instance, the op-
timistic estimate is the maximum performance of a given
policy, where the maximum is taken over the dynamical
models in Mt. In general, such optimization problem is
intractable. However, we introduce an auxiliary function
η : S × A × Ā → [−1, 1]p and reparameterize the set of
plausible models as f̃ = µt−1(·) + βtη(·)Σt−1(·). Using
this reparameterization, the optimistic estimate is given by:

J
(o)
t (π, π̄) := max

η(o)
J(f (o), π, π̄), (5a)

s.t. f (o)(s,a, ā) = µt−1

(
s,a, ā)

+ βtη
(o)(s,a, ā)Σt−1(s,a, ā). (5b)

Similarly, the pessimistic estimate is given by:

J
(p)
t (π, π̄) := min

η(p)
J(f (p), π, π̄) (6a)

s.t. f (p)(s,a, ā) = µt−1

(
s,a, ā)

+ βtη
(p)(s,a, ā)Σt−1(s,a, ā). (6b)

We note that J (o)
t and J (p)

t represent upper and lower bounds
on the performance of the policies π, π̄ in case of the true dy-
namics f . These estimates are computed by finding the most
optimistic (pessimistic) dynamics compatible with the data.
Note that the optimistic/pessimistic outcome is selected via
decision variables η(o)/η(p) : S×A×Ā → [−1, 1]p, which
are functions of the state as well as actions of both players.
These select among all plausible outcomes of the dynamics
bounded within the epistemic uncertainty over f . When the
policies are fixed and clear from context, with slight abuse
of notation we write η(s,a, ā) = η(s, π(s), π̄(s)) = η(s).
A crucial observation is that both Eqs. (5) and (6) can be
viewed as two optimal control problems, where the decision
variables η(o)/η(p) are hallucinated control policies, whose
effect is bounded by the model epistemic uncertainty. We
can use optimal control algorithms (Camacho & Alba,
2013) to maximize/minimize the sum of rewards following
the reparameterized dynamics f (o)/f (p).

4.2. The RH-UCRL Algorithm

Given both the pessimistic and optimistic performance esti-
mates from the previous section, we are now ready to state
our algorithm. At each episode t, RH-UCRL selects the
agent and adversary policies as follows:

πt ∈ arg max
π∈Π

min
π̄∈Π̄

J
(o)
t (π, π̄), (7a)

π̄t ∈ arg min
π̄∈Π̄

J
(p)
t (πt, π̄). (7b)

Thus, RH-UCRL selects the most optimistic robust policy
for the agent player in Eq. (7a). The adversary player
picks the most pessimistic policy given the selected agent
policy in Eq. (7b). When the adversarial policy space Π̄ is
a singleton, RH-UCRL reduces to the H-UCRL algorithm.

Finally, after a total of T episodes, the algorithm outputs an
agent policy π̂T given by:

π̂T = πt? s.t. t? ∈ arg max
t∈{1,...,T}

J
(p)
t (πt, π̄t). (8)

There is no extra computational cost in identifying the out-
put policy as J (p)

t (πt, π̄t) is already computed by the learner
in Eq. (7b) in every episode t. Thus, the algorithm simply
returns the encountered agent policy with maximum pes-
simistic robust performance.
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4.3. Practical Implementation

In this section, we describe the practical implementation of
RH-UCRL using neural networks for the dynamical model
as well as the true and hallucinated policies. We provide an
implementation of the algorithm on https://github.
com/sebascuri/rhucrl.

Model Learning. As used in PETS (Chua et al., 2018) and
H-UCRL (Curi et al., 2020a), we use an ensemble of neural
network as our model. In particular, each ensemble member
receives as input the tuple (sh−1,ah−1, āh−1) and the goal
is to output a predictive distribution of sh. To this end, we
train each ensemble member using type-II maximum like-
lihood estimation, using as targets the difference between
two consequtive states, i.e., ∆h = sh − sh−1. Given a
trained model that outputs N (µ

(i)
t−1, ω

(i)
t−1) for each ensem-

ble member i, we combine the predictions as a mixture of
Gaussians. The mean prediction is µt−1 = 1

N

∑N
i=1 µ

(i)
t−1,

the epistemic uncertainty is Σ2
t−1 = 1

N−1

∑N
i=1(µ

(i)
t−1 −

µt−1)(µ
(i)
t−1 − µt−1)>, and the aleatoric uncertainty is

ωt−1 = 1
N

∑N
i=1 ω

(i)
t−1.

Policy Learning. To implement RH-UCRL, we parameter-
ize π, π̄, and η using neural network policies. We remark
that π̄ in the agent optimization (7a) and π̄ in the adversary
optimization (7b) are different so, for the sake of clarity,
we call π̄′ the policy in the agent optimization (7a). We ap-
proximate the finite-horizon RL problem with a discounted
infinite-horizon problem using γ = 1/(1−H) as discount
factor. We use an actor-critic approach where we learn two
separate critics, one for the optimistic performance in (7a)
and the other one for the pessimistic performance in (7b) via
fitted Q-iteration (Perolat et al., 2015; Antos et al., 2008).
Finally, we do stochastic gradient ascent/descent using path-
wise gradients through such learned critics (Mohamed et al.,
2019; Silver et al., 2014). Namely, we compute the gradi-
ents of π, η(o), and π̄′ through the learned optimistic critic,
then we update π and η(o) via gradient ascent, whereas π̄′

via gradient descent. Likewise, we compute the gradients
of π̄ and η(p) through the learned pessimistic critic for the
fixed π and update both π̄ and η(p) via gradient descent.

4.4. Theoretical Analysis

In this section, we theoretically analyze the performance of
the RH-UCRL algorithm. First, we use the notion of robust
cumulative regret1

RT =

T∑
t=1

min
π̄∈Π̄

J(f, π?, π̄)−min
π̄∈Π̄

J(f, πt, π̄),

1Similar notions of robust cumulative regret have been analyzed
before in bandit optimization (see, e.g., Kirschner et al., 2020).

which measures the difference in performance between
the optimal robust policy and the sequence of agent’s
policies {π1, . . . , πT } selected at every episode in Eq. (7a).
Below (see Theorem 1) we establish that RH-UCRL
achieves sublinear regret, i.e., RT /T → 0 for T →∞. In
addition to the robust regret notion, we also analyze the
recommendation rule of RH-UCRL via Eq. (8), and the
number of episodes T required to output a near-optimal
robust policy (see Corollary 1). We start by analyzing
a general robust model-based RL framework, and later
on, we demonstrate the utility of the obtained results by
specializing them to the important special case of Gaussian
Process dynamics models. We defer all the proofs from this
section to Appendix B. Before stating our main theoretical
results, we introduce some additional assumptions:

Assumption 3 (Lipschitz continuity). At every episode
t, the functions Σt, any agent’s and adversary’s policies
πt ∈ Π, π̄t ∈ Π̄, and the reward r(·, ·, ·) are Lipschitz con-
tinuous with respective constants Lσ , Lπ , Lπ̄ and Lr.

The previous assumption is mild and has been used in non-
robust model-based RL, see, e.g., Curi et al. (2020a), where
it is noted that neural networks with Lipschitz-continuous
non-linearities (or GPs with Lipschitz continuous kernels)
output Lipschitz-continuous predictions. Furthermore, the
policy classes Π and Π̄, as well as the reward functions, are
typically known and designed in a way that is compatible
with the previous assumption.

Both the robust regret and sample complexity rates that we
analyze depend on the difficulty of learning the underlying
statistical model. Models that are easy to learn typically
require fewer samples and allow algorithms to make better
decisions sooner. To express the difficulty of learning the
imposed calibrated model class, we use the following model-
based complexity measure:

ΓT := max
D̃1:T

T∑
t=1

∑
(s,a,ā)∈D̃t

‖Σt−1(s,a, ā)‖22 (9)

where each D̃t ⊂ {S × A × Ā}H . This quantity has a
worst-case flavor as it considers the data (collected during
T episodes by any algorithm) that lead to maximal total
predictive uncertainty of the model. For the special case
of RKHS/GP dynamics models, we show below that this
quantity can be effectively bounded, and the bound is
sublinear (in the number of episodes T ) for most commonly
used kernel functions.

General results. Now, we can state the main result of this
section. In the following theorem, we bound the robust
cumulative regret incurred by the policies from Eq. (7a).

Theorem 1. Under Assumptions 1 to 3, let C = (1 + Lf +
2Lσ)(1+L2

π+L2
π̄)1/2 and let st,h ∈ S , at,h ∈ A, āt,h ∈ Ā

https://github.com/sebascuri/rhucrl
https://github.com/sebascuri/rhucrl
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Figure 2. Worst-case and average return of different algorithms in the Adversarial-Robust Setting in Mujoco tasks. RH-UCRL outperforms
the other algorithms in terms of worst-case return. The non-robust baseline, H-UCRL, has good average performance but poor worst-case
performance (e.g., Inverted Pendulum). The deep robust RL baselines have worse sample complexity and often underperform. Our
ablations are also non-robust, since exploration of both agent and adversary is crucial here to achieve robust performance.

for all t, h > 0. Then, for any fixed H ≥ 1, with probability
at least 1− δ, the robust cumulative regret of RH-UCRL is
upper bounded by:

RT = O
(
LrC

HβHT H
3/2
√
T ΓT

)
.

This regret bound shows that RH-UCRL achieves sublinear
robust regret when βHT

√
ΓT = o(

√
T ). Below, we show a

concrete example of GP models where this is indeed the
case. The obtained bound also depends on the Lipschitz
constants from Assumption 3, as well as the episode length
H that we assume is constant. The dependency of the regret
bound on the problem dimension is hidden in ΓT , while
βT depends also on δ (see Assumption 2).

Next, we characterize the number of episodes (samples)
required by RH-UCRL to output ε-optimal robust policy.
Our analysis upper bounds the optimal robust performance
according to the confidence bounds from Assumption 2, but
also addresses the challenge of characterizing the impact of
exploring different adversary policies in Eq. (7b).
Corollary 1. Consider the assumptions and setup of Theo-
rem 1, and suppose that

T

β2H
T ΓT

≥ 16L2
rH

3C2H

ε2
, (10)

for some fixed ε > 0 and H ≥ 1. Then, with probability at
least 1− δ after T episodes, RH-UCRL achieves:

min
π̄∈Π̄

J(f, π̂T , π̄) ≥ min
π̄∈Π̄

J(f, π?, π̄)− ε, (11)

where π̂T is the output of RH-UCRL, reported according to
Eq. (8), and π? is the optimal robust policy given in Eq. (3).

Gaussian Process Models. We specialize the regret bound
obtained in Theorem 1 to the case of Gaussian Process
(GP) models. GPs are popular statistical models that are
frequently used to model unknown dynamics (Deisenroth
& Rasmussen, 2011; Kamthe & Deisenroth, 2018; Curi
et al., 2020b). These models are very expressive due to a
versatility of possible kernel functions, and can naturally dif-
ferentiate between aleatoric noise and epistemic uncertainty.
Moreover, GPs are known to be provably well-calibrated
when the unknown dynamics f are Bf -smooth as measured
by the GP kernel.

In Appendix C, we recall the GP maximum information
gain (MIG) which is a kernel-dependent quantity (first intro-
duced by Srinivas et al. (2010)), that is frequently used in
various GP optimization works to characterize complexity
of learning a GP model. Sublinear upper bounds for MIG
are known (c.f. Srinivas et al. (2010)) for most popularly
used kernels (e.g., linear, squared-exponential, etc.), as well
as for their compositions, e.g., additive kernels (Krause &
Ong, 2011). We recall the known results and use MIG to
express βT and upper bound ΓT in Theorem 1. For exam-
ple, when we use independent GP models with either (i)
linear or (ii) squared-exponential kernels, for every com-
ponent, we obtain the following sublinear (in T ) regret
bounds O(H3/2p [(p+ q + q̄) ln(pTH)]

(H+1)/2√
T ) and

O(H3/2p [ln(pTH)]
(p+q+q̄)(H+1)/2√

T ), respectively.

Finally, we note that the previously used MIG bounds re-
quire S to be compact, which does not hold under the consid-
ered noise model in Assumption 3. By bounding the domain
w.h.p., Curi et al. (2020a) show that this only increases the
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Figure 3. Average and worst-case return of different algorithms in the Noisy Action-Robust Setting in Mujoco tasks. RH-UCRL mostly
outperforms other algorithms in terms of worst-case return. The non-robust baseline, H-UCRL, has good average performance but has an
extreme drop in worst-case performance. Overall, the ablations perform better here than in the Adversarial-Robust setting.

MIG bounds (e.g., in case of the squared-exponential kernel)
by at most a polylog(T ) factor.

5. Robust RL Applications and Experiments
We now discuss concrete instantiations of RH-UCRL for
three important robust RL scenarios: (i) adversarial-
robustness, (ii) action-robustness, and (iii) parameter-
robustness. In all of the above scenarios, we experimentally
demonstrate that RH-UCRL outperforms or successfully
competes with the state-of-the-art variants designed
specifically for these settings. In Appendix D, we present
experimental details and additional results.

Experimental Environments. We use the Mujoco suite
(Todorov et al., 2012) to demonstrate the effectiveness of
our algorithms in all the considered robust-RL settings. In
particular, we use the Half Cheetah, Hopper, Inverted Pen-
dulum, Reacher, Swimmer, and Walker robots.

Baselines. Besides the specific algorithms designed for
each setting, we use H-UCRL (Curi et al., 2020a) as a non-
robust baseline and three ablations derived from RH-UCRL,
namely MiniMax, MiniMaxMF and BestResponse.
The MiniMax algorithm is:

(πt, π̄t) ∈ arg max
π∈Π

min
π̄∈Π̄

J
(e)
t (π, π̄), (12)

where J (e)
t (π, π̄) corresponds to the expected performance,

where the expectation is taken with respect to the aleatoric
and epistemic uncertainty, i.e., none of the players ac-
tively explore. Next, the MiniMaxMF algorithm is a
model-free implementation of Eq. (12) that uses SAC
(Haarnoja et al., 2018) as the optimizer for each player.

The BestResponse algorithm is:

πt ∈ arg max
π∈Π

min
π̄∈Π̄

J
(o)
t (π, π̄), (13a)

π̄t ∈ arg min
π̄∈Π̄

J
(e)
t (πt, π̄). (13b)

Thus, the agent is the same as in RH-UCRL, whereas the
adversary simply plays the best-response to the agent’s pol-
icy and does not perform exploration with pessimism. The
goal of BestResponse is to analyze if exploration of the
adversary through pessimism is empirically important, of
MaxiMin-MB is to analyze if any exploration is empiri-
cally important, and of MaxiMin-MF is to analyze if using
a model of the dynamics is beneficial.

5.1. Adversarial-Robust Reinforcement Learning

This setting is the most general one that we also consider
in Section 4. The agent and the adversary can have distinct
action spaces, which can also be seen as a particular instance
of multi-agent RL with two competing agents. In the brak-
ing system motivating example, this can be used to model
an adversarial state-dependent friction coefficient, e.g.,
icy roads. Having good robust performance in this setting
implies braking robustly even with changing conditions.

The deep robust RL algorithms that we compare with are
RARL (Pinto et al., 2017) and RAP (Vinitsky et al., 2020),
and we use the adversarial action space proposed by Pinto
et al. (2017). We train all algorithms for 200 episodes except
for RARL and RAP; since they are on-policy algorithms, we
train them for 1000 episodes. To evaluate robust perfor-
mance (recall Eq. (4)), we freeze the output policy and train
only its adversary by using SAC for 200 episodes.
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Figure 4. Returns of different algorithms in the Parameter-Robust Setting in Mujoco tasks for different masses during evaluation. Although
RH-UCRL optimizes for the worst-case relative mass in this setting, it also performs well over different value of mass parameters.

In Figure 2, we show the worst-case and average returns
on the different environments. In terms of average
performance, there is no algorithm that performs better
than others in all of the environments. On the other hand,
comparing worst-case performance, RH-UCRL clearly
outperforms the robust ablations, deep robust RL and non-
robust baselines. For example, in the Inverted Pendulum
stabilization task, RH-UCRL is the only algorithm that
discovers a robust policy while all other algorithms severely
fail. BestResponse and RAP manage to learn a policy
that stabilizes the pendulum even when they learn with an
adversary. However, when facing a worst-case adversary,
they fail to complete the task.

Comparing RH-UCRL with non-robust H-UCRL, we see
that in most environments it has comparable or better
worst-case and average performance. This indicates that
RH-UCRL is not only robust, but using an adversary dur-
ing training practically helps with exploration. Pinto et al.
(2017) also report similar findings regarding robust train-
ing. Comparing RH-UCRL with the ablations, we see that
RH-UCRL achieves higher robust performance. From here,
we conclude that exploring with both the agent and the ad-
versary during training is crucial to achieve high robust per-
formance in this setting. Finally, we see that both RARL and
RAP have poor robust performance when trained for 1000
episodes, which demonstrates their sample inefficiency.

5.2. Action-Robust Reinforcement Learning

Tessler et al. (2019) introduce the action-robust setting,
where both the agent and the adversary share the action
space A and jointly execute a single action in the environ-
ment. This is useful, e.g., to model robustness to changes
in the actuator dynamics, e.g., due to tire wear or incorrect
pressure in a braking system. The action is sampled from a
mixture policy amix ∼ πmix = Υα(π, π̄), where α ∈ [0, 1]
is a known parameter that controls the mixture proportion.
One example of the mixture policy is the noisy-robust set-
ting, in which Υα(π, π̄) = (1−α)π+απ̄. Another example
is the noisy-robust setting, in which Υα = π with proba-
bility (1− α) and Υα = π̄ with probability α. The system
evolves according to sh+1 = f ′(sh,a

mix
h ) + ωh.

Besides the previous baselines, we compare to AR-DDPG
(Tessler et al., 2019), and show the results of the experiment
in Figure 3. Here, RH-UCRL is also comparable or better
than the baselines in terms of average and worst-case
returns. However, the ablations perform better than in the
adversarial-robust setting. This is possibly due to the agent
and adversary sharing the action space: The agent injects
“enough” exploration to successfully learn both policies.

5.3. Parameter-Robust Reinforcement Learning

The goal in this setting is to be robust to changes in parame-
ters, such as mass or friction, that can occur between training
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and test time. Being robust to a fixed parameter is equivalent
to considering a stateless adversary policy in the RH-UCRL
algorithm (7), i.e., Π̄ : ∅ → A. Common benchmarks in
this setting are domain randomization (Peng et al., 2018;
Tobin et al., 2017) and EP-OPT (Rajeswaran et al., 2017).
The former randomizes the parameters in the simulation and
uses the average over these parameters as a surrogate of the
maximum. The latter also randomizes the parameters but
considers the CVaR as a surrogate of the maximum. As they
are on-policy procedures, we train them using data for 1000
episodes. Finally, we evaluate the policies in different en-
vironments by varying the corresponding mass parameters.

We show the results of this setting in Figure 4. Although
RH-UCRL optimizes for the worst-case parameter, it
performs well over different mass parameter values, and,
except in the Walker environment, its performance remains
robust and nearly constant for different values of the mass
parameter. H-UCRL is trained with nominal mass only
(relative mass = 1), and it suffers in performance when
varying the mass. This is most notable in the Half Cheetah
environment (see Fig. 4). The robust variants, instead,
can alter the mass during training and often perform
better than H-UCRL. A particular case happens with the
BestResponse algorithm in the Inverted Pendulum,
where the adversary is greedy and so it swiftly chooses a
small mass and never changes it during training. The agent
learns only for this small mass and, when evaluated with dif-
ferent ones, it performs poorly. We also observe that in the
Hopper, the MaxiMin-MF outperforms the MaxiMin-MB.
The reason for this might be due to early stopping of the
environment, as it is possible that the transitions collected
in 200 episodes are not sufficient for learning the model,
but allow for learning a policy in a model-free way.

6. Conclusion
We introduced the RH-UCRL algorithm, a practical algo-
rithm for deep model-based robust RL. It uses optimistic and
pessimistic estimates of the robust performance to efficiently
explore both the agent and fictitious adversary decision
spaces during policy learning. We showed that RH-UCRL
is provably robust and we established sample-complexity
and regret guarantees. We instantiated our algorithm in im-
portant robust-RL settings such as adversarial-robust RL,
parameter-robust RL, and action-robust RL. Empirically,
RH-UCRL outperforms state-of-the-art deep robust RL al-
gorithms. Perhaps surprisingly, its discovered robust poli-
cies often attain better non-robust performance than the
ones found by non-robust algorithms, indicating benefits of
RH-UCRL for exploration.
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